APPENDIX 9

STORMWATER POLLUTION PREVENTION PLAN (SWPPP)

40 Long Alley Saratoga Springs New York 12866 P 518/587-8100 F 518/587-0180 www.thelagroup.com

Stormwater Pollution Prevention Plan

Prepared in accordance with NYS DEC General Permit GP-0-10-001 and

Section 18-39 of the Rules and Regulations for the Protection from Contamination, Degradation and Pollution of the New York City Water Supply and Its Sources

for:

Windham Mountain Sporting Club Phase 1 Construction

Owner/Operator(s):

Tuck Eastside Partners, L.P. Attention: Mr. Thomas Wilcock 34 Salisbury Road Darien, CT 06820 (203) 258-6747

SWPPP Contact(s):

The LA Group, PC 40 Long Alley Saratoga Springs, NY 12866 (518)-587-8100

SWPPP Preparation Date:

December, 2011

Table of Contents

1.0	REGULATORY OVERVIEW AND REQUIREMENTS	1
	1.1 GP 0-10-001 OVERVIEW	1
	1.2 NYCDEP REGULATORY REQUIREMENTS	2
2.0	SWPPP REVIEW. UPDATE	3
		···· •
	2.1 SWPPP REVIEW	3
	2.2 SWPPP UPDATE	4 1
	2.3 DEPARTMENT OF ENVIRONMENTAL PROTECTION INFORMATION	4 1
	2.3.1 Filor Enforcement Actions Against the Applicant of on the Floperty	4 1
		, т
3.0	SITE ASSESSMENT, EVALUATION AND PLANNING	6
	3.1 PROJECT LOCATION	6
	3.2 PRE-DEVELOPMENT CONDITIONS	6
	3.3 PROJECT TYPE	7
	3.4 Project Scope	7
	3.5 HISTORIC PRESERVATION DETERMINATION	8
	3.6 RECEIVING WATERS	9
	3.7 Soils	9
	3.8 ENVIRONMENTAL COMPLIANCE WITH THE DETAILED ENVIRONMENTAL IMPACT STATEMENT	12
	3.9 SITE CONSTRAINTS	12
4.0	EROSION AND SEDIMENT CONTROL	12
	4.1 EROSION AND SEDIMENT CONTROL PRACTICES	12
	4.2 EROSION AND SEDIMENT CONTROL DRAWINGS	15
	4.3 CONSTRUCTION PHASING PLAN AND SEQUENCE OF OPERATIONS	15
	4.3.1 Sediment and Erosion Control Practices to be Converted to Permanent Practices	17
	4.4 EROSION AND SEDIMENT CONTROL PRACTICE MAINTENANCE	17
	4.5 EROSION AND SEDIMENT CONTROL INSPECTION	18
	4.6 CONTRACTOR SEQUENCE FORM	19
5.0	POST CONSTRUCTION STORMWATER MANAGEMENT PRACTICES	19
	5.1 STOPMWATER MANAGEMENT CONTROLS	10
	5.2 GREEN INER ASTRUCTURE PRACTICES/RUNOFE REDUCTION TECHNIQUES	20
	5.3 Post Construction Stormwater Management Drawings	21
	5.4 Hydraulic and Hydrologic Analysis	22
	5.5 COMPARISON OF PRE AND POST CONSTRUCTION STORMWATER RUNOFF	22
	5.6 WATER QUALITY DISCHARGES	23
	5.6.1 Introduction and Method	23
	5.6.2 Water Quality Loading Existing and Proposed Conditions	25
	5.6.3 Water Quality Reduction From Post Construction Stormwater Management Practices	25
	5.6.4 References	30
	5.7 OPEN CHANNEL CONVEYANCES/CLOSED CHANNEL CONVEYANCES	30
	5.8 IMPERVIOUS AREA FOR EACH DRAINAGE AREA(S) REQUIRING TWO DIFFERENT STORMWATE	R
	MANAGEMENT PRACTICES IN SERIES	30

	5.9	DOWNSTREAM STREAM SURVEY OF WATERCOURSES THAT WILL RECEIVE STORMWATER	
		DISCHARGES FROM THE SITE	31
6.0		POST CONSTRUCTION STORMWATER MAINTENANCE	33
	6.1	MECHANISM OF OPERATION AND MAINTENANCE	33
	6.2	MAINTENANCE TO BE PERFORMED	33
	6.3	STORMWATER MANAGEMENT PRACTICE POSTING	34
7.0		CONSTRUCTION WASTE	35
8.0		OFFSITE VEHICLE TRACKING	35
9.0		TEMPORARY STABILIZATION FOR FROZEN CONDITIONS	35
10.0)	SPILL PREVENTION PRACTICES	36
11.0)	CERTIFICATIONS	40
12.0)	DEFINITIONS	45

Tables

Table 1.0	Soil Characteristics	
Table 2.0	Phase 1 Breakout of Individual Sub-phases and their Corresponding Area	
Table 3.0	Soil Restoration Requirements from NYSDEC Design Manual August, 2010	
Table 4.0	Peak Storm Flows	
Table 5.0	Water Quality Volume Summary	
Table 6.0	Loading Rates, Conversion Factors, and Data Sources for Mass Loading Model	
Table 7.0	Mass Reduction of Total Suspended Solids from Post-Construction Stormwater	
	Management Practices	
Table 8.0	Mass Reduction of Phosphorus from Post-Construction Stormwater Management Ph	ractices.
	-	
Table 9.0	Impervious Percentages of Area Draining to a Standard Stormwater Management Pr	ractice
	-	

Exhibits

A	Notice of Intent (NOI), NYCDEP Application Form and NYSDEC Acknowledgement
	Letter
B	Stormwater Management Report and Hydro CAD for All Three Phases of this Project
С	SWPPP Inspection Forms –SWPPP Inspection Report
D	Other SWPPP Forms – Construction Sequence, SWPPP Plan Changes,
	Spill Response Form, Stormwater Management Practice Maintenance Log
E	SPDES General Permit GP-0-10-001
F	Historic Preservation Documentation
G	Deep Ripping and De-compaction (DEC, 2008)
H	Deep Hole Test Pit Logs from Soil Mapping

Phosphorus and Total Suspended Solids Models for Existing and Proposed Conditions Figures I J

1.0 REGULATORY OVERVIEW AND REQUIREMENTS

1.1 GP 0-10-001 Overview

This Stormwater Pollution Prevention Plan (SWPPP) is prepared to inform the landowner and construction personnel of the measures to be implemented for controlling runoff and pollutants from the site during and after construction activities. The objective of this plan is to comply with the New York Department of Environmental Conservation (NYSDEC) State Pollutant Discharge Elimination System (SPDES) General Permit for Stormwater Discharges from Construction Activities, Permit No. GP-0-10-001 requirements. Any material conflicts between this plan and the site plans, specification or instructions, must be brought to the attention of the design professional. The project may have other permits and it is the responsibility of the owner and contractor to know and understand all permits.

This Project is located in the West of Hudson, New York City Watershed (See Figure 1-5 in Exhibit J). Therefore, this SWPP has also been designed according to the New York City Department of Environmental Protection Applicant's Guide to Stormwater Pollution Prevention Plans from September of 2011.

The operator will be issued a bill from New York State for a one hundred dollar (\$100.00) <u>annual</u> fee for the open GP-0-10-001 permit. The operator will also be billed by New York State for a one time one hundred dollar (\$100.00) per acre fee for the proposed disturbed soil area listed in the NOI, and finally a one-time six hundred (\$600.00) per acre fee for the proposed increased impervious area listed in the NOI.

The operator is responsible to maintain onsite in a secure location that is accessible during normal working hours to an individual performing a compliance inspection, the following information:

- the Notice of Intent (NOI),
- DEP Application,
- the NYS Department of Environmental Conservation NOI Acknowledgement Letter,
- the SWPPP,
- a copy of the General Permit (included in the SWPPP),
- All inspection reports.

Technical standards are detailed in the "New York State Standards and Specifications for Sediment and Erosion and Sediment Control (August 2005)", as well as illustrated on the Erosion and Sediment Control Plan Maps included in the Site Plan drawing set for the DEIS. The design of post-construction stormwater control practices follow the guidance provided by "New York State Stormwater Management Design Manual, August, 2010."

1.2 NYCDEP Regulatory Requirements

The New York City Department of Environmental Protection Applicant's Guide to Stormwater Pollution Prevention Plans from September of 2011and Section §18-39 of the Rules and Regulations for the Protection from Contamination, Degradation and Pollution of the New York City Water Supply and It's Sources was followed during the planning of this project. Some of the NYCDEP requirements are:

- Certain prohibitions on construction of impervious surface, bridge or crossing within limited distances to watercourses, wetlands, reservoirs, reservoir stems or a controlled lake unless the activities meet certain specifications,
- Stormwater Pollution Prevention Plans (SWPPPs) shall be prepared according to NYSDEC General Permit for Construction GP-0-10-001 except for that no activity shall be exempt from any such requirements as a result of the size or nature of the watercourse(s) to which stormwater from such activity discharges, except from prior written approval from NYCDEP,
- During construction if there are significant changes in the design, construction, operation, or maintenance of an activity which is subject to a SWPPP which may have a significant effect on the potential for the discharge of pollutants to surface waters, and has not otherwise been addressed in the SWPPP or the SWPPP proves to be ineffective in eliminating or minimizing erosion or sedimentation, or construction pollution discharges, the SWPPP shall be amended. The amended SWPPP shall be submitted to NYCDEP for review and approval,
- Any approval of a SWPPP by NYCDEP shall expire and become null and void unless construction is completed within 5 years from the date of issuance, or within any extended time period approved by the NYCDEP upon good cause shown. Following expiration of the approval, the application for the SWPPP may be submitted to NYCDEP for new approval,
- NYCDEP may require evidence of financial security prior to construction from the owner,
- If any activity requires a SWPPP and takes place in the drainage basin of a terminal reservoir, the SWPPP shall include an analysis of coliform runoff before and after the proposed land disturbance activity,
- The SWPPP shall provide for the maintenance of natural drainage systems, including streams, swales and drainage ditches in an open condition to the maximum extent practicable. The SWPPP shall ensure that any closed stormwater conveyance measures are sized to convey the 10-year, 24-hour storm,
- All SWPPP's shall include measures to capture and treat either the 1-year, 24-hour storm or the Water Quality Volume, whichever volume is greater,
- Where infiltration practices are proposed, to the maximum extent practicable, no portion of such infiltration practice shall be located within 100 feet of any portion of an adsorption field for a subsurface, sewage treatment system,
- The SWPPP shall be designed to minimize the alteration of existing drainage areas and to maintain volumes of flow at design points at pre-construction

levels, except as necessary to alleviate downstream flooding problems or other adverse conditions in existence prior to construction, or to divert runoff from off-site and/or undisturbed areas away from proposed areas to be disturbed,

- The SWPPP shall be designed to minimize the loss of annual recharge to groundwater by maximizing the use of infiltration practices where suitable soil conditions exist,
- If an activity requiring a SWPPP will result in impervious surface covering 20% or more of drainage area for which a stormwater management practice is designed, the SWPPP shall provide stormwater runoff from that drainage area be treated by two different types of stormwater management practices in series, unless the proposed stormwater practice is an infiltration practice or the project is in the West of the Hudson watershed and within a village, hamlet, village extension, or area zoned for commercial or industrial uses or in the East of Hudson watershed within a Designated Main Street Area,
- For the purposes of the design criteria incorporated by reference in NYSDEC General Permit for Construction, "detention time," shall mean the time runoff is detained in a stormwater management practice.
- Redevelopment projects shall be designed according to NYSDEC Construction General Permit GP 0-10-001, be prepared and implemented to the maximum extent possible, in accordance with previous eight requirements listed above, and provide an improvement in stormwater management and/or treatment as compared with conditions prior to the activity.

2.0 SWPPP REVIEW, UPDATE

2.1 SWPPP Review

This SWPPP will be sent to the New York City Department of Environmental Protection (NYCDEP) for review and approval.

Applicable Federal, State, and local regulatory agencies that have jurisdiction may elect to review this SWPPP and notify the permittee in writing that the SWPPP does not meet the requirements of their regulations. If the SWPPP needs to be revised, the permittee and the site contractor will make the required modifications within seven days of such notification and submit written certification to the notifying agency that the changes have been implemented. A copy of the SWPPP will be kept available on site for review by regulatory agencies, engineers, and subcontractors.

This Project is in the Town of Windham, which is not in a Regulated, Traditional Land Use Control MS4 Community.

2.2 SWPPP Update

The permittee identified in this SWPPP shall amend the SWPPP under the following conditions:

- Whenever the current provisions prove to be ineffective in minimizing pollutants in stormwater discharge from the site
- Whenever there is a change in design, construction or operation that could have an effect on the discharge of pollutants
- To address issues or deficiencies identified during an inspection by the qualified inspector, the Department or other regulatory authority
- To identify a new subcontractor that will implement any part of the SWPPP.

If any amendments are required to the SWPPP, the amended SWPPP will be submitted to the NYCDEP for review and approval prior to implementing any amendments.

After NYCDEP accepts the amended SWPPP, the SWPPP PLAN CHANGES, AUTHORIZATION, AND CHANGE CERTIFICATION form (Exhibit D) must be filled out and a copy retained onsite during construction for documentation of the changes.

2.3 Department of Environmental Protection Information

2.3.1 Prior Enforcement Actions Against the Applicant or on the Property

Tuck Eastside Partners, L.P. has not had any enforcement actions associated with it from the NYCDEP. The Project property has not had any enforcement actions associated with it from NYCDEP.

2.3.2 Listing of Required Permits Required for this Project

A number of permits or approvals are required for this Project at the local, county, regional and state levels.

Local- Local approvals are required from the Planning Board and the Town Board. These approvals are being sought during the SEQR process.

- Windham Planning Board Approvals
 - $\circ \quad \text{Subdivision Approval} \\$
 - Site Plan Approval
- Windham Town Board Approvals
 - Water Supply and Wastewater Disposal Connection Approvals
 - Project Transportation Corporation (water and wastewater)

County- This Project will be reviewed at the county level by the Greene County Planning Board and the Greene County Highway Department.

- Greene County Planning Board
 - The project will be reviewed for potential county-wide impact under Section 239(m) of the NYS General Municipal Law (town law). Referral to the County Planning Board is required because the project site is located within 500 feet of a County Road (CR-12 (South Street)), and within 500 feet of a municipal boundary (Windham and Jewett). The County Planning Board will issue an advisory opinion to the Windham Planning Board as part of the SEQRA process.
- Greene County Highway Department
 - Some grading will be required with this Project within CR-12 (South Street) ROW in order to improve the sight distance for drivers entering the road from Trailside Road. Plans for this work will require approval from the County Highway Department.

Regional-NYCDEP- New York City Department of Environmental Protection (NYCDEP) has approval authority for the Project's Stormwater Pollution Prevention Plan (SWPPP) pursuant to Section 18-39 of the Watershed Regulations. NYCDEP also maintains approval authority for the propose sewer collection system pursuant to Section 18-37 of Watershed Regulations. Information necessary for NYCDEP to begin review of these aspects of the project will be provided in SEQRA documents, including the DEIS, however formal applications to NYCDEP will likely not be submitted until after the completion of the SEQRA process.

State- This project will require review and approval by NYS Department of Environmental Conservation (NYSDEC) and NYS Department of Health (NYSDOH.)

- NYSDEC
 - Stormwater-SPDES General Permit GP 0-10-001 for Construction Activities.
 - Water Supply-A Water Supply Application will be filed with NYSDEC for work associated with bringing water service to the proposed site.
 - 401 Water Quality Certification-will be required because the project will have limited impacts to federal wetlands.
- NYSDOH
 - Realty Subdivision- This project meets the definition of a realty subdivision, therefore, following the SEQRA process, formal plans for the project sanitary facilities prepared in accordance with Part 74 of the State Sanitary Code will be submitted to the NYSDOH for review and approval.
 - Public Water Supply- Because this project intends to connect to the Windham municipal water supply system, NYSDOH will review the project water supply information plans.

 Swimming Pool and Food Services- NYSDOH has regulatory oversight of these types of facilities. Information necessary for NYSDOH review and approval of these facilities will be submitted following the SEQRA process.

Federal- The project involves a total of less than 0.1 acre (0.094 acre) of wetland fills for the construction of 3 crossings (2 road crossings and 1 for a shared driveway). The project qualifies for coverage under the existing U.S. Army Corps of Engineers Nationwide Permit #14.

3.0 SITE ASSESSMENT, EVALUATION AND PLANNING

3.1 **Project Location**

This Project Site is located in the town of Windham, Greene County, NY. The existing Windham Mountain ski area is to the west of the site. The site is located to the south of County Route 12 (South Street) and can be accessed by Panorama Lane and Trailside Road. The latitude and longitude coordinates of this site are 42⁰, 17', 50.2"N, 74⁰, 14', 46.4"W. Additional coordinates for the sits are 42⁰, 18', 3.2"N, 74⁰, 14', 47.2"W and 42⁰, 17', 40.8"N, 74⁰, 14', 47.1"W. This site is in the "West of the Hudson" watershed (see Figures 1-5).

See Exhibit J for a site location map (Figure 1-3.)

3.2 Pre-Development Conditions

Currently, the site is forested containing trees are of varying age as a result of past logging on the property. A majority of the trees onsite consist of secondary growth trees. There are also areas of open brush land with few small trees and many shrubs onsite. A wetland delineation was conducted onsite that determined that there are numerous wetlands and streams located onsite. Most of the wetlands onsite are located in the eastern portion of the site where multiple streams are present. Figure 3-10 in Exhibit J, is of the vegetative cover types that exist on the Project Site.

Currently, there are minimal impervious surfaces on the project site. There is a gravel/dirt jeep trail with many switchbacks that is centrally located on the property that meanders up the steeply-sloping northern face of the site. This road extends from Panorama Lane. In addition to this centrally located road, the interior of the site also contains numerous other dirt roads. One small lean-to building is located on the property.

Topography on the property can be considered typical of hillside areas in the Central Catskills – a series of alternating steeper slopes and flatter benches. Slightly over 1/2 of the site is 25% slopes or greater, while slightly less than the property has slopes less than 25%. Elevation of the WMSC property

range from a low of 1,600 feet near the intersection of Panorama Lane and South Street to a high of 3,060 feet near the top of Windham Mountain's east peak express quad lift.

Windham Mountain currently holds easements of 15.69 acres of WMSC land which are currently used for portions of the existing 'Wanderer Trail '– Windham Mountain's eastern-most and longest novice trail, as well as smaller sections of 'Why Not' and 'Wing 'N it' trails. The upper part of the East Express chair lift is also on the project site.

Currently, there are no discharges onsite associated with any industrial activity.

3.3 Project Type

This project is for Phase 1 of three phases of the new construction of a proposed private sporting club development that will offer its members multiple recreational and amenity offerings as well as a variety of residential offerings including single-family homes, duplexes, townhouses and condominiums. No ski trails are proposed, but there are two transport lifts included in the project that will bring skiers to and from the project residential areas to existing Windham Mountain ski trails. Subsequent Phases of construction will have separate SWPPP's assembled for the proposed work.

This first phase of construction will disturb 52.4 acres of land. This disturbance area will be broken down into 23 sub-phases to keep the active site disturbance to a minimum.

3.4 Project Scope

More specifically, the three-phase project includes the following:

- 143 Single-family Homes
- 24 Duplex Units
- 54 Townhome Units
- 81 Condominium Units
- Members Lodges and Clubhouse that includes:
 - o Private Lounge
 - o Restaurant
 - o Bar
 - o Kitchen
 - o Ski Storage
 - o Full Service Spa
 - o Condominiums
 - Underground Parking
 - Adjacent Ski Lift "A" connecting to Windham Mountain
- Wellness Center that includes:
 - o Tennis Courts
 - o Swimming Pool

- o Indoor Exercise Area
- o Climbing Wall
- o Squash Courts
- o Aerobics/Pilates Area
- o Surface Parking
- East Village Lodge, that includes:
 - o Grill/Restaurant
 - Heated Pool and Hot Tub
 - Weight/Exercise Room
 - o Locker Room
 - Underground and Surface Parking
 - o Adjacent Ski Lift "B" connecting to Windham Mountain
- Privately constructed, owned and maintained project roads with project access from Trail Side Road
- Privately constructed, owned and maintained central water and sewer collection system with connection to existing Town of Windham systems in South Street

The Phase 1 portion of the project for which this Stormwater Pollution Prevention Plan is prepared for includes:

- 74 Single-family Homes
- 12 Duplex Units
- 37 Townhouse Units
- 27 Condominium Units
- 2/3 of the Members Lodge and Clubhouse
- Wellness Center
- 2.6 Miles of Roads
- Related Water, Wastewater and Stormwater Infrastructure

Build out of the project is projected to be approximately 15 years.

During the design of this project, soil disturbance in proximity to wetlands and watercourses on the Project Site were avoided to the maximum extent possible. Due to the steep slope and limited access to the property, some watercourse crossings were necessary. Post-construction stormwater management practices were designed conservatively to detain the entire 1-year, 24-hour storm onsite.

Detailed plans of the proposed project are provided in the DEIS drawing set.

3.5 Historic Preservation Determination

Early in the Project planning, correspondence was conducted with the NY State Office of Parks, Recreation and Historic Preservation (OPRHP), which resulted in Phase 1A and 1B studies being conducted on the site by Hudson Mohawk Archaeological Consultants, LLC. These studies found no archeologically sensitive resources on the Project Site. After a review of the Phase 1A and 1B reports, OPRHP staff asked for additional information to complete their review. This

requested information is being compiled for OPRHP and will be presented to them when completed. See Exhibit F for a copy of correspondence with NYSHPO.

3.6 Receiving Waters

The Project site is located in the West of Hudson portion of the New York City watershed, within the Schoharie Reservoir drainage. The project site is approximately 15 miles from the reservoir when measured along Schoharie Creek and the Batavia Kill. Schoharie Reservoir is on New York State's 2010 (303(d)) list of impaired waters. The cause of the impairment is listed as silt/sediment and the source is listed as stream bank erosion.

The project site drains to portions of the Batavia Kill that are assigned a water quality standard of A(T) and A(TS). The Batavia Kill is located approximately 1,800 feet from the nearest part of the project site. Only one stream on the project site has been classified by NYSDEC. It is the stream that runs near the western edge of the site and exits in its extreme northwestern corner, and is assigned class and standards of C (NYCRR§879.6, item 231; waters index no. H-240-82-117-12a). Figure 3-7, NYSDEC Mapped Streams, shows the location of this stream relative to the project site, the surrounding area, and the Batavia Kill.

Numerous mapped and unmapped surface water resources on the property were identified, delineated and survey-located. Following the delineation of surface water resources numerous site visits were performed with NYCDEP in order to confirm the locations of watercourses on the project site.

Surface waters on the site mainly consist of small, intermittent or ephemeral streams. See Figure 3-9 in Exhibit J, Perennial, Intermittent and Ephemeral Drainages. There are two main stream systems that are perennial streams. One is in the southeastern quarter of the property, and flows eastward, crossing the property line near the site's easternmost corner. The other has its head in the west-central part of the site and flows northward, leaving the property in its northwestern corner. (This is the previously described Class C mapped NYSDEC stream.) There are no ponds or lakes except for two small artificial ponds, each covering about 2,000 square feet, in the northern part of the property.

3.7 Soils

An onsite soil survey was performed on the WMSC property by a professional soil scientist in the fall of 2008. The soil survey included the excavation of a number of test pits on the property as well as shovel testing verification. The logs of the test pits are provided in Exhibit H. Additional test pit information was collected in 2010 to determine soil conditions in areas considered for stormwater management practices and are also provided.

The soil series mapped by the professional soil scientis onsite consist of: Lewbeach, Halcott, Vly, Onteora, Suny, Willowemoc, Tor, Elka and Tunkhannock.

The corresponding Soil Inventory Plan (Drawing L-2.01) is provided in Sheet L-2.01 of the Site Plan Drawing Set provided in the DEIS.

The Lewbeach soil series is a very deep, well-drained soil formed in glacial till derived from sandstone, siltstone and shale. These soils are gently sloping through steep soils on hillsides and hilltops in the uplands. Permeability is moderate in the surface, moderately slow to moderate in the subsoil and very slow or slow in the fragipan.

The Halcott soil series is a shallow, somewhat excessively drained soil formed in glacial till. These soils are nearly level to very steep soils on glaciated bedrock controlled uplands. Permeability is moderate or moderately rapid throughout.

The VIy soil series is a moderately deep, well drained or somewhat excessively drained soil formed in glacial till. These soils are on glaciated bedrock controlled uplands.

The Onteora soil series is a very deep, somewhat poorly drained soil formed in glacial till derived from sandstone, siltstone and shale. These soils are nearly level through strongly sloping soils on glacial till plains and the lower parts of hillsides in the uplands at elevations of 1,750 to 2,500 feet. Permeability is moderate above the fragipan and slow or very slow in the fragipan and C horizon.

The Suny soil series is a very deep, poorly drained soil formed in acid glacial till derived from sandstone, siltstone and shale. These soils are in level or slightly depressed parts of glaciated uplands.

The Willowemoc soil series is a very deep, moderately well drained soil formed in glacial till derived from sandstone, siltstone, and shale. These soils are nearly level through moderately steep soils on glacial till plains and hillsides in the uplands. Permeability is moderate above the fragipan and slow or very slow in the fragipan.

The Tor soil series is a shallow, somewhat poorly drained soil formed in a thin mantle of glacial till overlying sandstone, siltstone, or shale bedrock. These soils are on bedrock controlled benches and steps on hillsides, mountain sides and upland flats. Bedrock is at a depth of 10 to 20 inches.

The Elka soil series is a very deep, well-drained soil formed in glacial till. These soils are gently sloping to very steep soils on mountainous uplands. Permeability is moderate throughout the soil.

The Tunkhannock soil series is a very deep, well to somewhat excessively drained soil formed in water-sorted glacial material derived from reddish sandstone, siltstone, and shale. Permeability is moderately rapid in the top soil and rapid in the subsoil.

Table 1.0 lists the mapped soils onsite with some general soil characteristics.

Table 1.0Soil Characteristics

				_	Seasonal	
	Slope	Hydrologic	Clay	Depth to	High	Erosion
Serries Name	Range(%)	Group	Content (%)	Bedrock (in.)	Groundwater (ft.)	Potential (K)
Elka Silt Loam	0-8	С	7-15	>60	>6	0.24
Elka Silt Loam	8-15	С	7-15	>60	>6	0.24
Halcott Rock Outcrop	25-35	C/D	7-27	0-20	>6	0.24
Halcott Rock Outcrop	>35	C/D	7-27	0-20	>6	0.24
						0.20-
Halcott-Vly Complex	0-8	C/D	7-27	0-40	>6	0.24
						0.20-
Halcott-Vly Complex	15-25	C/D	7-27	0-40	>6	0.24
	05.05	0/5	7.07	0.40		0.20-
Halcott-Vly Complex	25-35	C/D	1-21	0-40	>6	0.24
Lowboach Channery Silt Learn	0.8	C	1 10	>60	2-4 perched	0.24
	0-0	C	1-10	200	2-4 perched	0.24
Lewbeach Channery Silt Loam	8-15	С	1-18	>60	Mar-May	0.24
		0	1.10		2-4 perched	0.21
Lewbeach Channery Silt Loam	15-25	С	1-18	>60	Mar-May	0.24
					2-4 perched	
Lewbeach Channery Silt Loam	>25	С	1-18	>60	Mar-May	0.24
					0-1.5 perched	0.24-
Onteora-Suny Complex	0-8	C/D	1-18	>60	Nov-Apr	0.28
					0.5-1.0	
Tor Silt Loom	0.3		7 07	10.20	perched Dec-	0.24
Tunkhannock Very Channery	0-3	D	1-21	10-20	Julie	0.24
Loam	0-8	А	10-20	>60	>6	0.24
Tunkhannock Very Channery			10 20			0.21
Loam	8-15	А	10-20	>60	>6	0.24
						0.20-
Vly-Halcott Complex	0-8	C/D	7-27	0-40	>6	0.24
						0.20-
Vly-Halcott Complex	8-15	C/D	7-27	0-40	>6	0.24
My Heleett Complex	15.05		7.07	0.40	26	0.20-
	10-20	C/D	1-21	0-40	-0	0.24
Vlv-Halcott Complex	25-35	C/D	7-27	0-40	>6	0.20-
	20 00	0,0	1 21	0 10		0.20-
Vly-Halcott Complex	>35	C/D	7-27	0-40	>6	0.24
Vly Channery Silt Loam	0-8	С	7-27	20-40	>6	0.2
Vly Channery Silt Loam	8-15	С	7-27	20-40	>6	0.2
Vly Channery Silt Loam	15-25	С	7-27	20-40	>6	0.24
Willowemoc Channery Silt					1.5-2 perched	
Loam	0-8	С	1-18	>60	Oct-May	0.24
Willowemoc Channery Silt					1.5-2 perched	
Loam	8-15	С	1-18	>60	Oct-May	0.24

The predominant soil series observed onsite are the Halcott and VIy soil series. Figure 3-1 in Exhibit J shows the shallow soils (<60") on the Project Site. Figure 3-3 shows the same shallow soils on the proposed site plan.

3.8 Environmental Compliance with the Detailed Environmental Impact Statement

This SWPPP was prepared concurrently with, and is an Appendix to the Project Draft Environmental Impact Statement submitted to the Town of Windham Planning Board, the SEQRA Lead Agency.

3.9 Site Constraints

Site constraints to development of the proposed Project are shown on the provided mapping for the proposed Project. Shallow depth to bedrock areas are shown on the Soil Inventory Plan (Sheet L-2.01 of the Site Plan Drawing Set for the DEIS) and also on Figure 3.1. Sheet L-2.02 of the Site Plan Drawing Set for the DEIS, is the Slope Map which shows the existing site slope and the steeper areas. According to the Soil Survey map prepared for this Project (Sheet L-2.01 in the Site Plan Drawing Set for the DEIS), there are no excessively drained soils within the Project boundaries. The Composite Constraints Plan (drawing L-2.03) is also provided in the Drawing Set for the DEIS. The Tunkhannock, VIy and Halcott soil series are described as well to somewhat excessively drained, however they are not described as excessively drained. The soil series identified onsite are all listed in Table 1.0 with their respective depth to seasonal high water table.

4.0 EROSION AND SEDIMENT CONTROL

4.1 Erosion and Sediment Control Practices

Generally, the sediment and erosion control plan is to sequence construction into small phases so that large expanses of area will not be disturbed at a single time. Diversion swales will be used to divert clean stormwater away from the work areas and to convey dirty stormwater from work areas to sediment basins for treatment. Several staging areas are proposed throughout the site to stockpile materials and equipment during construction. These can be seen on the Construction Phasing Plan (Sheet L-2.04) and the Sediment and Erosion Control Plans (Drawings L-3.02-L-3.05.)

Phase 1 includes the construction of the access road through the site. Purchasers of individual single-family home lots (143 total), will be responsible for having a qualified professional prepare sediment and erosion control plans for the individual lots. These lots will be constructed as they are sold, so the individual lots need to address their specific erosion and sediment control concerns on a lot-by-lot basis. Typical sediment and erosion control plans for single-family house lot in the WMSC are provided as Sheet L-8.05 in the Site Plan Drawing Set for the DEIS, for different slope conditions.

Clearing of the vegetation will only be done in proposed work areas to preserve the existing vegetation as much as feasibly possible.

Two soil stockpiling areas will be utilized during construction to store excess cut from the project. Most of this material will stay in these areas as fill however some will be temporarily stored so it can be used when fill is required on the Project. These areas are located to the north/northeast of the main Project Site. A construction road will be built utilizing some existing internal roads so that trucks can come in and deposit or remove material as needed. When construction is completed, a stabilized grade will be established on the stockpiling area and the area will be seeded and mulched. Any stockpiled soil that is not disturbed within 7 days, will be seeded and mulched. Close to the end of the day when a rainstorm is predicted for the following evening, any unstabilized soil piles will be temporarily mulched with straw, hydro-mulch or be covered with large tarps to prevent sediment runoff during a storm. The stockpiling areas will be surrounded with silt fence perimeter; construction fencing and fiber roll products throughout the area as shown on the Sediment and Erosion Control Plans.

Temporary sediment and erosion control practices to be used during construction will be:

Temporary Structural Practices

- Silt Fence
- Sediment Basin
- Stabilized Construction Entrance
- Check Dams
- Temporary Swale
- Inlet Protection
- Stabilized Outlet Protection
- Rolled Erosion Control Matting
- Water Bar
- Fiber Roll

Storage volumes for the proposed sediment basins are provided on the Erosion and Sediment Control Drawings Sheets L-3.02-L-3.05 in the Site Plan Drawing Set for the DEIS. Sediment basins were sized larger than the NYSDEC Standards and Specifications for Erosion and Sediment Control Manual (August, 2005), requirement of 3,600 cubic feet per acre of drainage area. The size of the basins was maximized based on the amount of available area in which they are situated so that they will detain as much water as possible. Because the soils on the site contain a high percentage of silts and clays, it is anticipated that gravity settling in the basins alone will not be sufficient to reduce the turbidity of the captured stormwater to desired levels. In order to facilitate settling of fine particles in suspension in the sediment basins, the use of an inert and environmentally friendly flocculent will occur during construction-in order to allow the basins to be dewatered in a timely fashion so that they will have capacity to store runoff from subsequent storm events.

The flocculent proposed for this project is a product called Liqui-Floc®, (a.k.a. Chitosan or Storm Klear), marketed by a company called Natural Site Solutions from Washington State. Liqui-Floc® is a natural product made from seafood shells that are a byproduct from food processing. Liqui-Floc® is a derivative of the chitin in the seafood shells. Liqui-Floc® has very low aquatic organism toxicity and completely biodegrades into carbon dioxide and water in 24 hours. This flocculent has been bench tested for the soil series that occur on the project site. Soils were tested using Liqui-Floc® whereby solutions were made to produce turbid water of 5,000, 1,000 and 100 turbidity units (NTU). These turbid soil solutions were then dosed with the flocculent to produce a Liqui-Floc® concentration of 1 ppm. Turbidity levels in the soil test solutions rapidly dropped following the application of Liqui-Floc® turbidity levels had dropped 93% in both the 5,000 NTU and 500 NTU turbid soil solutions.

Each sediment basin will have a staff gauge installed in the deepest part of the basin. Depth to volume conversion charts will have been developed and these charts will be posted at each of the sediment basins. The depth to volume charts will also contain the amount of flocculent solution to be added to each basin to obtain the target 0.5 to 1.0 ppm flocculent dosing. Flocculent solution will be sprayed as evenly as possible over the surface of the water in the sediment basins. A turbidity meter will be used to measure turbidity in the basin after the flocculent has had time to act. Once turbidity in the basin has been reduced to 50 NTU or less, dewatering of the basin will commence. A pump will be attached to a floating skimmer in the basin and the basin will be dewatered to its stabilized outlet at a rate that will not cause erosion. The pump and discharge system will be equipped with an in-line turbidity meter and an automatic shutoff valve system so that water pumped through the discharge system will not exceed the target turbidity level of 50 NTU's. If the automatic shutoff stops the pumping, the basin will be allowed to rest and, if necessary, additional flocculent will be added

Permanent Structural Controls

• Grading

Temporary Stabilization Practices (including vegetative practices)

• Bare areas will be seeded and mulched within 7 days of disturbance unless construction will resume in that area within the 7 days.

Permanent Stabilization Practices (including vegetative practices)

- Seed and mulch all disturbed areas. Slopes that are 3:1 or steeper should receive a Rolled Erosion Control Product (RECP), sodding, and or hydroseeding a homogenous mixture of wood fiber mulch with tackifying agent.
- No seeding will be done in cuts into bedrock. Any exposed soil resulting from cuts into bedrock will be seeded, however the rock itself will not be seeded.

Refer to the Grading and Drainage Plans (Drawings L-4.01- L-4.09) provided in the Site Plan Drawing Set for the DEIS, for detailed information on each practice.

4.2 Erosion and Sediment Control Drawings

Erosion and Sediment Control Plans are included in the Site Plan Drawing Set for the DEIS.

4.3 Construction Phasing Plan and Sequence of Operations

This project will consist of three phases which are planned to be completed within 12 to 15 years from starting the first phase. This SWPPP is only for Phase 1 of construction. When subsequent phases are ready for construction, a new SWPPP will be assembled for that phase of construction. The Construction Phasing Plan (Drawing L-2.04) is included in the Site Plan Drawing Set for the DEIS.

Phase 1 of construction will consist of construction of the main project road, grading and site prep for building construction. Phase 1 is divided up into 23 different subphases each of which is less than 5 acres in size and any combination of subphases will not be disturbed at a single time that will result in more than 5 acres overall being disturbed at a single time. Table 2.0 lists the proposed sub-phases and their respective areas:

Sub-	Sub-phase
pnase	Area (Ac)
1.1	3.90
1.2	4.82
1.3	0.53
1.4	1.47
1.5	2.15
1.6	1.68
1.7	2.64
1.8	1.33
1.9	2.06
1.10	2.15
1.11	2.16
1.12	1.16
1.13	2.85
1.14	2.37
1.15	2.04
1.16	2.95
1.17	2.20
1.18	2.95
1.19	1.11
1.20	1.25
1.21	2.75
1.22	1.25
1.23	1.75

Table 2.0 Phase 1 Breakout of Individual Sub-phases and their Corresponding Area

- Temporary structural erosion controls will be installed prior to earthwork as per the attached plans.
- Areas to be undisturbed for more than 7 days will be temporarily stabilized by seeding.
- Disturbed areas will be reseeded and mulched immediately after final contours are re-established and no more than 7 days after the completion of construction at that site.
- Temporary erosion control devices will not be removed until the area served is stabilized by the growth of vegetation and the area is certified as being stabilized by the Qualified Inspector.

Phase 1 construction staging and erosion and sediment control sequencing is provided on the Erosion and Sediment Control Plans L-3.02- L-3.05. This language details what tasks are to be done in what order in each sub-phase of work.

4.3.1 Sediment and Erosion Control Practices to be Converted to Permanent Practices

On this project, all of the temporary sediment basins to be used during construction will be converted to permanent Post-Construction Stormwater Management Practices when the area draining to these practices is stabilized. This includes sediment basins A, B, C, D, E, F and G. In addition, some sections of temporary diversion swales will be converted to permanent Dry Swales located along Sheridan Road, after the drainage area feeding to these practices is stabilized. In order to successfully convert these temporary practices to permanent, additional grading will be necessary to get the permanent practices full calculated volume which will remove any sediment that would have accumulated during construction.

4.4 Erosion and Sediment Control Practice Maintenance

Temporary erosion and sediment control practices will need to be maintained frequently during construction. It is the responsibility of the operator to inspect, and maintain the temporary controls so that they are working efficiently. The operator needs to pay close attention to SWPPP Inspection Reports that will advise of needed maintenance. Captured sediment will have to be removed periodically from each practice in order for the control to function properly. Temporary erosion and sediment control practice maintenance needs are listed below:

- Silt fence maintenance shall be performed as needed and material removed when "bulges" develop in the silt fence. When material accumulates to one third of the silt fence height, the material will be removed and placed in an upland area and be stabilized. Any tears in the fabric will be repaired, any silt fence that is not properly toed in will be repaired and any broken posts will be replaced.
- Check dams should be inspected after each rain event. Correct all damage immediately. If significant erosion has occurred between structures, a liner of stone or other suitable material should be installed. Remove sediment accumulated behind the dam as needed to allow channel to drain through the check dam and prevent large flows over the dam.
- Storm drain inlet protection (not including silt sacks) inspect after each storm event. Remove sediment when 50 percent of the storage volume is achieved.
- Sediment Basin sediment shall be removed and the basin restored to the original dimensions when the sediment has accumulated to ½ of the design depth. All spoils shall be removed to a stabilized upland area or brought to the stockpile area offsite. Any structural failure in sediment basins or trenches that serve them will be repaired within 24 hours after detection.
- Stabilized construction entrance entrance shall be maintained in a condition which shall prevent tracking. This may require periodic top dressing with additional aggregate. All sediment tracked onto or spilled on

public rights of way or onto Trailside Road (a private road), shall be removed immediately. When necessary, wheels must be cleaned to remove sediment prior to entrance on public rights of way. When washing is required, it shall be done in an area stabilized with aggregate and wash water shall be directed away from streams or wetlands preferably to a broad grassed area or a stormwater pond.

- Rock outlet protection once a riprap outlet has been installed, the maintenance needs are very low. It should be inspected after high flows for evidence of scour beneath the riprap. Repair should be immediate.
- Replace top-soil, mulch and seed where seeding has been disturbed.
- Water bars Water bars will be reformed after each day in heavy traffic areas. Any erosion or bypassing of the water bars will be repaired and if traffic will not travel over the practices frequently, the areas will be seeded and mulched.

4.5 Erosion and Sediment Control Inspection

- It is recommended that a rain gage be installed at the site.
- A qualified inspector shall conduct an assessment of the site prior to the commencement of construction and certify in an inspection report that the appropriate erosion and sediment controls described in the SWPPP have been adequately installed to ensure overall preparedness of the site for commencement of construction.
- This qualified inspector must be a Licensed Professional Engineer, Certified Professional in Erosion and Sediment Control (CPESC), Registered Landscape Architect, or someone working under the direct supervision of, and at the same company as, the licensed Professional Engineer or Registered Landscape Architect, provided they have received 4 hours of Department endorsed training in proper erosion and sediment control principles from a Soil and Water Conservation District, or other Department endorsed entity. After receiving the initial training, the qualified inspector shall receive 4 hours of training every 3 years.
- The day-to-day erosion control activities on the site will be monitored by the qualified inspector. If the inspector notices a problem with the erosion and sediment control practices used onsite during construction, he or she will immediately inform the Project Manager to resolve the problem. The qualified inspector (as defined by the NYS DEC SPDES regulations) will inspect erosion control devices and nonstabilized areas during construction every day. At least one maintenance inspection report will be completed by the qualified inspector each week. The report form to be completed by the inspector is attached in **Exhibit C.** Reports should be compiled and maintained on-site in the SWPPP 3-ring binder.
- All measures will be maintained in good working order; if repair is necessary, it will be initiated within 24 hours of the inspectors notice. The qualified inspector shall take photographs of any needed repairs

and also photograph when the repairs are completed. These photographs will be time and date stamped and attached to the weekly inspection report. When the repairs are made, photographs will be taken showing the repairs.

- Seeded and planted areas will be inspected for bare spots, washouts, and healthy growth. If necessary, spot reseeding or sodding will be implemented.
- A trained contractor will be an employee from the contracting company responsible for the implementation of the SWPPP. This person will be onsite when any soil disturbing activities are being conducted. The trained contractor must have received 4 hours of Department endorsed training in proper erosion and sediment control principles from a Soil and Water Conservation District, or other Department endorsed entity. After receiving the initial training, the qualified inspector shall receive 4 hours of training every 3 years. This trained contractor cannot conduct the regular SWPPP compliance inspections unless they meet the qualified inspector qualifications.

4.6 Contractor Sequence Form

The operator shall prepare a summary of construction status using the Construction Sequence Form (included in **Exhibit D**) once every two weeks. Significant deviations to the sequence and reasons for those deviations (i.e. weather, subcontractor availability, etc.), shall be noted by the contractor. The schedule shall be used to record the dates for initiation of construction, implementation of erosion control measures, stabilization, etc. A copy of this table will be maintained at the construction site and updated. NYCDEP will be informed immediately of any proposed deviations to the construction sequence.

5.0 POST CONSTRUCTION STORMWATER MANAGEMENT PRACTICES

5.1 Stormwater Management Controls

Stormwater Management Controls were designed and approved by David Carr, a Registered Landscape Architect for The LA Group, P.C. The last page of this SWPPP has the signature and stamp if the design professional responsible for this design. The proposed Post Construction Stormwater Management controls on this project are listed below:

- Micropool Extended Detention Ponds (P-1)
- Bioretention (F-5)
- Dry Swale (O-1)

Details on the location of these practices and their size are shown on the Grading and Drainage Plans (Sheets L-4.01- L-4.09.) This Project was designed to minimize alterations of the existing drainage areas and maintain flow volumes to pre-

construction levels. According to the HydroCAD model results, the storm flows from the site will be at a similar rate or less than the existing conditions, therefore this proposed Project will not have any effect on any flood plains or flood hazard areas in the drainage basin. As per the NYCDEP requirements, all post-construction stormwater management practices were designed to treat the 1-year, 24-hour storm.

Some stormwater infiltration practices have been proposed (dry swale and bioretention) on the proposed project as much as feasibly possible. The existing site conditions are not conducive to groundwater infiltration because of the steep slope and slowly permeable soils. Therefore, the proposed bioretention ponds will have an under drain to prevent excessive ponding.

The P1 micropool extended detention ponds will provide water quality volume treatment as well as peak storm attenuation. The bioretention and dry swales will only provide water quality volume treatment. Some peak storm attenuation may occur within the bioretention and dry swales, however it is predominantly only to provide water quality volume treatment.

5.2 Green Infrastructure Practices/Runoff Reduction Techniques

The proposed Green Infrastructure and Runoff Reduction practices on this project are listed below:

- Bioretention (F-5)
- Dry Swale (O-1)

Minimal Runoff Reduction Based Upon Hydrologic Soil Group

If the proposed stormwater design does not achieve runoff reduction to preconstruction conditions, at a minimum the runoff reduction from impervious areas to be constructed should be at a minimum 35,654 cubic feet, based upon the Hydrologic Soil Group. The provided runoff reduction volume is 46,163 cubic feet. Details on how these values were calculated can be seen in the Stormwater Management Design Report found in Exhibit B of this SWPPP.

Soil Restoration

Excessively compacted areas and areas of cut and fill on the Project Site will have soil restoration applied as needed and as specified in table 3.0 below. A copy of "Deep Ripping and De-compaction, (DEC 2008) is provided in Exhibit G and should be followed according to the following table:

Table 3.0 Soil Restoration Requirements from NYSDEC Design Manual August, 2010

Type of Soil Disturbance	Soil Restoration	Requirement	Comments/Examples
Minimal Soil Disturbance	Restoration ne	ot permitted	Preservation of Natural Features
Areas where topsoil is stripped only-no change in grade	Restoration r	not required	Clearing and Grubbing
	HSG A& B	HSG C & D	
Areas of cut and fill	apply 6 inches of topsoil	Aerate* and apply 6 inches of topsoil	
Heavy traffic areas onsite (especially in a zone 5-25 feet	HSG A& B	HSG C & D	
around buildings, but not within a 5 foot perimeter around foundation walls)	Aerate and apply 6 inches of topsoil	Apply full Soil Restoration**	
Areas where Runoff Reduction and/or infiltration practices are applied	Restoration not req applied to enhanc specified for appro	uired, but may be the reduction opriate practices	Keep construction equipment from crossing these areas. To protect newly installed practice from any ongoing construction activities construct a single phase operation fence area.

*Aeration includes the use of machines such as tractor-drawn implements with coulters making a narrow slit in the soil, a roller with many spikes making indentations in the soil, or prongs which function like a mini-subsoiler **Per "Deep Ripping and Decopmpaction, DEC 2008"

- If compost amendment is required, 2 to 4 inches of screened compost will be incorporated into the soil.
- Prior to application of the deep-ripping and de-compaction, the depth to bedrock or naturally occurring hardpan should be known so that the depth of tillage be adjusted according to those restrictive depths.
- Soils with a slope that exceeds 10% will not have full soil restoration with deep-ripping and de-compaction due to potential for erosion from tilled soil.
- Any soil tillage (deep or shallow) will not be done on soils that are excessively wet, as this will damage the soil.
- Any tillage will not be done within approximately 10' of the drip-line of any existing established trees.
- Any large stones that are unearthed during tillage should be removed from the surface prior to final surface preparation and vegetation establishment.
- Once Soil Restoration is done in an area, construction fencing should be installed to prevent traffic from driving on the restored areas.

5.3 Post Construction Stormwater Management Drawings

Post construction stormwater management drawings are included on sheets L-4.01 to L-4.09, of the Site Plan Drawing Set for the DEIS. Post construction stormwater management drawings must include the following:

• Specific locations, sizes, and lengths of each post construction stormwater management practice

• Details of post construction stormwater management practices shall include dimensions, material specifications, installation details, operation and maintenance requirements.

5.4 Hydraulic and Hydrologic Analysis

The program utilized for quantifying stormwater runoff rates and volumes was *HydroCAD* software, produced by Applied Microcomputer Systems of Chocorua, New Hampshire. HydroCAD is a program for modeling the hydrology and hydraulics of stormwater runoff that is based on techniques developed by the Soil Conservation Service (TR-55). For a given rainfall event, these techniques are used to generate hydrographs throughout a given watershed and estimate runoff.

To create a HydroCAD model, the designer delineates the watershed into different subcatchments or sub-watersheds, and inserts descriptive parameters about the land into the "existing conditions" model. These parameters consist of slope, vegetative cover type, soil type and identifying areas of concentrated flow.

The designer then analyzes the changes to the site resulting from the proposed development and inputs these parameters into the "proposed conditions" model. These will include changes in slope and cover-type resulting from the addition of buildings or paving, grading, and subcatchment boundaries. The model then simulates the impact on three design storms (1 year, 10 year and 100 year) would have on the existing and proposed conditions.

The designer will then employ best management practices (BMPs) to reduce impacts of the proposed storm flows. In addition to treating the required water quality volume (WQv), the facilities must hold the peak on the hydrograph for the 1 year storm (CPv) and attenuate the peak runoff associated with the 10 year (Qp) and 100 year (Qf) storms. The goal is to treat and attenuate the increase in runoff associated with development.

The SCS 24-hour Type II design storms for 1, 10, and 100-year frequency rainfall were analyzed.

- ✓ Hydrologic/hydraulic analysis for all structural components of the stormwater control system for the applicable design storms for the entire Project (Phase 1-3), (see Exhibit B).
- Comparison of post-development stormwater runoff conditions with predevelopment conditions (see Exhibit B).
- Dimensions, material specifications and installation details for each postconstruction stormwater control practice (see Exhibit B and the Site Plan Drawing Set for the DEIS).

5.5 Comparison of Pre and Post Construction Stormwater Runoff

Stormwater Quantity. These calculations are based on the HydroCAD analysis.

Table 4.0	Peak Storm	Flows

	Required	Provided
1 year, 24 hour storm (CPv)	8.41 AC FT	9.09 AC FT
	Pre Development	Post Development
10 year, 24 hour storm (Qp)	1,001.1 CFS	735.5 CFS
100 year, 24 hour storm (Qf)	1,971.5 CFS	1,737.6 CFS

Water Quality Volume Calculations

Stormwater Management Practices are sized to treat the 1-year, 24 hour storm, or the WQv (90% storm) whichever is bigger from the contributing drainage area.

The following was utilized to determine water quality volume:

$$WQ_V = (P) (R_V)(A)$$

12

Where:

WQ_V= Water Quality Volume (acre/feet)

P = 1-year,24-hour storm or 90% storm, (whichever is bigger)

 $R_V = 0.05 + 0.009(I)$ where I is impervious cover in percent

A = Subcatchment area in acres

Table 5.0Water Quality Volume Summary

	Required	Provided	
	NYSDEC	NYCDEP	
Water Quality Volume (WQv)	3.39 AC FT	8.95 AC FT	10.74 AC FT

5.6 Water Quality Discharges

5.6.1 Introduction and Method

This section of the SWPPP will discuss stormwater quality discharges from the existing and proposed conditions on the site. To assess the potential for new loadings of total phosphorus and total suspended solids (TSS), a calculation method was prepared based on the Washington Metropolitan Council of Governments (Schueler 1987) and NYCDEP Guidance for Phosphorus Offset Pilot Programs (1997).

Treatment removal estimates were obtained from the NYSDEC Manual (last revised August, 2010), and various other sources. Over the past seven years, various studies have been completed to evaluate and understand removal capability of stormwater treatment devices. These studies have continued to find great variability in removal efficiency of stormwater devices, which in some cases can be accounted for by slightly different construction

techniques, quality of construction, climatic differences, age of system, frequency of water quality measurements, and types of rainfall or rainfall intensity (Roseen et al. 2009).

Table 6.0, "Loading Rates, Conversion Factors, and Data Sources for the Mass Loading Model," identifies the information and sources used in the model.

Table 6.0Loading Rates, Conversion Factors, and Data Sources for Mass LoadingModel

Conversion Factors		
1 μg/l = 0.001 g/m ³		
1 lb = 0.4535 kg		
1 acre = 4047 m^2		
1 inch = 0.0254 m		
Other Constants		
Parameter	Value	Source
Annual Rainfall	50.0 in.	NYC DEP 1997
Runoff coefficient (vegetated)	0.64	
Runoff coefficient (impervious)	0.98	
Total Phosphorus (TP)		
Forest TP Concentration	0.00002005 kg/m ³	USEPA 1983, NYCDEP 1997
Impervious TP Concentration	0.00026 kg/m ³	NYCDEP 2010
Wetland TP Concentration	0.0000825 kg/m ³	Lin, 2004
Pasture/Grass TP Concentration	0.00014 kg/m ³	Lin, 2004
Total Suspended Solids (TSS)		
Forest TP Concentration	0.037 kg/m ³	Lin, 2004
Impervious TP Concentration	0.15 kg/m ³	Lin, 2004
Wetland TP Concentration	0.0 kg/m ³	Lin, 2004
Pasture/Grass TP Concentration	0.037 kg/m ³	Lin, 2004

A series of spreadsheets were organized to estimate the loading to each discharge point. In each subcatchment within the design point, there are varying levels of development and mixes of land cover types. Each cover type has a different loading rate that has to be evaluated separately. The project site has 13 discharge points. The loading estimate is directly calculated by multiplying the components of the equation; therefore this is a direct calculation. Each of the discharge points is independent and does not flow along a common watercourse on the project property. Eventually, the discharges do reach the Batavia Kill or unnamed tributaries thereof.

The general form of the equation is:

Loading = Pollutant Concentration \times Area \times Rainfall \times Runoff Factor

5.6.2 Water Quality Loading Existing and Proposed Conditions

Exhibit I contains the data used to estimate the mass Phosphorus and Total Suspended Solids (TSS) loading existing from the Project Site and in the proposed conditions. Overall, there is an increase in loading of TSS and phosphorus in the proposed conditions due to the increase in impervious surfaces and reduction in forested cover type. In the proposed conditions, 368 acres of the watershed total of 479 acres will remain undisturbed (77%). Therefore the proposed site disturbance is only a small portion (23%) of the entire site area. This project's impervious area percentage for the proposed conditions will be approximately 7%.

The estimated phosphorus mass leaving the site for the existing conditions is 80.4 kg per year. The estimated phosphorus loading, prior to treatment by a post-construction stormwater management practice is estimated to be 124.9 kg per year for the proposed conditions.

The estimated TSS mass loading leaving the site is 66,721 kg of TSS for the existing conditions. The estimated TSS loading prior to treatment is 88,374 kg for the proposed conditions.

5.6.3 Water Quality Reduction From Post Construction Stormwater Management Practices

After the existing and proposed phosphorus and TSS mass loads were calculated with the Direct Calculation Model, an estimation of the percentage of phosphorus and TSS removal was subtracted from the individual subcatchments corresponding to the stormwater management practices within the respective subcatchments. For phosphorus, a removal percentage of 40% was assumed for the post-construction stormwater management practices of micropool extended detention pond, bioretention and dry swale. For TSS, a removal percentage of 80% for the post-construction stormwater management practices of micropool extended detention pond, bioretention and dry swale. The percent removal is from the August 2010 NYS Stormwater Management Design Manual (Section 3.3). Recent review of literature for the selected system shows that the treatment of TSS and phosphorus will meet the above requirement (Lin, J. P., 2004), (Roseen, R. M. et. al, 2009). The undisturbed subcatchments did not have any reduction percentage associated with phosphorus or TSS. This is shown in the tables 7.0 and 8.0.

• The first two columns of tables 7.0 and 8.0 list the design points and the subcatchments within each design point. These subcatchments are divided up based upon the post-construction stormwater

management practice used to treat the areas in each subcatchment and also separate the undisturbed subcatchments that are receiving no treatment.

- The third and fourth columns of the tables identify the stormwater management practice for the corresponding subcatchment areas and the percentage removal of phosphorus or TSS.
- The fifth column lists the annual mass loading of phosphorus or TSS for each design point calculated from the Direct Calculation method. This is the estimated amount of phosphorus or TSS that would be leaving the site after development if no post-construction stormwater management practices were constructed.
- The sixth column breaks the annual mass phosphorus or TSS loading into the corresponding subcatchments. These values were calculated on a subcatchment basis by using the same Direct Calculation Method as shown in tables Exhibit I of this SWPPP.
- The seventh column applies the percentage removal of TSS or phosphorus based on the corresponding stormwater management practice within their respective subcatchments. The undisturbed subcatchments received no reduction in phosphorus or TSS.
- The eighth column sums up the individual subcatchments from the seventh column so the TSS and phosphorus mass loading from undisturbed subcatchments and the subcatchments with stormwater management practices can be represented by design point.
- The ninth column was taken directly from the Direct Calculation output found in Exhibit I for Existing Conditions. Therefore we can compare the proposed numbers with the existing conditions mass loading estimates represented in the ninth column.
- The tenth column was calculated by subtracting the existing/undisturbed mass loading of TSS and phosphorus (column 9) from the proposed/developed annual mass loading with reductions for stormwater management practices (column 8). This value is the net change of mass loading.

When the net mass TSS is summed up in column 10 of table 7, there is a net reduction of 26,392 kg from the existing conditions meaning that the proposed conditions will be contributing 26,392 kg less TSS on an annual basis. This can be explained by determining that the proposed/developed conditions increase the TSS discharge from the disturbed areas without stormwater management practices, but not more than the 80% estimated removal from the proposed stormwater management practices. To further describe the TSS export for the proposed/developed conditions, the proposed export of mass TSS with stormwater management practices in disturbed subcatchments will be 40,330 kg (represented in the sum of column 7 and also in the sum of column 8). This 40,330 kg includes 368 acres of undisturbed land. The corresponding mass TSS load estimated for this undisturbed land in the proposed conditions is 28,318 kg (as represented in the footnote on table 7.0). The 28,318 kg was calculated by summing up the

annual mass loading of TSS for the individual subcatchments in column 6 or in column 7 that will remain undisturbed in the proposed conditions. This amount can be discounted from the proposed load because it exists in the existing/undisturbed conditions. When we subtract the 28,318 from the 40,330 kg, we get a value of 12,012 kg of TSS. This value is the actual annual mass load of TSS from the disturbed areas of the proposed Project. This annual mass loading is still smaller than the same area for the existing conditions.

When the net mass of phosphorus is summed up in column 10 of table 8, there is a net increase of 5.4 kg from the existing conditions, meaning that the proposed conditions will be contributing 5.4 kg more of phosphorus on an annual basis. This can be attributed to the increase in impervious areas in the proposed/developed conditions. To further describe the phosphorus export for the proposed/developed conditions, the proposed export of mass phosphorus with stormwater management practices in disturbed subcatchments will be 85.8 kg (represented in the sum of column 7 and also in the sum of column 8). This 85.8 kg includes 368 acres of undisturbed land. The corresponding mass phosphorus load estimated for this undisturbed land in the proposed conditions is 27.1 kg (as represented in the footnote on table 8.0). The 27.1 kg was calculated by summing up the annual mass loading of phosphorus for the individual subcatchments in column 6 or in column 7 that will remain undisturbed in the proposed conditions. This amount can be discounted from the proposed load because it exists in the existing/undeveloped conditions. When we subtract the 27.1 kg from the 85.8 kg, we get a value of 58.7 kg of TSS. This value is the actual annual mass load of TSS from the disturbed areas of the proposed Project.

Table 7.0 Mass Reduction of Total Suspended Solids from Post-Construction Stormwater Management Practices

Design Point	Subcatchments Within Each Design Point	Stormwater Practices within Individual Subcatchments	% TSS Removal from SW Practice	Annual Mass-TSS Loading from Direct Calculation for Proposed/Developed Conditions by Design Point (kg) Prior to Treatment by Stormwater Management Practices	Annual Mass-TSS Loading for Proposed/Developed Conditions Broken into Subcatchments (kg) Prior to Treatment by Stormwater Management Practices	Annual Mass-TSS Loading with Reductions from SW Practice(s) for Proposed/Developed Conditions for Subcatchments (kg)	Sum of Subcatchments with Reductions for Annual Mass-TSS Discharge from Site by Design Point (kg)	Annual Mass-TSS Loading from Direct Calculation for Existing Conditions by Design Point (kg)	Net Change of Mass-TSS Loading (Proposed- Existing) (kg)
	*1.3, 1.7, 1.8, 1.9	P1 Pond	80%		2,175	435			
1	**1.4, *1.8, 1.10, 1.11	Bioretention	80%	13,330	2,177	435	9,849	8,541	1,308
	1.1, 1.2, 1.12	Undisturbed	0%		8,979	8,979			
	2.1, 2.4, 2.9, 2.12	Dry Swale	80%		4,229	846			
2	2.10, 2.11	Bioretention	80%	10.104	755	151	2 217	4 452	2 126
2	2.2, 2.3, 2.5, 2.6, 2.8, 2.13, 2.14, 2.15	P1 Pond	80%	10,104	4,750	950	2,517	4,455	-2,150
	2.7	Undisturbed	0%		370	370			
2a	2a	Undisturbed	0%	219	219	219	219	351	-132
2b	2b	Undisturbed	0%	519	519	519	519	2,187	-1,668
	3.1, 3.2, 3.3	Dry Swale	80%		4,640	928			
3	3.4, 3.5	P1 Pond	80%	6,020	562	112	1,858	2,823	-964
	3.6	Undisturbed	0%		818	818			
4	4.1, 4.2	Undisturbed	0%	631	631	631	631	2,518	-1,887
-	**5.2, 5.4	Bioretention	80%	4 071	729	146	4 200	E 256	068
Э	5.1, 5.3	Undisturbed	0%	4,871	4,142	4,142	4,288	5,250	-908
G	6.2, 6.3	Bioretention	80%	202	197	39	225	242	110
0	6.1	Undisturbed	0%	202	186	186	225	343	-110
7	7.2	P1 Pond	80%	1 2/2	1,106	221	159	647	190
/	7.1	Undisturbed	0%	1,545	237	237	458	047	-185
	8.6, 8.3	Dry Swale	80%		1,084	217			
8	*8.2, 8.4, 8.7, 8.8, 8.9, 8.10, 8.12, 8.13, 8.15	P1 Pond	80%	12,553	7,734	1,547	5,115	4,845	270
	8.1, 8.5	Undisturbed	0%		3,255	3,255			
	*8.4, 8.8, 8.10	Bioretention	80%		479	96			
	9.11	Dry Swale	80%		1,064	213			
q	9.3, 9.5, 9.6, 9.9, 9.10	P1 Pond	80%	6 132	3,997	799	1 711	3 5/16	-1 836
5	9.2	Bioretention	80%	0,152	467	93	1,711	5,540	-1,850
	9.1, 9.4	Undisturbed	0%		605	605			
	11.8, 11.9, 11.11	P1 Pond	80%		3,038	608			
11	**11.3, 11.4, 11.5, 11.10, 11.12, 11.13, 11.16, 11.17, 11.24	Bioretention	80%	26.202	16,340	3,268	0.976	72 112	17 340
	11.20, 11.7, 11.22, 11.25, 11.23	Dry Swale	80%	20,283	1,131	226	9,870	27,117	-17,240
	11.2, 11.6, 11.14, 11.15, 11.18, 11.19, 11.21	Undisturbed	0%		5,775	5,775			
	12.2, 12.4	P1 Pond	80%		3,293	659			
12	12.3	Dry Swale	80%	5,986	110	22	3,263	4,095	-831
	12.1	Undisturbed	0%		2,583	2,583			
			***Totals	88,374	88,374	40,330	40,330	66,721	-26,392

* subcatchment 1.8, 8.4, 8.8 and 8.10 are being treated by P1 pond and bioretention. We assumed an 80% reduction only one time

** in subcatchments 1.4, 5.2 and 11.3 the disturbed areas are treated by bioretention the remainder of the lot is undisturbed

*** The total mass TSS export from undisturbed areas in the proposed/developed conditions is 28,318 kg, 70% of post construction TSS discharge is comprised of loading from undisturbed areas: (28,318/40,330)*100

Mass Reduction of Phosphorus from Post-Construction Stormwater Management Practices Table 8.0

Design Point	Subcatchments Within Each Design Point	Stormwater Practices within Individual Subcatchments	% Phosphorus Removal from SW Practice	Annual Mass-Phosphorus Loading from Direct Calculation for Proposed/Developed Conditions by Design Point (kg) Prior to Treatment by Stormwater Management Practices	Annual Mass-Phosphorus Loading for Proposed/Developed Conditions Broken into Subcatchments (kg) Prior to Treatment by Stormwater Management Practices	Annual Mass-Phosphorus Loading with Reductions from SW Practice(s) for Proposed/Developed Conditions for Subcatchments (kg)	Sum of Subcatchments with Reductions for Annual Mass- Phosphorus Discharge from Site by Design Point (kg)	Annual Mass-Phosphorus Loading from Direct Calculation for Existing Conditions by Design Point (kg)	Net Change of Mass- Phosphorus Loading (Proposed-Existing) (kg)
	*1.3. 1.7. 1.8. 1.9	P1 Pond	40%	Tractices	4.4	2.6		("6/	
1	**1.4. *1.8. 1.10. 1.11	Bioretention	40%	17.2	3.9	2.3	13.9	5.9	8.1
_	1.1. 1.2. 1.12	Undisturbed	0%		9.0	9.0			
	2.1, 2.4, 2.9, 2.12	Dry Swale	40%		7.4	4.4			
	2.10, 2.11	Bioretention	40%		1.3	0.8			
2	2.2, 2.3, 2.5, 2.6, 2.8, 2.13, 2.14, 2.15	P1 Pond	40%	18.9	9.0	5.4	11.8	2.8	9.0
	2.7	Undisturbed	0%		1.2	1.2			
2a	2a	Undisturbed	0%	0.1	0.1	0.1	0.1	0.2	-0.1
2b	2b	Undisturbed	0%	0.5	0.5	0.5	0.5	1.2	-0.7
	3.1. 3.2. 3.3	Dry Swale	40%		8.4	5.1	0.0		
3	3.4. 3.5	P1 Pond	40%	10.1	1.3	0.8	6.3	4.2	2.0
Ū	3.6	Undisturbed	0%		0.4	0.4	0.0		
4	41.4.2	Undisturbed	0%	0.8	0.8	0.8	0.8	3.4	-2.5
	**5.2.5.4	Bioretention	40%		1.9	1.1	0.0	0	2.0
5	5.1. 5.3	Undisturbed	0%	6.8	4.9	4.9	6.0	4.9	1.2
	6.2, 6.3	Bioretention	40%		0.4	0.2			
6	6.1	Undisturbed	0%	0.5	0.1	0.1	0.3	1.3	-1.0
	7.2	P1 Pond	40%		2.1	1.3			
7	7.1	Undisturbed	0%	2.3	0.1	0.1	1.4	2.3	-0.9
	8.6. 8.3	Drv Swale	40%		2.1	1.3			
8	*8.2, 8.4, 8.7, 8.8, 8.9, 8.10, 8.12, 8.13, 8.15	P1 Pond	40%	20.6	14.2	8.5	13.7	8.2	5.5
	8.1, 8.5	Undisturbed	0%		3.4	3.4			
	*8.4, 8.8, 8.10	Bioretention	40%		0.9	0.5			
	9.11	Dry Swale	40%		2.0	1.2			
	9.3, 9.5, 9.6, 9.9, 9.10	P1 Pond	40%		7.5	4.5			
9	9.2	Bioretention	40%	11.4	1.0	0.6	7.2	Annual Wass-Prosphords th Loading from Direct Site Calculation for Existing Conditions by Design Point (kg) 5.9 2.8 0.2 1.2 4.2 4.2 3.4 4.9 1.3 2.3 8.2 8.6 35.1 2.4	-1.4
	9.1, 9.4	Undisturbed	0%		0.9	0.9			
	11.8, 11.9, 11.11	P1 Pond	40%		5.2	3.1			
	**11.3, 11.4, 11.5, 11.10, 11.12, 11.13, 11.16, 11.17, 11.24	Bioretention	40%		18.5	11.1			
11	11.20, 11.7, 11.22, 11.25, 11.23	Dry Swale	40%	29.3	1.6	1.0	19.2	35.1	-15.9
	11.2, 11.6, 11.14, 11.15, 11.18, 11.19, 11.21	Undisturbed	0%		4.0	4.0			
	12.2, 12.4	P1 Pond	40%		4.6	2.8			
12	12.3	Dry Swale	40%	6.4	0.2	0.1	4.5	2.4	2.1
	12.1	Undisturbed	0%		1.6	1.6			
			T - 4 - 1 -	124.0	101.0	05.0	05.0	22.4	

subcatchment 1.8, 8.4, 8.8 and 8.10 are being treated by P1 pond and bioretention. We assumed an 40% reduction only one time

** in subcatchments 1.4, 5.2 and 11.3 the disturbed areas are treated by bioretention the remainder of the lot is undisturbed

*** The total mass phosphorus export from undisturbed areas in the proposed/developed conditions is 27.1 kg, 32% of post construction phosphorus discharge is comprised of loading from undisturbed areas (27.1/85.8)*100

5.6.4 References

- Lin, J. P. (2004). "Review of published export coefficient and event mean concentration (EMC) data," *WRAP Technical Notes Collection* (ERDC TN-WRAP-04-3), U.S. Army Engineer Research and Development Center, Vicksburg, MS. <u>www.wes.army.mil/el/wrap</u>
- New York State Stormwater Design Manual, August, 2010, Center for Watershed Protection, Ellicott City, MD 21043, for NYSDEC
- NYCDEP. 1997. Guidance for Phosphorus Offset Pilot Programs. New York City Department of Environmental Protection, Bureau of Water Supply
- NYCDEP. 2010. 2009 Watershed Water Quality Annual Report. New York City Department of Environmental Protection, Bureau of Water Supply, July 2010. 195 pp.
- Roseen, R. M., T. P. Ballestero, J. J. Houle, P. Avellaneda, J. Briggs, G. Fowler, and R. Wildey. 2009. Seasonal performance variation for stormwater management systems in cold climate conditions. J. Environ. Eng. 135(3), 128-137.
- Schueler, T. R. 1987. Controlling Urban Runoff: A Practical Manual for Planning and Designing Urban Best Management Practices. Metropolitan Washington Council of Governments. 275 pp.
- USEPA. 1983. Results of the National Urban Runoff Program. Volume 1 -Final Report. U.S. Environmental Protection Agency. Water Planning Division.

5.7 Open Channel Conveyances/Closed Channel Conveyances

To the maximum extent practicable, open channel conveyances were utilized in this design as opposed to closed conveyances. These include roadside swales and drainage swales to convey stormwater to proposed post-construction stormwater management practices. If open channel conveyances could not be used, closed channel conveyances have been designed to convey at the least the 10-year, 24-hour storm. Some underground piping is proposed under the existing road with catch basins to collect road storm drainage. The Grading Plans (Sheets L-4.01- L-4.09, provided in Site Plan Drawing Set for the DEIS), indicate the locations of any closed piping systems throughout the Project.

5.8 Impervious Area for Each Drainage Area(s) Requiring Two Different Stormwater Management Practices in Series

The NYCDEP requires "Where an activity results in impervious surfaces covering 20% or more of the drainage area for which a stormwater management practice is

designed, the stormwater management plan shall provide for runoff from the drainage area to be treated by two different types of practices in series, except if the stormwater management practice is infiltration, or the activity is in an area classified as a village, hamlet, village extension or area zoned for commercial/industrial use or in an EOH Designated Main Street area." The only exception is where the post-construction stormwater management practice proposed is a green infrastructure practice or a practice that provides runoff reduction volume. The proposed Project was designed so that no drainage area has 20% or more impervious area, unless stormwater is being treated by a green infrastructure or runoff reduction practice. Table 9.0 shows the proposed drainage area impervious percentage draining to a standard stormwater management practice.

Table 9.0	Impervious Percentages of Area Draining to a Standard Stormwater
Management	Practice

Design Point	Standard Stormwater Management Practice	Impervious Percentage
1	P1.1 Micropool Extended Detention Pond	13.46%
2	P2.5 Micropool Extended Detention Pond	18.40%
3	P3.3 Micropool Extended Detention Pond	13.52%
5	None*	N/A
6	None*	N/A
7	P7.1 Micropool Extended Detention Pond	7.41%
8	P8.2 Micropool Extended Detention Pond	19.69%
9	P9.2 Micropool Extended Detention Pond	15.46%
11	P11.1 Micropool Extended Detention Pond	19.83%
12 P12.1 Micropool Extended Detention Pond		9.84%

*Stormwater treatment in design points 5 and 6 will be done by bioretention only

5.9 Downstream Stream Survey of Watercourses that will Receive Stormwater Discharges from the Site

The Proposed Conditions Drainage Map shows the individual design points on the Project Site where individual drainage areas eventually discharge to. These design points have stormwater discharges that vary from a well-defined perennial stream to diffuse and overland flow.

Design points 1 and 2 are made up of large drainage areas that contain intermittent streams, a perennial stream and wetlands. These streams are stable, vegetated and moderate to steeply sloping onsite and as these drainages leave the Project property boundary. The stream geometry is generally shallow streams with grade controls throughout the steep slopes and moderate amount of stream bank vegetation.

Design points 2a and 2b are areas where drainage leaves the site as overland/sheet flow. There is no discernable watercourse where site drainage concentrates. Vegetation in these areas consists of trees with some understory shrubs.

Design points 3 and 4 have steep topography with drainage channels that discharge from the site. These drainage channels are steeply sloping and maintain similar characteristics until the slope is less steep at which the channels often disappear. Vegetation is prevalent throughout the banks and channel bottoms and channel stability is good. The stream bottom is generally rough with some grade controls.

Design point 5 is a drainage ditch that collects surface water, conveys it under a 24" culvert and continues down the slope through an open meadow with tall herbaceous vegetation and some shrubs. The ditch is pretty straight with few grade controls meanders and vegetation within the ditch bottom and on the ditch sides.

Design points 6 and 7 are areas where site drainage leaves the property as overland/sheet flow with no discernable channel where the flow concentrates. This area is open meadow with predominantly tall herbaceous vegetation mixed in with a small amount of understory shrubs.

Design point 8 is an intermittent stream channel that leaves the site via a culvert and continues into a grassed field. The slope of the intermittent stream in the field is moderately steep however the stream channel is stable due to grass-vegetation growing in the stream banks and in parts of the stream bottom. This channel does have some moderate meanders.

Design point 9 is a road side swale that is armored with some rip rap and is very straight along Trailside Road. There is grass vegetation on the edges of the swale that stabilizes the banks.

Design point 11 is a large perennial stream channel that flows off of the site. This channel is relatively straight with some meanders and a stream substrate that is predominantly rock. There are numerous trees and shrubs present on the stream banks for stabilization. This stream slope is very steep; however the stream is stable with numerous grade controls located throughout the channel.

Design point 12 is a moderately sloping watershed that exits the site via an intermittent stream. This stream continues through steep terrain off of the property however the stream is stable with numerous grade controls. Stream characteristics are similar to design points 1 and 2.

6.0 POST CONSTRUCTION STORMWATER MAINTENANCE

6.1 Mechanism of Operation and Maintenance

The Homeowners Association will be responsible for maintenance of all of the postconstruction stormwater management practices onsite. Currently, the bylaws that will describe the responsibilities of the Homeowners Association are being drafted. and details of the maintenance of the post-construction stormwater management practices will be described therein. On lots 33, 38, 42, 43, 44, 45, 47, 49, 51, 141, 142 and 143, the lot owners will be responsible for maintenance of the postconstruction stormwater management practices (i.e. bioretention practices on the individual lots) for the life of the systems. The maintenance of these stormwater practices on the individual lots will be enforced by the Home Owners Association Offering Plan that all of the individual lot owners will be responsible for signing and abiding by for the life of the lot. This Offering Plan is being drafted and will be finalized when it is accepted by the Attorney General. The Offering Plan will clearly state the maintenance requirements of the stormwater management practices on the individual lots and if the maintenance of these practices is not conducted appropriately, the Homeowners Association will conduct the required work at the expense of the individual lot owner. The Homeowners Association responsibilities regarding the individual lots with post-construction stormwater management practices located on the property will be clearly spelled out in the Offering Plan for the Homeowners Association.

6.2 Maintenance to be Performed

Post-construction maintenance for this project will consist of regular inspections of permanent stormwater management facilities and steep slopes. Generally, facility inspections should be done at a minimum of every 30 to 60 days. These maintenance procedures are essential to assure continual performance of the stormwater management practices on your site. During the inspection and any maintenance activity to the stormwater management practices, the responsible party should fill out an inspection and maintenance log (Exhibit D) to record that it was done.

Micropool Extended Detention Stormwater Ponds

- Should be inspected twice a year and after heavy rain storms.
- Any erosion or scour occurring in the pond, forebay or outlets shall be repaired and revegetated as needed.
- Sediment removal in the forebay shall occur every five to six years or when 50% full.
- Provide maintenance easement and right-of-way and removable trash rack on principal spillway.
- Any mechanical valves shall be operated every two months.
- Regular litter control to be performed as needed.
- Mow grass when it reaches 4-6 inches in height as needed

Dry Swale

- Inspect the side slopes of channels to make sure side slopes remain stable at least twice a year.
- Inspect for scour, erosion, rodent holes and excessive sediment deposition.
- Inspect inlets and outlets for sideslope stability, erosion, rodent holes and excessive sedimentation.
- Remove excess sediment when necessary.
- Repair any scours or erosion by using geomats or rolled erosion products to reinforce the surfaces.

Catch Basins

- Sediment removal with a vacuum truck should be done at least once a year, preferably after spring runoff and then in early fall, or when they are at 50% capacity, whichever comes first.
- Any mechanical valves should be operated for inspection every two months.

Soil Restoration

- Initial inspections for the first six months (once after each storm greater than halfinch).
- Reseeding to repair bare or eroding areas to assure grass stabilization.
- Water areas to encourage healthy grass growth.
- Fertilization and liming may be needed in the fall after the first growing season to increase plant vigor.
- Keep the site free of vehicular and foot traffic or other weight loads. (Sometimes it may be necessary to de-thatch the turf every few years but not required.)

Bioretention

- Clean sediment out of pretreatment portion of the system as needed
- Clean trash and debris out of system as necessary
- Dead or diseased vegetation should be replaced
- When the filtering capacity of the filter diminishes substantially (when water ponds for more than 48 hours), the top few inches of discolored material shall be removed and be replaced with fresh material. The removed sediments shall be disposed of in an acceptable manner (i.e. landfill).
- Silt and sediment should be removed from the filter bed when the accumulation exceeds one inch.
- A stone drop (pea gravel diaphragm) of at least six inches shall be provided at the inlet of the bioretention facility
- Areas devoid of mulch shall be re-mulched on an annual basis

6.3 Stormwater Management Practice Posting

In the vicinity of each stormwater management practice, the owner shall post a sign not less than $18^{\circ} \times 24^{\circ}$ (or $10^{\circ} \times 12^{\circ}$ for footprints smaller than 400 sf) with the following information:

Stormwater Management Practice - (name of the practice) Project Identification - (SPDES Construction Permit #, other) Must Be Maintained In Accordance With O&M Plan DO NOT REMOVE OR ALTER

7.0 CONSTRUCTION WASTE

Waste Materials: All waste materials generated during construction will be disposed at a suitable landfill, or transfer station.

Hazardous Waste: The project will not be a generator of hazardous waste and it is not anticipated that any hazardous waste will be generated during construction. If there are any materials generated, a licensed hazardous waste carrier will be contracted to dispose the hazardous material at a suitable disposal site. If hazardous materials are discovered during construction, the work will be stopped until the issue is resolved.

Waste: Portable sanitary facilities will be made available to construction personnel and will be serviced regularly.

8.0 OFFSITE VEHICLE TRACKING

Excavation equipment involved with the construction will remain on the project site and will not regularly egress or ingress the site. Any trucks used to bring in materials or remove materials via municipal paved roads will do so over a stabilized construction entrance. If any off-site vehicle tracking occurs, the contractor will be directed to initiate, street sweeping program in the immediate vicinity of the site.

9.0 TEMPORARY STABILIZATION FOR FROZEN CONDITIONS

The following temporary stabilization measures **MUST** be performed when construction is occurring during winter/frozen ground conditions. The following requirements do not supercede any other requirements of this SWPPP as they apply to non-frozen ground conditions.

- Perimeter erosion control **MUST** still be installed prior to earthwork disturbance as per this SWPPP.
- Any areas that cannot be seeded to turf by October 1 or earlier will receive a temporary seeding. The temporary seeding will consist of winter rye seeded at the rate of 120 pounds per acre (2.5 pounds per 1,000 square

feet) or stabilized as per the temporary stabilization for winter construction/frozen conditions.

- Any area of disturbance that will remain inactive for a period of 7 consecutive days **MUST** be mulched. This includes any previously disturbed areas that are covered with snow.
- Mulch **MUST** consist of loose straw applied at the rate of 2 to 3 bales (90 to 100 pounds) per thousand square feet.
- Mulch **MUST** be applied uniformly over the area of bare soil or bare soil that is covered with snow. For the latter condition, mulch **MUST** be applied on top of snow.
- Using a tracked vehicle, mulch **MUST** be crimped into the bare soil/snow. The tracked vehicle **MUST** be driven across the mulched areas in at least two directions to maximize crimping of mulch into the soil/snow.
- If mulch gets blown off an area to a significant degree, the site inspector **WILL** require that an area be re-mulched in accordance with Items 2 through 5 above, and this area **WILL** be included on the inspection checklist for the next inspection.
- If a particular area repeatedly experiences loss of mulch due to wind, then the inspector **WILL** require that an alternative method be used to secure the mulch in place. Such alternatives may include the use of netting, tackifier or other methods deemed appropriate by the inspector.
- During periods when snow is melting and/or surface soils are thawing during daytime hours, mulched areas **MUST** be re-tracked (crimped) as per Item 5 above at least once every seven days, more frequently if directed by the inspector. Additional mulch may be required to obtain complete coverage of an area. Biodegradable erosion control matting may be required on steeper slopes.
- Additional stabilization measures for non-frozen ground conditions described in this SWPPP **WILL** be implemented at the time deemed appropriate by the inspector.

During the winter season, if a site has been stabilized and soil disturbing activities have been suspended for the winter, weekly inspections can be suspended. However, monthly inspections must still be conducted. All normal weekly inspections must resume when soil disturbing activities resume.

10.0 SPILL PREVENTION PRACTICES

Good Housekeeping and Material Management Practices

The following good housekeeping and material management practices will be followed on site during the construction project to reduce the risk of spills or other accidental exposure of materials and substances to stormwater runoff.

- Materials will be brought on site in the minimum quantities required.
- All materials stored on site will be stored in a neat, orderly manner in their appropriate containers, and if possible, under a roof or other enclosure.

- Products will be kept in their original containers with the original manufacturer's label.
- Substances will not be mixed with one another unless recommended by the manufacturer.
- Whenever possible, all of a product will be used up before disposal.
- Manufacturer's recommendations for proper use and disposal will be followed.
- The construction manager or his designee will inspect regularly to ensure proper use and disposal of materials on site.
- The contractor shall prohibit washing of tools, equipment, and machinery in or within 100 feet of any watercourse or wetland.
- All above grade storage tanks are to be protected from vehicle damage by temporary barriers.

Inventory for Pollution Prevention Plan

The materials and substances listed below are expected to be on-site during construction.

- Petroleum for fueling vehicles will be stored in above ground storage tanks. Tanks will either be steel with an enclosure capable of holding 110% of the storage tank volume or of a Con-Store, concrete encased type typically employed by NYSDOT. Hydraulic oil and other oils will be stored in their original containers. Concrete and asphalt will be stored in the original delivery trucks.
- Fertilizer may be stored on site in its original container for a short period of time prior to seeding. Original containers will be safely piled on pallets or similar devices to protect from moisture.
- Paints and other similar materials will be stored in their original containers and all empty containers will be disposed of in accordance with label directions.
- Portable sanitary facilities, which contain chemical disinfectants (deodorants) will be located on-site, with the disinfectants held in the tank of the toilet.

Hazardous Products

These practices are used to reduce the risks associated with hazardous materials.

- Products will be kept in original containers unless they are not re-sealable.
- Original labels and material safety data sheets will be retained; they contain important product information.
- If surplus product must be disposed of, manufacturers' or local and State recommended methods for proper disposal will be followed.

Spill Prevention

The following product specific practices will be followed on site.

Petroleum Products:

- Construction personnel should be made aware that emergency telephone numbers are located in this SWPPP.
- The contractor shall immediately contact NYSDEC in the event of a spill, and shall take all appropriate steps to contain the spill, including construction of a dike around the spill and placing absorbent material over this spill.
- The contractor shall instruct personnel that spillage of fuels, oils, and similar chemicals must be avoided and will have arranged with a qualified spill remediation company to serve the site.
- Fuels, oils, and chemicals will be stored in appropriate and tightly capped containers. Containers shall not be disposed of on the project site.
- Fuels, oils, chemicals, material, equipment, and sanitary facilities will be stored/located away from trees and at least 100 feet from streams, wells, wet areas, and other environmentally sensitive sites.
- Dispose of chemical containers and surplus chemicals off the project site in accordance with label directions.
- Use tight connections and hoses with appropriate nozzles in all operations involving fuels, lubricating materials or chemicals.
- Use funnels when pouring fuels, lubricating materials or chemicals.
- Refueling and cleaning of construction equipment will take place in parking areas to provide rapid response to emergency situations.
- All on-site vehicles will be monitored for leaks and receive regular preventative maintenance to reduce the chance of leakage. Any vehicle leaking fuel or hydraulic fuel will be immediately scheduled for repairs and use will be discontinued until repairs are made.

Fertilizers:

- Fertilizer will be stored in its original containers on pallets with water resistant coverings.
- Proper delivery scheduling will minimize storage time.
- Any damaged containers will be repaired immediately upon discovery and any released fertilizer recovered to the fullest extent practicable.

Paints:

- All containers will be tightly sealed and stored when not required for use.
- Excess paint will not be discharged to the storm water system or wastewater system, but will be properly disposed of according to manufacturers' instructions or State and local regulations.

Concrete Trucks:

• Concrete trucks will be allowed to wash out or discharge surplus concrete or drum wash water only at designated locations on site.

Asphalt Trucks:

• Asphalt trucks shall not discharge surplus asphalt on the site.

Pesticides:

• During construction, the storage of pesticides which is reasonably likely to lead to a discharge of pesticides in the environment will not be allowed. If pesticides are to be stored onsite, they will be stored in a locked, water tight storage compartment and will be stored in their original water tight containers. Excess pesticides will be removed from the site.

Spill Control Practices

In addition to the good housekeeping and material management practices discussed in the previous sections of this plan, the following practices will be followed for spill prevention and cleanup. The construction manager or site superintendent responsible for the day-to-day site operations will be the spill prevention and cleanup coordinator. He will designate at least three other site personnel who will receive spill prevention and cleanup training. These individuals will each become responsible for a particular phase of prevention and cleanup. The names of responsible spill personnel will be posted in the material storage area and in the onsite construction office or trailer.

- Manufacturers' recommended methods for spill cleanup will be clearly posted and site personnel will be made aware of the procedures and the location of the information and cleanup supplies. Any spill in excess or suspected to be in excess of two gallons will be reported to the NYSDEC Regional Spill Response Unit. Notification to the NYSDEC (1-800-457-7362) must be completed within two hours of the discovery of the spill.
- Materials and equipment necessary for spill cleanup will be kept in the material storage area onsite. Equipment and materials will include but not be limited to absorbent pads, brooms, dust pans, mops, rags, gloves, goggles, activated clay, sand, sawdust, and plastic and metal trash containers specifically for this purpose.
- All spills will be cleaned up immediately after discovery.
- The spill area will be kept well ventilated and personnel will wear appropriate protective clothing to prevent injury from contact with spilled substance.
- Spills of toxic or hazardous material will be reported to the appropriate State or local government agency, regardless of the size

11.0 CERTIFICATIONS

Preparer Certification of Compliance with Federal, State, and Local Regulations

This Stormwater Pollution Prevention Plan was prepared in accordance with the New York State Department of Environmental Conservation SPDES General Permit for Stormwater Discharges from Construction Activities (Permit No. GP-0-10-001), pursuant to Article 17, Titles 7, 8 and Article 70 of the Environmental Conservation Law. This SPDES General Permit implements the Federal Clean Water Act pertaining to stormwater discharges.

Name:	William Buetow		CPESC
Signature:		Date:	
Company Name:	The LA Group, PC		

Owner Pollution Prevention Plan Certification

I certify under penalty of law that this document and all attachments were prepared under my direction or supervision to assure that qualified personnel properly gathered and evaluated the information submitted. Based on my inquiry of the person or persons who are directly responsible for gathering the information, the information submitted is, to the best of my knowledge and belief, true, accurate, and complete. I am aware that false statements made herein are punishable as a Class A misdemeanor pursuant to Section 210.45 of the Penal Law.

I understand that GP-0-10-001 requires site inspections be conducted by a qualified inspector once every seven (7) days and when approved in writing by the NYSDEC, disturbances of greater than five (5) acres at one time require site inspections two (2) times every seven (7) days. These inspections shall be performed by a qualified inspector as defined by the General Permit.

The Owner/Operator will be held financially responsible for any and all fines related to work tasks that are not specified by the Contractor(s)/Subcontractor(s) below.

Name:	Thomas Wilcock	Title:
Signature:	Tuek Easteide Dartaera I. D.	Date:
Company Name:		

Name	Title
Signature	Date
Company Name Address City, State, Zip Phone Number	
SWPPP Components You Are Responsible For	1. 2. 3. 4. 5. 6.
Name of Trained Individual Responsible for SWPPP Implementation Signature of Trained Individual Responsible for SWPPP Implementation	Title Date

Date
1. 2. 3. 4. 5. 6.
Title

Name	Title
Signature	Date
Company Name Address City, State, Zip Phone Number	
SWPPP Components You Are Responsible For	1. 2. 3. 4. 5. 6.
Name of Trained Individual Responsible for SWPPP Implementation Signature of Trained Individual Responsible for SWPPP Implementation	Title Date

Name	Title
Signature	Date
Company Name Address City, State, Zip Phone Number	
SWPPP Components You Are Responsible For	1. 2. 3. 4. 5. 6.
Name of Trained Individual Responsible for SWPPP Implementation Signature of Trained Individual Responsible for SWPPP Implementation	Title Date

12.0 DEFINITIONS

Construction Activity(ies) - means any clearing, grading, excavation, filling, demolition, or stockpiling activities that result in soil disturbance. Clearing activities can include, but are not limited to, logging equipment operation, the cutting and skidding of trees, tree removal, stump removal and/or brush removal. Construction activity does not include routine maintenance that is performed to maintain the original line and grade, hydraulic capacity, or original purpose of a facility.

Construction Phasing Plan - a plan designed to construct particular portions of an individual project at different times. Phasing is often used when a project is very large to limit the disturbance at a single time to 5 acres per phase.

Erosion and Sediment Control Practices – temporary measures installed prior to construction and maintained during construction to temporarily treat any stormwater runoff. Once construction is completed and post-construction stormwater management practices are installed and the site is stabilized, the erosion and sediment control practices are removed from the site.

Final Stabilization - means that all soil disturbance activities have ceased and a uniform, perennial vegetative cover with a density of eighty (80) percent over the entire pervious surface has been established; or other equivalent stabilization measures, such as permanent landscape mulches, rock rip-rap or washed/crushed stone have been applied on all disturbed areas that are not covered by permanent structures, concrete pavement.

Green Infrastructure – in the context of stormwater management, the term green infrastructure includes a wide array of practices at multiple scales to manage and treat stormwater, maintain and restore natural hydrology and ecological function by infiltration, evapotranspiration, capture and reuse of stormwater, and establishment of natural vegetative features. On a regional scale, green infrastructure is the preservation and restoration of natural landscape features, such as forests, floodplains and wetlands, coupled with policies such as infill and redevelopment that reduce overall imperviousness in a watershed or ecoregion. On the local scale green infrastructure consist of site and neighborhood specific practices and runoff reduction techniques. Such practices essentially result in runoff reduction and or establishment of habitat areas with significant utilization of soils, vegetation, and engineered media rather than traditional hardscape collection, conveyance and storage structures. Some examples include green roofs, trees and tree boxes, pervious pavement, rain gardens, vegetated swales, planters, reforestation and protection and enhancement of riparian buffers and floodplains.

Impervious Area (Cover) - means all impermeable surfaces that cannot effectively infiltrate rainfall. This includes paved, concrete and gravel surfaces (i.e. parking lots, driveways, roads, runways, and sidewalks); building rooftops, and miscellaneous impermeable structures such as patios, pools, and sheds.

Municipal Separate Storm Sewer (MS4) – a conveyance or system of conveyances (including roads with drainage systems, municipal streets, catch basins, curbs, gutters, ditches, man-made channels, or storm drains):

- i. Owned or operated by a state, city, town, borough, county, parish, district, association, or other public body (created by or pursuant to State law) having jurisdiction over disposal of sewage, industrial wastes, stormwater, or other wastes, including special districts under State law such as a sewer district, flood control district or drainage district, or similar entity, or an Indian tribe or an authorized Indian tribal organization, or a designated and approved management agency under section 208 of the CWA that discharges to surface waters of the State.
- ii. Designed or used for collecting or conveying stormwater
- iii. Which is not a combined sewer
- iv. Which is not part of a Publicly Owned Treatment Works (POTW) as defined at 40 CFR 122.2.

Notice of Intent – a standardized format notification sent to the NYSDEC to inform them of the proposed activity to be sent after the SWPPP has been completed.

Owner or Operator – means the person, persons or legal entity which owns or leases the property on which the construction activity is occurring; and/or an entity that has operational control over the construction plans and specifications, including the ability to make modifications to the plans and specifications.

Post-Construction Stormwater Management Practices – permanent devices constructed or installed onsite to treat stormwater from a site when construction is completed.

Qualified Inspector - a Licensed Professional Engineer, Certified Professional in Erosion and Sediment Control (CPESC), Registered Landscape Architect, or someone working under the direct supervision of, and at the same company as, the licensed Professional Engineer or Registered Landscape Architect, provided they have received 4 hours of Department endorsed training in proper erosion and sediment control principles from a Soil and Water Conservation District, or other Department endorsed entity. After receiving the initial training, the qualified inspector shall receive 4 hours of training every 3 years.

Regulated, Traditional Land Use Control MS4 - means a city, town, or village with land use control authority that is required to gain coverage under New York State DEC's SPDES General Permit for Stormwater Discharges from Municipal Separate Stormwater Sewer Systems (MS4s).

Sequence of Operations – the individual steps and their specific order which are undertaken in order to construct a project or a given phase of a project from beginning to end. (i.e. clearing, grading, foundation work, landscaping, etc.)

State Pollutant Discharge Elimination System (SPDES) – means the system established pursuant to Article 17 of the Environmental Conservation Law (ECL) and 6

NYCRR Part 750 for issuance of permits authorizing discharges to the waters of the state.

Stormwater Pollution Prevention Plan (SWPPP) - a report that is compiled providing detailed information about the proposed activity and the specifics to how the stormwater will be managed during construction and after construction is completed.

Surface Waters of the State - shall be construed to include lakes, bays, sounds, ponds, impounding reservoirs, springs, rivers, streams, creeks, estuaries, marshes, inlets, canals, the Atlantic Ocean, within the territorial seas of the state of New York and all other bodies of surface water, natural or artificial, inland or coastal, fresh or salt, public or private (except those private waters that do not combine or effect a junction with natural surface or underground waters), which are wholly or partially within or bordering the state or within its jurisdiction. Waters of the state are further defined in 6 NYCRR Parts 800-941.

Temporary Stabilization – means that exposed soil has been covered with material(s) as set forth in the technical standard, New York Standards and Specifications for Erosion and Sediment Control, to prevent the exposed soil from eroding. The materials can include, but are not limited to, mulch, seed and mulch, and erosion control mats (e.g. jute twisted yarn, excelsior wood fiber mats).

Trained Contractor – means an employee from a contracting (construction) company responsible for the day to day implementation of the SWPPP. The trained contractor must have received 4 hours of Department endorsed training in proper erosion and sediment control principles from a Soil and Water Conservation District, or other Department endorsed entity. After receiving the initial training, the qualified inspector shall receive 4 hours of training every 3 years.

It can also mean an employee from the contracting (construction) company that meets the qualified inspector qualifications (e.g. licensed Professional Engineer, Certified Professional in Erosion and Sediment Control (CPESC), Registered Landscape Architect, or someone working under the direct supervision of, and at the same company as, the licensed Professional Engineer or Registered Landscape Architect, provided they have received 4 hours of Department endorsed training in proper erosion and sediment control principles from a Soil and Water Conservation District, or other Department endorsed entity.

G:\Proj-08\08077_Tuck_Windham\08077Enviro\04SWPPP\SWPPP_GP-0-10-001 meeting DEP guidelines Sept 2011b.docx

Exhibit A

Notice of Intent (NOI), NYCDEP Application Form and NYSDEC Acknowledgement Letter

NOTICE OF INTENT

New York State Department of Environmental Conservation

Division of Water

625 Broadway, 4th Floor

Albany, New York 12233-3505

Stormwater Discharges Associated with <u>Construction Activity</u> Under State Pollutant Discharge Elimination System (SPDES) General Permit # GP-0-10-001 All sections must be completed unless otherwise noted. Failure to complete all items may result in this form being returned to you, thereby delaying your coverage under this General Permit. Applicants must read and understand the conditions of the permit and prepare a Stormwater Pollution Prevention Plan prior to submitting this NOI. Applicants are responsible for identifying and obtaining other DEC permits that may be required.

-IMPORTANT-

RETURN THIS FORM TO THE ADDRESS ABOVE

OWNER/OPERATOR MUST SIGN FORM

Owner/Operator (Company Name/Private Owner Name/Municipality Name) Owner/Operator Contact Person Last Name (NOT CONSULTANT)						
Owner/Operator Contact Person Last Name (NOT CONSULTANT)						
Owner/Operator Contact Person Last Name (NOT CONSULTANT)						
Owner/Operator Contact Person First Name						
Owner/Operator Mailing Address						
City						
State Zip						
Phone (Owner/Operator) Fax (Owner/Operator) - -						
Email (Owner/Operator)						
FED TAX ID (not required for individuals)						

0457273031

Project Site Informa	tion					
Project/Site Name						
Street Address (NOT P.O. BOX)						
Side of Street O North O South O East O West						
City/Town/Village (THAT ISSUES BUILDING PERMIT)						
State Zip County	DEC Region					
Name of Nearest Cross Street						
Distance to Nearest Cross Street (Feet)	Project In Relation to Cross Street O North O South O East O West					
Tax Map Numbers Section-Block-Parcel	Tax Map Numbers					

1. Provide the Geographic Coordinates for the project site in NYTM Units. To do this you **must** go to the NYSDEC Stormwater Interactive Map on the DEC website at:

www.dec.ny.gov/imsmaps/stormwater/viewer.htm

Zoom into your Project Location such that you can accurately click on the centroid of your site. Once you have located your project site, go to the tool boxes on the top and choose "i"(identify). Then click on the center of your site and a new window containing the X, Y coordinates in UTM will pop up. Transcribe these coordinates into the boxes below. For problems with the interactive map use the help function.

х	Coc	rdi	nate	es ((Easting				

ΥC	loor	dina	(N	(Northing)				

3.	Select	the	predominant	land	use	for	both	pre	and	post	development	conditions.
SI	ELECT ON	NLY C	ONE CHOICE F	OR EAG	СН							

Pre-Development Existing Land Use	Post-Development Future Land Use					
○ FOREST	○ SINGLE FAMILY HOME Number of Lots					
\bigcirc PASTURE/OPEN LAND	○ SINGLE FAMILY SUBDIVISION					
○ CULTIVATED LAND	○ TOWN HOME RESIDENTIAL					
\bigcirc SINGLE FAMILY HOME	○ MULTIFAMILY RESIDENTIAL					
\bigcirc SINGLE FAMILY SUBDIVISION	○ INSTITUTIONAL/SCHOOL					
\bigcirc TOWN HOME RESIDENTIAL	\bigcirc INDUSTRIAL					
○ MULTIFAMILY RESIDENTIAL	○ COMMERCIAL					
\bigcirc INSTITUTIONAL/SCHOOL	○ MUNICIPAL					
\bigcirc INDUSTRIAL	○ ROAD/HIGHWAY					
○ COMMERCIAL	○ RECREATIONAL/SPORTS FIELD					
○ ROAD/HIGHWAY	○ BIKE PATH/TRAIL					
○ RECREATIONAL/SPORTS FIELD	\bigcirc LINEAR UTILITY (water, sewer, gas, etc.)					
○ BIKE PATH/TRAIL	○ PARKING LOT					
\bigcirc LINEAR UTILITY	○ CLEARING/GRADING ONLY					
\bigcirc parking Lot	\bigcirc DEMOLITION, NO REDEVELOPMENT					
 4. Will future use of this site be an agricul by the NYS Agriculture and Markets Law ? 5. Is this a project which does not require c Permit (e.g. Project done under an Individua department approved remediation)? 	tural property as defined O Yes O No coverage under the General al SPDES Permit, or O Yes O No					
6. Is this property owned by a state authorit government?	y, state agency or local \bigcirc Yes \bigcirc No					
7. In accordance with the larger common plan of development or sale, enter the total project site acreage, the acreage to be disturbed and the future impervious area (acreage)within the disturbed area. Round to the nearest tenth of an acre. Total Site Acreage To Existing Impervious Future Impervious Acreage Be Disturbed Area Within Disturbed Area Within Disturbed Impervious Impervious Impervious Acreage Impervious						
8. Do you plan to disturb more than 5 acres o	of soil at any one time? \bigcirc Yes \bigcirc No					
9. Indicate the percentage of each Hydrologic A B B 8	Soil Group(HSG) at the site.					

10. Is this a phased project?

11. Enter the planned start and end dates of the disturbance activities. $f(x) = \frac{1}{2} \int \frac{1}{2} $	End Date / -
12. Identify the nearest, <u>natural</u> , surface wa runoff will discharge.	terbody(ies) to which construction site
Name	
12a. Type of waterbody identified in Question 12?	
\bigcirc Wetland / State Jurisdiction On Site (Answer	wer 12b)
\bigcirc Wetland / State Jurisdiction Off Site	
\bigcirc Wetland / Federal Jurisdiction On Site (An	nswer 12b)
\bigcirc Wetland / Federal Jurisdiction Off Site	
🔿 Stream / Creek On Site	
🔿 Stream / Creek Off Site	
O River On Site	
\bigcirc River Off Site	12b. How was the wetland identified?
○ Lake On Site	○ Regulatory Map
○ Lake Off Site	○ Delineated by Consultant
\bigcirc Other Type On Site	\bigcirc Delineated by Army Corps of Engineers
O Other Type Off Site	O Other (identify)

13. Has the surface waterbody(ies) in question 12 been identified as a \bigcirc Yes \bigcirc No 303(d) segment in Appendix E of GP-0-10-001?

14. Appe	Is endi	this x C (project of GP-0-1	located L0-001?	in	one	of	the	Watersheds	identified	in	\bigcirc Yes	\bigcirc No

15. Is the project located in one of the watershed areas		
associated with AA and AA-S classified waters? If no,	\bigcirc Yes	\bigcirc No
skip question 16.		

3151273035
<pre>16. Does this construction activity disturb land with no existing impervious cover and where the Soil Slope Phase is identified as an E or F on the USDA Soil Survey? If Yes, what is the acreage to be disturbed? If Yes, what is the acreage to be disturbed?</pre>
17. Will the project disturb soils within a State regulated wetland or the protected 100 foot adjacent area? \bigcirc Yes \bigcirc No
18. Does the site runoff enter a separate storm sewer system (including roadside drains, swales, ditches, culverts, etc)? O Yes O No O Unknown (If No, skip question 19)
19. What is the name of the municipality/entity that owns the separate storm sewer system?
20. Does any runoff from the site enter a sewer classified as a Combined Sewer? \bigcirc Yes \bigcirc No \bigcirc Unknown
21. Has the required Erosion and Sediment Control component of the SWPPP been developed in conformance with the current NYS Standards O Yes O No and Specifications for Erosion and Sediment Control (aka Blue Book) ?
22. Does this construction activity require the development of a SWPPP that includes Water Quality and Quantity Control components (Post-Construction Stormwater Management Practices) (If No, skip questions 23 and 27-35)
23. Have the Water Quality and Quantity Control components of the SWPPP been developed in comformance with the current NYS Stormwater Management \bigcirc Yes \bigcirc No Design Manual ?

3663273033
24. The Stormwater Pollution Prevention Plan (SWPPP) was prepared by:
O Professional Engineer (P.E.)
\bigcirc Soil and Water Conservation District (SWCD)
O Registered Landscape Architect (R.L.A)
\bigcirc Certified Professional in Erosion and Sediment Control (CPESC)
O Owner/Operator
Contact Name (Last, Space, First)
Mailing Address
State Zip
Phone Fax
Email

SWPPP Preparer Certification

I hereby certify that the Stormwater Pollution Prevention Plan (SWPPP) for this project has been prepared in accordance with the terms and conditions of the GP-0-10-001. Furthermore, I understand that certifying false, incorrect or inaccurate information is a violation of this permit and the laws of the State of New York and could subject me to criminal, civil and/or administrative proceedings.

Fi	rst	= N	Jam	e									MI
La	st	Na	ame										
]
	Sig	gna	atu	re				-		_	 		1
													Date

25. Has a construction sequence schedule for the planned management $$\odot$ Yes O No$

26. Select **all** of the erosion and sediment control practices that will be employed on the project site:

Temporary Structural

- \bigcirc Check Dams
- Construction Road Stabilization
- \bigcirc Dust Control
- \bigcirc Earth Dike
- \bigcirc Level Spreader
- Perimeter Dike/Swale
- \bigcirc Pipe Slope Drain
- \bigcirc Portable Sediment Tank
- \bigcirc Rock Dam
- \bigcirc Sediment Basin
- \bigcirc Sediment Traps
- \bigcirc Silt Fence
- \bigcirc Stabilized Construction Entrance
- \bigcirc Storm Drain Inlet Protection
- Straw/Hay Bale Dike
- Temporary Access Waterway Crossing
- \bigcirc Temporary Stormdrain Diversion
- \bigcirc Temporary Swale
- \bigcirc Turbidity Curtain
- \bigcirc Water bars

Biotechnical

- \bigcirc Brush Matting
- \bigcirc Wattling

Other

Vegetative Measures

- Brush Matting
- \bigcirc Dune Stabilization
- \bigcirc Grassed Waterway
- \bigcirc Mulching
- \bigcirc Protecting Vegetation
- Recreation Area Improvement
- \bigcirc Seeding
- \bigcirc Sodding
- Straw/Hay Bale Dike
- \bigcirc Streambank Protection
- \bigcirc Temporary Swale
- \bigcirc Topsoiling
- \bigcirc Vegetating Waterways

Permanent Structural

- \bigcirc Debris Basin
- \bigcirc Diversion
- \bigcirc Grade Stabilization Structure
- \bigcirc Land Grading
- Lined Waterway (Rock)
- Paved Channel (Concrete)
- \bigcirc Paved Flume
- Retaining Wall
- Riprap Slope Protection
- \bigcirc Rock Outlet Protection
- \bigcirc Streambank Protection

	_																			
				-			-			-										

Post-Construction Stormwater Management Practices 27. Indicate all Stormwater Management Practice(s) that will be installed/constructed on this site: Ponds Wetlands O Micropool Extended Detention (P-1) ○ Shallow Wetland (W-1) ○ Wet Pond (P-2) ○ Extended Detention Wetland (W-2) ○ Wet Extended Detention (P-3) ○ Pond/Wetland System (W-3) ○ Multiple Pond System (P-4) ○ Pocket Wetland (W-4) ○ Pocket Pond (P-5) Infiltration ○ Infiltration Trench (I-1) Filtering ○ Surface Sand Filter (F-1) ○ Infiltration Basin (I-2) ○ Underground Sand Filter (F-2) ○ Dry Well (I-3) ○ Perimeter Sand Filter (F-3) ○ Underground Infiltration System ○ Organic Filter (F-4) Open Channels ○ Bioretention (F-5) ○ Dry Swale (0-1) \bigcirc Other \bigcirc Wet Swale (0-2) Verified Proprietary Practice Alternative Practice ○ Rain Garden ○ Hydrodynamic \bigcirc Cistern ○ Wet Vault \bigcirc Green Roof ○ Media Filter ○ Stormwater Planters O Permeable Paving (Modular Block)

9312273030

<u>Important</u>: Completion of Questions 27-35 is not required if response to Question 22 is No.

Water Quality and Quantity Control

28. Describe other stormwater management practices not listed above or explain any deviations from the technical standards.

 29. Has a long term Operation and Maintenance Plan for the post-construction stormwater management practice(s) been developed?
 Yes O No

 If Yes, Identify the entity responsible for the long term Operation and Maintenance
 Image: Comparison of the long term Operation and Maintenance

 Image: Comparison of the long term Operation and Maintenance
 Image: Comparison of the long term Operation and Maintenance

 Image: Comparison of the long term Operation and Maintenance
 Image: Comparison of the long term Operation and Maintenance

 Image: Comparison of the long term Operation and Maintenance
 Image: Comparison of the long term Operation and Maintenance

 Image: Comparison of the long term Operation and Maintenance
 Image: Comparison of the long term Operation and Maintenance

 Image: Comparison of the long term Operation and Maintenance
 Image: Comparison of the long term Operation and Maintenance

 Image: Comparison of the long term Operation and Maintenance
 Image: Comparison of the long term Operation and Maintenance

 Image: Comparison of the long term Operation and Maintenance
 Image: Comparison of the long term Operation and Maintenance

 Image: Comparison of the long term Operation and Maintenance
 Image: Comparison of the long term Operation and Maintenance

 Image: Comparison of term Operation of term Operate of term Operation of term Operation of term Operation

30. Provide the total water quality volume required and the total provided for the site.

WQv Required WQv Provided 	
31. Provide the following Unified Stormwater Sizing Criteria for the site. <u>Total Channel Protection Storage Volume (CPv)</u> - Extended detention of post-developed 1 year, 24 hour storm event	
CPv Required CPv Provided	
O Site discharges directly to fourth order stream or larger	'n
Pre-Development Post-development CFS CFS CFS CFS	m
Pre-Development Post-development CFS	
O Site discharges directly to fourth order stream or larger O Downstream analysis reveals that flood control is not required)
<u>IMPORTANT</u> : For questions 31 and 32, impervious area should be calculated considering the project site and all offsite areas that drain to the post-construction stormwater management practice(s). (Total Drainage Area = Project Site + Offsite areas)	B
32. Pre-Construction Impervious Area - As a percent of the <u>Total</u> <u>Drainage Area</u> enter the percentage of the existing impervious areas before construction begins.	
33. Post-Construction Impervious Area - As a percent of the <u>Total</u> <u>Drainage Area</u> , enter the percentage of the future impervious areas that will be created/remain on the site after completion of construction.	
34. Indicate the total number of post-construction stormwater management practices to be installed/constructed.	
35. Provide the total number of stormwater discharge points from the site. (include discharges to either surface waters or to separate storm sewer systems)	

2514273037

36. Identify other DEC permits that	t are required for this project. DEC Permits								
\bigcirc Air Pollution Control	ONavigable Waters Protection / Article 15								
\bigcirc Coastal Erosion	○ Water Quality Certificate								
\bigcirc Hazardous Waste	○ Dam Safety								
\bigcirc Long Island Wells	○ Water Supply								
\bigcirc Mined Land Reclamation	\bigcirc Freshwater Wetlands/Article 24								
\bigcirc Other SPDES	\bigcirc Tidal Wetlands								
\bigcirc Solid Waste	\bigcirc Wild, Scenic and Recreational Rivers								
\bigcirc None	\bigcirc Stream Bed or Bank Protection / Article 15								
0 Other									
37. Does this project require a US Permit? If Yes, Indicate Size of Impact.	Army Corps of Engineers Wetland O Yes O No								
38. Is this project subject to the traditional land use control MS4? (If No, skip question 39)	requirements of a regulated, \bigcirc Yes \bigcirc No								
39. Has the "MS4 SWPPP Acceptance" executive officer or ranking elect this NOI?	form been signed by the principal official and submitted along with \bigcirc Yes \bigcirc No								
40. If this NOI is being submitted for the purpose of continuing coverage under a general permit for stormwater runoff from construction activities, please indicate the former SPDES number assigned.									
Owner/Operator Certification I have read or been advised of the permit conditions and believe that I understand them. I also understand that, under the terms of the permit, there may be reporting requirements. I hereby certify that this document and the corresponding documents were prepared under my direction or supervision. I am aware that there are significant penalties for submitting false information, including the possibility of fine and imprisonment for knowing violations. I further understand that coverage under the general permit will be identified in the acknowledgment that I will receive as a result of submitting this NOI and can be as long as sixty (60) business days as provided for in the general permit. I also understand that, by submitting this NOI, I am acknowledging that the SWPPP has been developed and will be implemented as the first element of construction, and agreeing to comply with all the terms and conditions of the general permit for which this NOI is being submitted.									
Print First Name									
Owner/Operator Signature									

APPENDIX B NEW YORK CITY DEPARTMENT OF ENVIRONMENTAL PROTECTION APPLICATION FOR REVIEW AND APPROVAL OF STORMWATER POLLUTION PREVENTION PLANS

Project Name: Windham Mountain Sporting Club, Phase 1

Applicant/Designa	ated representative:	Design Professional:
Name: Tuck Ea	astside Partners, L.P.	Name: The LA Group, P.C.
Address: <u>34 Sa</u> Darier	lisbury Road	Address: 40 Long Alley
Phone: 203-25 e-mail:	8-6747	Phone: <u>518-587-8100</u> e-mail:
Project Location:	Address: South Street	95.00-1-28.1, 95.00-1-47.111, Tax Map Parcel: 95.0-1-47.2, 95.0-1-47.12, 95.0-1-47.112
	Town: Windham Subdivision name: Reservoir Basin: Schoharie	County: Greene Lot number: N/A

Submissions must include plans and supporting documents.

All applications must include narratives, plans, details, and specifications providing the following information:

- Project Description
- Description of Existing Conditions
- Description of Proposed Conditions
- · Operations and Maintenance Plans

General Requirements for submission are set forth in Section 3 of the accompanying Guide. Supplemental required information for each type of approval is described in Section 4. Also see Appendix D for a checklist of items to be included in the submission. For additional detail, please see Appendixes E and F of this document, Sections 18-23 and 18-39 of the Watershed Regulations, and Part III of the New York State Department of Environmental Conservation (DEC) SPDES General Permit for Stormwater Discharges from Construction Activity, GP-0-10-001 ("General Permit").

Notice of Cost-Sharing Funds

Certain costs incurred in the design, implementation, and maintenance of Stormwater Pollution Prevention Plans may be eligible for DEP funding. Refer to Section 5.0 and Appendix H of the accompanying Guide.

I believe this application to be complete and in compliance with the Watershed Regulations.

(Signature)

(Filing Date)

David Carr, Jr.

(Print Name)

Exhibit B

Stormwater Management Report Hydro CAD for All Three Phases of this Project

40 Long Alley Saratoga Springs New York 12866 P 518/587-8100 F 518/587-0180 www.thelagroup.com

Stormwater

Management Design Report

for:

The Windham Mountain Sporting Club

Trailside Road, Town of Windham Greene County, New York

Applicant:

Tuck Eastside Partners, L.P. 34 Salisbury Road Darien, CT 06820

Prepared By:

The LA Group Landscape Architecture and Engineering, P.C. 40 Long Alley Saratoga Springs, NY 12866

November 2011

Table of Contents

1.0	INTRODUCTION	4
2.0	PROJECT LOCATION	4
3.0	PROJECT DESCRIPTION	5
4.0	EXISTING SITE CONDITIONS	6
5.0	METHODOLOGY	. 10
6.0	PRE-DEVELOPMENT MAPPING AND ANALYSIS	. 11
7.0	STORMWATER MANAGEMENT PLAN AND DESIGN PROCESS	. 13
8.0	POST-CONSTRUCTION MAINTENANCE REQUIREMENTS	. 27
9.0	CONCLUSION	. 28
10.0	REFERENCES	. 28

TABLES

1.	Runoff Reduction and DEC Water Quality Volume Summary	21
2.	NYCDEP Water Quality Volume Summary	22
3.	Channel Protection Volume Plug Flow Detention Time	22
4.	Rate and Volume Summary at Design Points	24

APPENDICES

A. Figures

- B. Detailed Calculations
- C. HydroCAD Data Existing
- D. HydroCAD Data Proposed
- E. Soil Test Pit Logs

FIGURES

- 1. State Location Map
- 2. Regional Location Map

- 3. West of Hudson Watershed Map
- 4. NYSDEC Mapped Streams

1.0 INTRODUCTION

This report describes the proposed stormwater management plan for the Windham Mountain Sporting Club,("WMSC", or "the Project"), and provides the criteria, methodologies and assumptions used to form the basis of the design. The WMSC is a proposed private sporting club development that will offer its members multiple recreational and amenity offerings as well as a variety of residential offerings including single-family homes, duplexes, townhouses and condominiums. The Project is proposed on 464.6 acres of land in the Town of Windham, NY, south of South Street and east of the Windham Mountain Ski Area.

The goal of the proposed stormwater management plan is to incorporate stormwater management as part of the overall project design. This includes protecting the site's natural resources and environmentally sensitive areas, minimizing development impacts and impervious areas by using effective site planning principles, and incorporating design features that effectively manage stormwater runoff such as, bioretention areas, stormwater management ponds and surface conveyances such as dry swales. The plan utilizes these elements in order to achieve the primary goal of meeting water quality objectives, while at the same time mitigating potential impacts associated with increased stormwater runoff. Specifically, the objectives of the stormwater management plan are to enhance the quality of stormwater runoff to prevent water quality degradation, and preserve water quality in receiving water bodies within the New York City West of Hudson watershed, promote infiltration and evapotranspiration, and to prevent increased runoff from developed land to reduce the potential for flooding, erosion and flood damage.

The management plan incorporates the design standards established in The New York State Department of Environmental Conservation Stormwater Management Design Manual, (SMDM), (August, 2010), and the Rules and Regulations for the Protection from Contamination, Degradation, and Pollution of the New York City Water Supply and its sources, 10 NYCRR §128-3.9.

2.0 PROJECT LOCATION

The WMSC is proposed in the Town of Windham which is located in central Greene County, in New York State. More specifically, the WMSC is proposed on 464.6 acres located south of South Street (Greene County Route (CR) 12) and to the east of Windham Mountain ski area. See Figures 1-1, State Location Map, and 1-2, Regional Location Map in Appendix A.

The project site is located within a region known as the Catskill Park. The Catskill Park is an area of approximately 1,100 square miles that is a mix of privately owned lands and publicly owned lands. The publicly owned lands in the Catskill Park include NYS Forest Preserve lands which comprise about 41% of the Park, and New York City owned watershed lands which comprise approximately 6% of the Park.

The project site is also located in the New York City Watershed, more specially, the West of Hudson Watershed. Figure 1-5, West of Hudson Watershed, shows the extent of the watershed and the location of the project site.

3.0 PROJECT DESCRIPTION

The WMSC is a proposed private sporting club development that will offer its members multiple recreational and amenity offerings as well as a variety of residential offerings including single-family homes, duplexes, townhouses and condominiums. Amenities include a proposed Member's Lodge and Clubhouse with condominiums, underground parking and a restaurant and spa; a Wellness Center, which will offer recreational activities; and the East Base Lodge, with condominiums, a grill/restaurant, and underground and surface parking. There will also be two transport ski lifts that provide access from the Member's Lodge and East Base Lodge to the Windham Mountain Ski Area, however no ski trails are proposed. All the roads, sewer and water utilities and stormwater management infrastructure will be privately owned and maintained. Refer to the Project Master Plan, sheet L1.01 in the DEIS plan set, for the overall Project location and design.

More specifically, the project includes the following:

- 143 Single Family Homes
- 24 Duplex Units
- 54 Townhome Units
- 81 Condominium Units
- Members Lodge and Clubhouse, that includes
 - o Private Lounge
 - o Restaurant
 - o Bar
 - o Kitchen
 - o Ski Storage
 - Full Service Spa
 - o Condominiums
 - Underground Parking
 - o Adjacent Ski Lift "A" connecting to Windham Mountain
- Wellness Center, that includes
 - Tennis Courts

- o Swimming Pool
- o Indoor Exercise Area
- Climbing Wall
- o Squash Courts
- o Aerobics/Pilates Area
- o Surface Parking
- East Village Lodge
 - o Grill/Restaurant
 - Heated Pool & Hot Tub
 - o Weight/Exercise Room
 - o Locker Room
 - Underground and Surface Parking
 - o Adjacent Ski Lift "B" connecting to Windham Mountain
- Privately constructed, owned and maintained project roads with project access from Trailside Road
- Privately constructed, owned and maintained central water and sewer collection systems with connection to existing Town of Windham systems in South Street.

The project residential components and amenities are proposed to be built in 3 phases with an anticipated timeframe for full project build out of approximately 15 years. (See Phasing Plan, sheet L-2.04 in the DEIS plan set).

4.0 EXISTING SITE CONDITIONS

Vegetation

The vegetation of the project site consists mainly of upland forests composed of sugar maple with smaller amounts of other hardwood trees. Smaller areas are covered with forest dominated by eastern hemlock and other trees. It is evident that these forests have been managed on a regular basis, for log skidder trails are found throughout, and the forest canopy is somewhat more open than would be expected in a forest allowed to grow naturally.

Evidence of previous agricultural activity on the site is present in the form of non-forested areas that vary from fields covered mainly with grasses and broadleaved herbs to areas dominated by shrubs and tree saplings. These areas were apparently cleared of forest to create pastures or hayfields, were later abandoned, and are in the process of ecological succession that will re-establish forest. Reportedly, such open areas in the eastern part of the property were once used for grazing sheep. Refer to the Existing Subcatchment Maps, sheet L5.01 in the DEIS plan set, for surveyed vegetation and cover types.

Soils

An on-site soil survey was performed on the WMSC property by a professional soil scientist in the fall of 2008. The soil survey included the excavation of a number of test pits on the property as well as shovel testing verification. Additional test pit information was collected in 2010 to determine soil conditions in areas considered for stormwater management practices. Soils mapping and test pit locations for the project site is shown on the Soil Inventory Mapping, sheet L2.01in the DEIS plan set, and test pit data is summarized in Appendix E of this report.

The WMSC property is mostly shallow and moderately deep, very stony soils formed in glacial till soils derived from red shale and sand stone. There are some areas of deep glacial till soils that have a very firm fragipan. (A fragipan is a dense, natural subsurface layer of hard soil with relatively slow permeability to water, mostly because of its extreme density or compactness rather than its high clay content or cementation.) At the base of the mountain in a few areas there are some very gravelly glacial outwash soils and a few areas of the deep till without a fragipan.

The soil identification legend for the WMSC property is based on the published Soil Survey Report for Greene County issued in 1993. The published soil survey was prepared by the USDA Natural Resources Conservation Service and most of the field mapping was done from approximately 1975 to 1985.

All of the soils at the WMSC property fall into the "frigid" soil temperature regime. Soils in frigid temperature regimes have a shorter growing season then soils at lower elevations.

Most of the soils in the higher elevations of the Catskill Mountains is derived from red fine textured shale bedrock and the glacial till derived from the shale tends to be reddish colored and fine textured.

The following soil series have been mapped on the WMSC site.

Halcott soils are well drained shallow (<20 inches deep to bedrock) soils formed from red shale parent material. **Vly** soils are similar to Halcott soils but are moderately deep (20 to 40 inches deep over bedrock). On steep slopes both soils may have significant component of exposed bedrock outcrops.

Lewbeach soils are deep well drained soils formed in fine textured reddish brown glacial till. Lewbeach soils have a very firm fragipan typically 25 to 40 inches below the surface. **Willowemoc** soils are moderately well drained soil also formed in fine textured glacial till, typically on more gentle slopes with the very firm fragipan at 18 to 25 inches below the surface.

At the base of steep slopes, especially the very steep slopes with ledges and rock outcrops there are some area of very deep, well drained soils that don't have a fragipan. These **Elka** soils typically have a large component for rock fragments mixed with the fine textured glacial till and tallus material.

Well drained **Tunkhannock** soils are at the base of the mountain and extend north to South Street and across to the golf course and continue to the edge of the Batavia Kill.

Lineal polygons on the soil map are areas that have been cleared and graded for access roads either for past agricultural or logging activities on the property. The soils mapped in those lineal polygons are most likely disturbed phases of the named soil.

The wetlands are complex areas of deep, somewhat poorly drained to poorly drained **Onteora** and very poorly drained **Suny** soils on nearly level to moderate slopes. Wetland soils with bedrock with 40 inches are poorly or very poorly drained **Tor** soils.

Based on the extensive soil investigations, mapping and test pit confirmations, the silt/clay soils, fragipans, shallow depths to bedrock and seasonally high groundwater are limiting factors in the design of stormwater management facilities.

Hydrology

The project site is located in the West of Hudson portion of the New York City watershed. Figure 1-5 in Appendix A, West of Hudson Watershed Map, is a map showing the site within the watershed. The project site is also within the Schoharie Reservoir Drainage. On a more local scale, the WMSC property lies within the watershed of the Batavia Kill, which is a tributary of Schoharie Creek. Schoharie Creek is a tributary of the Mohawk River, a traditional navigable waterway.

The highpoint of the project site is along the southern property boundary. From here runoff either drains onto the property or flows north, or away from the property and flows south. There is a ridge in the center of the property which divides the larger watershed into two areas; the eastern portion that drains to the northeast and the western portion that drains to the northwest. This dividing "ridge line" is best described as the subcatchment divide between subcatchments 2 and 3, and 2b and 3, as shown on the Existing Subcatchment Diagram, (sheet L-5.01), in the DEIS plan set. All existing drainage patterns on the site and adjacent areas are also illustrated on the Existing Subcatchment Diagram, (sheets JD1-JD10), and the NYCDEP Watercourse Delineation Maps, (Sheets JD1-JD3), in the DEIS plan set.

In the central portion of the northeast drainage area, most sheet flow runs overland about halfway down the project site, and then collects through a series of ephemeral and intermittent drainages in a broad wetland complex in the northeast corner, at Design Point 1. From here it leaves the site in a perennial drainage channel, (channel S-7 on the Watercourse Delineation Maps), eventually crosses NYS Route 296 and reaches the Batavia Kill. The areas of the project site north and south of this central drainage area generally sheet flow to small intermittent channels located close to the northeastern and eastern property boundaries, (Design Points 2 and 12, channels S-6 and S-12 on the Watercourse Delineation Maps). Both of these small drainages also eventually cross NYS Route 296 and flow to the Batavia Kill. There are also two much smaller subcatchments adjacent to Design Point 2, that sheet flow across the property line at Design Points 2a and 2b respectively.

In the northwest drainage area, sheet flow primarily drains to three separate areas. The first is a perennial stream located on the western edge of the site, (channel S-1 on the Watercourse Delineation Maps), that drains to Design Point 11. This is the only stream on the project site that has been mapped classified by

NYSDEC, assigned a class and standards of C (6 NYCRR §879.6, item 231; waters index no. H-240-82-117-12a). Figure 3-7, NYSDEC Mapped Streams, shows the location of this stream relative to the project site, the surrounding area, and the Batavia Kill. Water from the upper portions of the western half of the property above the 'Wanderer' ski trail, runs overland and collects in a manmade ditch on the upper side of Wanderer, where it is either conveyed through water bars across the trail or continues to a pair of 72" culverts that cross under the ski trail. These 72" culverts also convey channelized flow from above. Flow drains from the culverts into a perennial stream channel with a boulder / rocky bed that continues to flow northwest. Runoff from the central part of the western half of the property sheet flows into small wetland pockets and watercourses where it then joins the perennial channel. From here the channel flows through an adjacent neighborhood to a large collection area before it passes under Trailside Road in a 60-inch culvert and continues to the property boundary, (Design point 11), under South Street and eventually to the Batavia Kill.

The second area drains to Design Point 8. This drainage area collects sheet flow from the center of the mid-lower portions of the western half of the property, where it collects into an intermittent drainage that runs along a portion of an existing logging road, before leaving the project site through a 24" culvert, (Design Point 8), at the northern property boundary. (Channel S-3 on the Watercourse Delineation Maps). From here the watercourse flows to a roadside ditch along South Street to a culvert under the road and eventually to the Batavia Kill.

The third area is the generally the middle and eastern portion of the northwest drainage area, draining to Design Point 5. Here, runoff sheet flows to the upper section of the main existing logging road (Upper Panorama Lane), where it is collected in a roadside ditch and conveyed across the road via water bars. It then sheet flows to the lower section of Upper Panorama where it is again collected in a roadside ditch and conveyed across the road via water bars, and sheet flows off the property. Runoff is then intercepted again by a roadside ditch along lower Panorama, which drains to a culvert under the road, (Design point 5), and into a channel that flows to the roadside ditch along South Street.

The remaining Design Points 3, 4 6, 7 and 9, collect runoff from smaller, more specific drainage areas on this portion of the site.

All of the primary perennial and intermittent drainages are rocky, cobbly mountain streams that convey storm flows and seasonal flows. Their locations and contributing watersheds are further illustrated on the Existing Subcatchment Diagram, sheet L5.01 in the DEIS plan set.

Topography

The elevation of the WMSC property ranges from a low of 1600 feet near the intersection of Panorama Lane and South Street to a high of 3060 feet near the top of Windham Mountain's east peak express quad lift. For reference, other elevations include 1660 feet where the property abuts the open field (Cammer property) to the north, the former meadow in the northeast corner of the property is around 2240 feet, the existing lean to on the property is at 2330 feet, and the bend in the Wanderer ski trail is at an elevation of 2630 feet.

Topography on the property can be considered typical of hillside areas in the Central Catskills – a series of alternating steeper slopes and flatter benches. This pattern is evidenced on the slope map of the

WMSC property (Sheet L2.02 in the DEIS plan set.). Approximately 52% of the site is 25% slopes or greater, while 48% of the property has slopes less than 25%.

Resource Mapping

Detailed mapping of existing conditions and environmental resources is provided in the DEIS project plan set as noted in the sections above.

5.0 METHODOLOGY

The Stormwater Management Plan was developed in accordance with the design standards established in The NYSDEC New York State Stormwater Management Design Manual, August, 2010 (SMDM), and the Rules and Regulations for the Protection from Contamination, Degradation, and Pollution of the New York City Water Supply and its sources, 10 NYCRR §128-3.9.

Stormwater Model and Analysis

Stormwater modeling was performed using the computer program HydroCAD (version 9.10) produced by HydroCAD Software Solutions, LLC, and all stormwater calculations were completed utilizing the SCS TR-20 and , TR-55 methods, widely accepted engineering practices, and recommended procedures listed in the SMDM.

Storm Events Analyzed

The Type II storm is synthetic rainfall distribution that SCS has mapped for the project site, based on available National Weather Service duration-frequency data. Type II represents the most intense, short duration rainfall of the four different distributions, and is the design storm utilized in the stormwater model.

The return interval storm events analyzed during the development of the plan are those specified in the August 2010 SMDM.

The storm events analyzed are:

- 1. The 90% rainfall event totaling **1.1** inches as per Figure 4.1 of the SMDM, used as the basis for the DEC **Water Quality Volume** treatment goals.
- The 1-Year, Type II Design Storm having a 24-hour rainfall total of 3.0 inches as per Figure 4.4 of the Manual, used as the basis for Channel Protection Volume extended detention requirements. This storm event is also used to meet NYC DEP Water Quality Volume treatment goals.
- 3. The 10-Year, Type II Design Storm having a 24-hour rainfall total of **5.0** inches, as per Figure 4.5 of the Manual, used as the basis for meeting the **Overbank Flood Control** Criteria.

The 100-Year, Type II Design Storm having a 24-hour rainfall total of 7.5 inches as per Figure 4.6 of the Manual, used as the basis for meeting the Extreme Flood Control criteria.

Design Process

Once an environmental resources analysis of the project site was complete, the stormwater management design process began with the identification of design points, typically located at points of confluence where flows can be easily measured, locations that are down gradient of proposed development, and as close as possible to the areas of proposed development. These were used to develop the subcatchment mapping, and ultimately to compare the rate and volume of runoff in the pre-development and post-development conditions. Once the subcatchment areas were defined, data was collected to determine both quantity and quality requirements. Using this data, the design was then developed in accordance with the 5-step process outlined in the SMDM in order to meet the required goals.

The August 2010 SMDM includes a five-step process that integrates site planning and stormwater management, and requires the use of green infrastructure practices to treat stormwater. The five steps include;

- 1. Site planning to preserve natural features and reduce impervious cover,
- 2. Calculation of the initial Water Quality Volume for the site,
- 3. Providing Runoff Reduction by incorporation of green infrastructure techniques and standard stormwater management practices (SMP's) with Runoff Reduction Volume (RRv) capacity,
- 4. Using standard SMP's where applicable, to treat the portion of water quality volume (WQv) not addressed by green infrastructure techniques and standard SMP's with RRv capacity, and
- 5. Design of volume and peak rate control practices where required.

This Project has been designed and developed in conformance with the process listed above. Specific aspects of the design are included in more detail in the body of the report below.

6.0 PRE-DEVELOPMENT MAPPING AND ANALYSIS

In order to establish a baseline from which design goals can be developed, Design Points are selected based on analysis of existing conditions including wetland and watercourse mapping, hydrology, topography, and field investigations. The Design Points are listed below, and shown on the Existing Subcatchment Plans, sheet L5.01 in the DEIS plan set.

Design Point	Structure Type	Location
1	Existing Stream Channel	Eastern Property Corner
2	Existing Stream Channel	Just West of DP1
2A	Sheet Flow @ Property Line	Between DP1 and DP2
2B	Sheet Flow @ Property Line	West of DP2
3	Existing Drainage Ditch	At existing switchback, northern property line (P.L.)
4	Existing Drainage Ditch	Just west of existing Switchback, northern P.L.
5	24" Culvert	Panorama Lane
		Northern P.L. between Panorama Ln. and Trailside
6	Sheet Flow @ Property Line	Rd.
		Northern P.L. between Panorama Ln. and Trailside
7	Sheet Flow @ Property Line	Rd.
8	Existing Stream Channel	Northern P.L., just east of Trailside Rd.
9	Existing Drainage Ditch	Ditch along eastern edge of Trailside Rd.
10	Not Used	Not Used
11	Existing Stream Channel	West of Trailside Rd., North of Two Trees Ln.
12	Existing Stream Channel	Eastern P.L., south of DP1

Project Design Points

Once established, initial subcatchment mapping was developed and additional field verification was made as necessary to confirm detailed information. Individual subcatchments were then developed in more detail based on field observation and mapped data. The individual subcatchments include the following.

Cover Types

Areas of cover type are from the project site survey and vegetation community type mapping derived from field observation. These cover types were used to help determine runoff coefficients, and typically include impervious and vegetated areas.

Soils

Soils types and hydrologic soil groups are identified based on-site moderate intensity, secondorder soils mapping and used in conjunction with the cover types to help determine runoff coefficients. Based on the collected soil data, Hydrologic Soil Group C is the primary soil type used throughout the existing analysis, with a small portion of Hydrologic Soil Group D in the wetland areas.

Time of Concentration Flow Paths

Time of concentration flow paths will begin with a sheet flow segment, transitioning to shallow concentrated flow and channel flow where these conditions exist. Specific flow paths and channel conditions are based on existing conditions mapping, survey and field observation.

The site is divided up into 18 subcatchments that total 479 acres. There is a small portion of off-site drainage area that is included adjacent to the western property boundary, but most of the watershed is located within the project site. The on-site watershed is primarily wooded and meadow cover types, on Hydrologic Group C soils, with some wetland areas and Hydrologic Group D soils. As a result a 'Woods/Grass combination' with a CN of 72 was utilized for a majority of the project site. There are also several areas within the project site where bedrock is exposed at the surface or present as steeper rock outcroppings. Even though the bedrock would be considered existing impervious areas, as a conservative measure, it is assumed to be a woods/grass combination in the existing HydroCAD modeling.

The existing subcatchments and their characteristics were entered into the HydoCAD model in order to create the pre-development condition that can be used as a baseline comparison for the post-development model. The existing peak discharge rates and volumes at each Design Point for the 10 and 100-yr storm events are summarized in Table 4 later in the report. The WQv and 1-yr storm events are analyzed separately in Tables 1-3, also found later in the report.

7.0 STORMWATER MANAGEMENT PLAN AND DESIGN PROCESS

The Plan:

The proposed project incorporates stormwater management as part of the overall project design. This includes protecting the site's natural resources and environmentally sensitive areas, minimizing development impacts and impervious areas by using effective site planning principles, and incorporating design features that effectively manage stormwater runoff such as green infrastructure practices. The plan utilizes these elements in order to achieve the primary goal of meeting water quality objectives, while at the same time mitigating potential impacts associated with increased stormwater runoff. Specifically, the objectives of the stormwater management plan are to:

- Enhance the quality of stormwater runoff to prevent water quality degradation, and preserve water quality in receiving water bodies within the New York City West of Hudson watershed,
- Promote infiltration and evapotranspiration,
- Prevent increased runoff from developed land to reduce the potential for flooding, erosion and flood damage.

The plan is developed in accordance with the NYSDEC design criteria and process outlined in Section 5 above, and 10 NYCRR §128-3.9. Specific steps are described in detail later in the report. In general, stormwater is conveyed through a series of stabilized rip rap and grassed swales, storm pipes, culverts and in some cases sheet flow. Open conveyances such as roadside swales are utilized as much as possible, where it is feasible and the grade allows. Stormwater is collected, treated and attenuated in catch basins, micropool extended detention ponds, bioretention areas and dry swales. Controlled release structures within the detention ponds regulate the rate at which stormwater is discharged. The existing soils and shallow depths to bedrock limit the ability to use infiltration for treatment, so underdrains are included in the Bioretention areas and Dry Swales.

Even though there are no direct discharges to trout waters, concerns relating to thermal loading were considered in the selection of stormwater management practices due to the site's location within the drainage of the Batavia Kill. This is one of the reasons Micropool Extended Detention Ponds are used throughout the plan instead of other stormwater ponds, (such as Wet Ponds), which could potentially result in increased stream temperatures. Using Bioretention and Dry Swales also helps avoid thermal impacts, as it reduces the amount of stormwater that would be required to pond, and potentially warm, prior to being discharged. Even though 24 hours of extended detention of the 1 yr. storm event is required, using these practices and the Micropool Extended Detention Ponds minimize the potential for thermal loading.

Stormwater management devices will be vegetated with plant species adapted to survive in fluctuating hydrologic conditions, and all conveyances will have sufficient erosion protection including stone, rolled erosion control products and/or grasses. Treated stormwater will be discharged at controlled rates to stabilized swales and existing channels and drainage ways throughout the site. Existing hydrologic patterns that include stormwater runoff from areas located above the proposed development areas, are maintained to the maximum extent practicable. This is achieved by protecting existing watercourses and wetland areas, minimizing the amount of uphill run-off that is diverted away from their existing drainage areas, and allowing this runoff to bypass disturbed areas, and proposed stormwater management practices whenever possible.

By implementing these practices and creating positive drainage with effective site grading within each of the drainage areas, the proposed stormwater management systems are capable of minimizing erosion potential, treating stormwater runoff from developed project areas, and reducing post-development runoff rates from the 1, 10, and 100-year storm events.

Design Process:

As mentioned earlier, there is a five-step process that integrates site planning and stormwater management, and requires the use of green infrastructure practices to manage stormwater. The five steps outlined in the SMDM, (Site Planning to Preserve Natural Features, Water Quality Volume, Runoff Reduction Volume, Channel Protection Volume, and Overbank Flood and Extreme Flood Control), are discussed in the following sections.

Site Planning to Preserve Natural Features

As part of the overall design process for WMSC, the project considered site planning strategies that can be beneficial to a stormwater management plan. Some of these are listed in Table 3.1 in Chapter 3 of the SMDM. There are two categories, Preservation of Natural Resources and Reduction of Impervious Cover.

Preservation of Natural Resources includes:

- Preservation of Undisturbed Areas
- Preservation of Buffers
- Reduction of Clearing and Grading
- Locating Development in Less Sensitive Areas
- Open Space Design

Soil Restoration

Reduction of Impervious Cover includes:

- Roadway Reduction
- Sidewalk Reduction
- Driveway Reduction
- Cul-de-sac Reduction
- Building Footprint Reduction
- Parking Reduction

On a larger scale, the preservation of land is a primary design goal of the project, as the existing natural environment is one of the aspects that makes the project unique. The planning principles above help support this goal, and were included during the site design and concept refinement process. Based on the existing site conditions and natural resource analysis included in Section 4 above, areas that are more suitable for development were identified, along with natural areas that should be preserved. Development was then clustered in the more suitable areas, (such as the flatter plateaus within the topography), slopes steeper than 25% were avoided to the greatest extent practicable, and other natural resource areas such as wetland and streams were preserved. This allows for significant open space, made up of undeveloped natural areas which can support informal recreational activities such as hiking.

The buildings, being the largest project components, are located in the flattest areas and designed to fit into the topography, to reduce as much as possible the necessary clearing and grading. Roads were then strategically located to connect the developed areas, using the same principles of avoiding sensitive areas and minimizing grading as much as possible. There are several existing logging roads or 'jeep trails' within the site, and these existing corridors were re-used as much as possible, helping to further minimize disturbance. Potential impacts to wetlands and watercourses and their setbacks were also minimized by avoidance, spanning streams with bridges, and minimizing grading within buffer areas to the maximum extent practicable. Soils with high or even moderate capacity for infiltration do not exist on the site, and therefore were not a factor in the site design process. However, post-construction soil restoration is specified as part of the stormwater pollution prevention plan (SWPPP), in order to alleviate impacts relating to compaction around the development areas.

Overall the project as a whole would disturb up to about 141 acres out of 464 acres. This represents about 30% of the site. Approximately 323 acres, or 70% of the site, would remain undisturbed. These numbers can be considered worst case since they are based on vegetation being removed from most, if not all of the designated building envelope of each lot. This is not permitted by the Architectural Review Board (ARB), and the Design Guidelines for the project contain a number of conditions that limit the amount of lot clearing to only that area needed to construct the residences, and strongly encourage lot owners to minimize the removal of large massings of existing vegetation and minimize overall environmental intrusion on site. Professionally prepared individual grading/drainage plans and landscaping plans for each lot are required to be submitted by the lot owners and approved the Architectural Review Board to ensure adherence to the guidelines, and that the character and existing environment is preserved to the maximum extent practicable.

As part of the same planning process, impervious areas were also minimized. The paved road widths are limited to 20 feet, and cul-de-sacs are minimized while still allowing for emergency access. Both the Member's Lodge and East Base Lodge, the two largest buildings in the project, incorporate almost all of their parking underground, within the footprint of the building. This alone represents a reduction of approximately 1.3 acres of impervious surface. Impervious surfaces on the residential lots, including the allowable building footprints, are also purposefully limited in the Project Design Guidelines so that existing pervious areas are preserved as much as possible. Additionally, driveway widths for residential units are limited to between 12 and 14 feet for single driveways, and 16 feet for shared driveways. And, single family homes are placed as close to the road as possible to limit the driveway length.

Proposed Subcatchment Mapping

Subcatchment mapping of the proposed project area was developed based on the previously identified design points, the existing subcatchment mapping, and the proposed hydrologic drainage patterns within the project design. The same methodology used in the development of the existing subcatchment mapping with regards to cover types, soils and time of concentration flow paths, were used for the proposed subcatchment mapping.

Cover types in the proposed conditions include woodlands, meadow and wetlands in the undisturbed areas, lawn areas, roads and paving, and roof area. The 'Woods/Grass combination' with a CN of 72 was again used to model the undisturbed areas of the site. Since soil restoration is specified as part of the SWPPP, the proposed lawn areas are modeled with a CN of 74 based on the existing Hydrologic Soil Group C. Time of concentration flow paths are based on a combination of the existing topography and proposed grading, and sheet flow is limited to a distance of 100'.

The proposed watershed is divided into several subcatchments totaling approximately 479 acres. This is the same watershed area identified in the pre-development condition. In the proposed condition, the existing hydrology is maintained as much as possible by structuring the stormwater plan so that watershed areas that drain to a specific Design Point in the pre-development condition, primarily drain to the same Design Point in the post development plan.

The data referenced above is collected during the subcatchment mapping process and entered into the HydroCAD model to be used as part of the basis for the stormwater management design.

Water Quality Volume Calculations

The required water quality volume (WQv) was calculated for each drainage area contributing to a design point, based on the proposed design. The calculation was performed in accordance with the equation presented in Table 4.1 in Chapter 4 of the Manual, utilizing both the 1.1 inch storm event required by DEC, and the 3.0 inch storm event required by DEP. The resulting volumes determined the amount of treatment required, and were then used as the basis for the Runoff Reduction Volume calculation required by NYSDEC. A summary of the WQv required by drainage area is included in Tables 1 and 2 later in the report, and detailed supporting calculations can be found in the Water Quality Volume Calculation Table, in Appendix B.

As part of the above calculation, the percent of impervious area within each drainage area is also calculated. This is used not only to determine the WQv, but also to identify additional DEP treatment

requirements above and beyond what is required by DEC, in accordance with DEP's April 2010 updated regulations. Section 18-39(c)(6) of the April 2010 DEP regulations states that if impervious surfaces cover 20% or more of a drainage area for which stormwater practices are designed, runoff from that drainage area shall be treated by two different types of stormwater management practices in series. Based on our analysis of this DEP requirement and its relationship to DEC's SMDM requirements, it is our understanding that the calculation to determine the percentage of impervious area is performed at the design point which defines the contributing drainage area. There appears to be a potential correlation between the DEC design process and this DEP requirement, however the regulations do not include sufficient language or information about how the DEC and DEP calculations and process could integrate with one another.

Based on the above, all of the drainage areas in this project for which standard stormwater management practices are designed do not include impervious surfaces greater than 20% of the total drainage area. A summary of this information is in Table 2, DEP WQv summary, (later in the report) and supporting calculations can be found in the Water Quality Volume Calculation Table in Appendix B.

Runoff Reduction Volume Calculations (RRv)

Section 4.3 of the SMDM states the RRv requirement can be accomplished by application of on-site green infrastructure techniques, standard stormwater management practices with runoff reduction capacity, and good operation and maintenance. If by using these techniques the calculated RRv is greater than the required WQv, the RRv requirement is met. If the RRv is less than the required WQv, then the design must at a minimum, reduce a percentage of the runoff from impervious areas to be constructed on the site. The percent reduction is based on the Hydrologic Soil Group of the site, and is determined by the Specific Reduction Factor (S). The Specific Reduction Factor (S) for this project is 0.30, based on the 'C' soils present.

Green Infrastructure Practices

Listed below are the green infrastructure techniques and standard stormwater management practices with runoff reduction capacity acceptable for runoff reduction, as noted in Tables 3.2 and 3.5 of the SMDM, and an evaluation of its use within this project.

Conservation of Natural Areas

As described in the Site Planning section above, there are several natural areas throughout and around the project site that that have been protected. These natural areas are a critical component of the design, from both an environmental standpoint and an aesthetic standpoint. These areas provide context and setting for the Project as a whole, integrating it with the surrounding landscape. These preserved areas are clearly marked on the project plans, and designated for protection during construction as shown on the Erosion and Sediment Control Plans, sheets L3.01-3.05 in the DEIS plan set. While these areas are clearly protected and will be maintained by the Project, no conservation easements are planned.

In an effort to maintain the existing hydrology of the site as much as possible, runoff from these undisturbed areas is routed so it can bypass stormwater management practices (SMP's) as much as possible, before reaching the design points. These areas are included in the initial WQv calculation;

however, since they do not drain to a Stormwater management Practice (SMP), the areas are not included in the adjusted WQv calculations, and no area reductions are taken for the RRv calculation.

Sheetflow to Riparian Buffers/Filter Strips

This technique is not used for this project primarily due to the slope requirements and the maximum length of overland flow restrictions in the SMDM. Most portions of the project site where this technique could be applied are steeper than the allowable maximum contributing slope ranging from 6%-15% Additionally, as part of this plan, all runoff from developed areas is typically treated and attenuated prior to being discharged into these naturally occurring areas, so the natural hydrology can be maintained as much as possible.

Vegetated Open Swales

RRv is not applied for this technique due to site topography prohibiting the required design flows and flow depths, and exceeding slope requirements of 4 percent. However, vegetated swales are an integral part of the design with respect to stormwater conveyance. And, in many cases, Dry Swales are used instead.

Tree Planting/Tree Box

There are several natural areas with existing trees that are being preserved, and an extensive tree planting plan is included as part of this project, (see sheets L6.01-L6.09, Layout, Materials and Planting Plans). However RRv is not applied for this technique due to limiting slope requirements of 5% for proposed trees and 6%-15% for existing trees and distance limitations based on proximity to impervious areas. (There are several other limiting factors related to the applicability of this technique, such as a correlation to Rooftop Disconnection, Sheet Flow to Filter Strip and Natural Conservation Areas, but it is not clear how all these factors and/or restrictions can be integrated into a project of this size and scope. This is another reason why this technique is not applied to the RRv calculation. However, this is a conservative measure based on the existing wooded areas to be preserved and the extensive tree planting plan.)

Disconnection of Rooftop Runoff

RRv is not applied for this technique due to the limiting infiltration capabilities of the project site soils.

Stream Daylighting

An impervious area reduction is not taken for this practice because the project does not qualify as a redevelopment project as defined in the SMDM, and therefore stream daylighting is not an applicable practice.

<u>Rain Garden</u>

RRv is not applied for this technique. Rain gardens are typically applied within very small drainage areas usually associated with residential development. The contributing drainage areas for proposed individual homes exceeds the maximum contributing area of 1,000 sf (for a rain garden), specified in SMDM. Instead, Bioretention practices are incorporated as part of the plan. In addition to this practice being more

appropriate for larger contributing drainage areas, this results in fewer practices for a larger area which can simplify operations and maintenance.

<u>Green Roof</u>

Green Roofs are not incorporated into this project, and therefore no RRv is applied for this technique. During the design process, it was determined that requiring a green roof as part of a residential offering would eliminate a majority of potential buyers due to the associated substantial cost increase, concerns about maintenance and performance with regards to waterproofing, making the project infeasible. Additionally the proposed architectural philosophy of the project, designed to blend in with the historic mountain character present in many of the surrounding communities by using design elements outlined in the ARB Design Guidelines, does not readily facilitate a green roof. Classic historic structures utilized strong sheltering roof forms with deep overhangs, large covered porches, gable and shed dormers, divided light windows, substantial exposed beam and rafter tails and native materials. These elements, and the historic forms in general result in a steeply sloping roof pitch, which cannot support a green roof. This unifying character is critical to the success of the project as it seeks to compliment the surrounding environment. As a result, this architectural philosophy is consistent throughout the project on both residential and multi-use buildings.

Stormwater Planters

Stormwater Planters are more geared towards urban settings, as they can primarily be utilized in hardscape areas and building terraces, and adjacent to buildings and parking garages. The project as proposed minimizes areas of hardscape, such as patios, and does not include any substantial building terraces. Areas immediately surrounding the proposed buildings are not suited for planters, as one of the project goals is to incorporate natural plantings to compliment and blend in with the existing woodlands, and an artificial planter contradicts this design goal. For these reasons, this RRv technique is not utilized.

Rain Tanks/Cisterns

Rain Tanks and Cisterns were considered as part of the initial stormwater planning for the proposed single family homes. However after looking at the pros and cons relating to on-going maintenance, climate, size requirements and constructability, it was determined that using Bioretention areas instead was more in line with the project design goals, and easier to build and maintain.

Porous Pavement

The infiltration capacity of the existing soils is a limiting factor preventing the effective use of porous pavement on this project. Therefore RRv is not applied for this technique.

Bioretention

Bioretention is a primary treatment device used throughout the project, used mostly to treat the WQv in small drainage areas with high percentages of impervious areas, and at specific residential building lots. The bioretention areas are designed with a 6" maximum ponding depth, an overflow pipe, a 48" depth of soil filter media, a 12" gravel drainage layer and an underdrain. In all cases where these practices are used, the WQv requirement for the DEC storm is met, and overflow from larger events is directed via the

overflow pipe, or over a weir to a standard SMP for attenuation. In many cases the Bioretention areas are oversized and the WQv requirement for the DEP storm is met, and therefore in a few cases these practices meet the total RRv requirement for a specific drainage area. As a bioretention practice on 'C' soils, 40% of the provided WQv is applied towards the RRv.

Dry Swale

Dry Swales are used throughout the project primarily to convey and treat the WQv associated with project roadways and shared driveways. The dry swales are designed with an 18" ponding depth, a 30" depth of soil filter media, a 12" gravel drainage layer and an underdrain. Checkdams will be used to create the storage capacity. In almost all cases where these practice are used, the WQv requirement for the DEC storm is met, and in some cases the WQv requirement for the DEP storm is met. Overflow from larger events is in most cases directed over a weir, and in some cases directed through an overflow catch basin outlet to a standard SMP for attenuation and additional treatment. In some cases, the Dry Swales discharge directly to conveyance swales or existing drainage channels at a controlled rate to ensure adequate attenuation is provided. As an open channel practice on 'C' soils, 20% of the provided WQv is applied towards the RRv.

RRv Summary

The RRv goals and the minimum RRv requirements were calculated in accordance with the equations and methodologies presented in Section 4.3 of the SMDM, utilizing the 1.1 inch storm event required by DEC. Table 1 presents a summary of the Runoff Reduction Volume and DEC Water Quality Volume calculations for the project site.

DEC WQv req'd	206,567
Adjusted DEC WQv req'd *	147,652
Additional Area reductions?	NO
Adjusted DEC WQv req'd	147,652
Minimum RRv	35,654
Runoff Reduction Volumes by GI Techniques	
GI Practice	RRv (cf)
Rain Garden	
Green Roof	
Stormwater Planter (infiltration)	
Stormwater Planter (flow through)	
Cistern	
Permeable Pavement	
Infiltration Area	
Bioretention Areas	32,705
Dry Swales	13,458
Vegetated Swale	
Total Runoff Reduction	46,163
Is RRv>WQv?	NO
Is RRv>minimum RRv?	YES
Total WQv remaining to be treated	101,488
WQv provided in standard practices	341,494
Total WQv provided	468,003

Table 1 Runoff Reduction and DEC Water Quality Volume Summary

*After removal of areas not draining to an SMP

The calculations show that the minimum RRv is met for the Project Site. Justification evaluating the use of each green infrastructure technique and site limitations is presented in the paragraphs above. Based on this information the project meets the RRv requirements listed in the SMDM.

Remaining Water Quality Volume

Micropool Extended Detention Ponds (P-1) are used to treat the remaining WQv from the drainage areas contributing to those practices. In all cases, the WQv requirements for the DEC 1.1 inch storm and DEP 3.0 inch storm are met. The ponds are typically designed with a forebay, a micropool or permanent pool, and a controlled release structure that regulates discharge from the pond. Emergency spillways or weirs are also provided. See sheet L8.02 in the DEIS plan set for Pond details. Treated water is discharged from the ponds to conveyance swales or existing drainage channels at a controlled rate to ensure adequate attenuation. Table 2 presents a summary of the Water Quality Volume calculations when using the 3.0 inch storm event as required by NYCDEP. It also lists the percent of impervious area that drains to a specific stormwater management practice. Detailed supporting calculations listing required and provided WQv can be found in Appendix B.

		DEP	% Impervious t	to SMP
Drainage	DEP WQv	WQv	•	
Area	Req'd	Provided	Percentage	SMP
1	25,004	33,900	13.46	P1.1
2	97,940	107,126	18.40	P2.5
3	44,088	44,155	13.52	P3.3
5	1,459	1,500	16.21	*Bio
6	2,418	2,500	46.51	*Bio
7	3,779	14,500	7.41	P7.1
8	66,960	73,206	19.69	P8.2
9	45,530	67,689	15.46	P9.2
11	75,561	87,677	19.83	P11.1
12	26,991	35,750	9.84	P12.1

Table 2	NYCDEP	Water	Quality	Volume	Summary
			~ /		

* All area treated via Bioretention

Based on the plans and supporting calculations, the necessary WQv for both the 1.1 inch (DEC) and 3.0 inch (DEP) storm events is provided, and therefore the requirements are met.

Volume and Peak Rate Control

Channel Protection Volume (CPv)

Stream Channel Protection Volume (CPv) requirements are designed to protect stream channels from erosion, by providing 24-hour (12-hour in trout waters) extended detention of the one-year, 24-hour storm event. For this project, the 1-year event is **3.0 inches** as per Figure 4.4 of the SMDM. For this project, the required CPv is calculated utilizing the Plug Flow Calculation in HydroCAD (TR-20) or the figures and calculations, (TR-55) in Appendix B of the SMDM. Typically, CPv requirements are met using Micropool Extended Detention Ponds with a controlled release structure to provide the necessary attenuation. A summary of the required and provided CPv can be found in Table 3. Detailed information is included with the HydroCAD calculations in Appendix D. Based on the plans and supporting calculations, the CPv requirements are met.

Table 3 Channel Protection Volume Plug Flow Detention Time

Drainage Area	SMP	Detention time (Hours)
1	P1.1	25.3
2	P2.5	30.9
3	P3.3	27.7
7	P7.1	25.0
8	P8.2	25.9
9	P9.2	42.5
11	P11.1	33.9
12	P12.1	25.4

Overbank Flood (Qp) and Extreme Flood (Qf) Control

The primary purpose of the Overbank Flood (Qp) control sizing criterion is to prevent an increase in the frequency and magnitude of out-of-bank flooding generated by urban development. It requires storage and attenuation of the 10-year, 24-hour storm to ensure post-development peak discharge rates do not exceed the pre-development condition. For this project, the 10-yr event is **5.0 inches**, as per Figure 4.5 of the SMDM.

The intent of the Extreme Flood (Qf) criteria is to (a) prevent the increased risk of flood damage from large storm events, (b) maintain the boundaries of the pre-development 100-year floodplain, and (c) protect the physical integrity of stormwater management practices. It requires storage and attenuation of the 100-year, 24-hour storm to ensure post-development peak discharge rates do not exceed the pre-development condition. For this project, the 100-yr event is **7.5 inches** as per Figure 4.6 of the SMDM.

For this project, the Qp and Qf requirements listed above are met using Micropool Extended Detention Ponds (P-1), to provide the attenuation necessary to match the pre-development conditions. Stormwater is routed by conveyance swales, closed system piping or overland sheet flow to these Detention Ponds where it is stored for a period of time and released at a controlled rate through a controlled release structure, and/or over a broad crested weir. Treated storm water is typically discharged at controlled rates from the ponds directly to existing drainage courses, or to constructed conveyance swales that distribute the runoff to existing drainage courses. In most cases runoff cannot be discharged as sheet flow due to the presence of slopes over 10 percent. In all cases conveyance swales are constructed with a stabilized surface, such as grass, grass with turf reinforcement mat, cobbles or rip rap, designed to support anticipated velocities without experiencing erosion. The swale surface materials along with the proposed grading also helps to control flow rates.

All of the project data and calculations mentioned in previous sections was collected and included in the HydroCAD model, to determine the peak rate flows at each of the design points in the post development condition. This information was then compared to the pre-development rates at each design point to ensure the pre-development peak discharge rates are not exceeded. Refer to Table 4, for a comparison of pre and post-development peak discharge rates and volumes.

Table 4	Rate and Volume Summary

DESIGN	Areas			DESIGN	ISTORM	
POINT #	(Ac.)		10 YEA	R, 5.0"	100 YEA	R, 7.5"
			PEAK	VOLUME	PEAK	VOLUME
			cfs	af	cfs	af
1	74.71	PRE	156.98	13.99	315.08	26.92
	80.53	POST	133.35	15.48	297.42	29.71
2	38.00	PRE	68.67	6.96	135.61	13.49
	43.46	POST	47.14	9.91	121.42	18.23
2a	2.89	PRE	9.43	0.53	18.20	1.02
	1.80	POST	6.16	0.33	11.88	0.64
2b	17.97	PRE	48.08	3.50	94.02	6.78
	4.27	POST	15.25	1.06	29.25	1.80
3	14.68	PRE	35.10	2.69	68.74	5.21
	27.39	POST	23.18	5.17	66.38	8.50
4	12.33	PRE	29.08	2.59	56.97	4.37
	3.57	POST	19.81	1.06	50.51	3.11
5	44.40	PRE	105.04	8.13	205.76	15.75
	24.15	POST	74.02	4.57	144.59	8.75
6	2.82	PRE	10.13	0.50	19.68	0.97
	2.00	POST	5.83	0.41	15.17	0.77
7	5.31	PRE	18.93	0.94	36.82	1.84
	4.92	POST	7.41	1.13	30.25	2.04
8	40.51	PRE	98.47	7.42	194.23	14.38
	52.82	POST	84.96	10.77	192.96	19.55
9	26.05	PRE	69.48	4.95	133.81	9.48
	24.72	POST	15.30	5.66	131.91	10.88
11	165.06	PRE	274.77	31.01	541.52	59.62
	169.25	POST	252.53	32.95	521.68	62.20
12	34.37	PRE	76.97	6.30	151.11	12.20
	40.21	POST	50.57	7.73	124.22	14.75
TOTAL	479.09	PRE				
ACRES	479.09	POST				

Based on this comparison, post-development peak discharge rates do not exceed the pre-development condition at any of the identified design points, and therefore the Qp and Qf requirements are met.

Comprehensive Management Plan

Using the design process described above, the proposed techniques and stormwater management practices are incorporated into the overall project design. The Grading and Drainage Plans, supported by the

Proposed Subcatchment mapping, (sheets L4.00-4.09 and L5.01-L5.06 in the DEIS plan set), show how the specific components are integrated into the overall project. Specific descriptions are as follows.

The eastern half of the project site drains to design points, 12, 1, 2, 2a and 2b. On the easternmost portion, runoff from proposed buildings and roads is collected as sheet flow in roadside swales. A small portion of Sunrise Terrace is collected in a closed system (catch basins and pipe conveyance), in order to prevent stormwater from entering the adjacent stream before it is treated or attenuated. Flows are conveyed to a Micropool Extended Detention Pond near design point 12, where it is treated and attenuated before being released through a controlled release structure with staged orifices to control flow rate, and an overflow weir, to an existing drainage channel that flows into a small wetland area and eventually to design point 12. Within this watershed there is also a small portion of a shared driveway off the cul-de-sac at the end of Cave Mountain Rd. which sheet flows to a Dry Swale, before discharging at a controlled rate to the existing drainage channel leading to design point 12.

North of Design Point 12 and uphill of design point 1, runoff from single family homes and Cave Mountain Rd. is collected in roadside swales and catch basins, and conveyed to a micropool extended detention pond. The pond then discharges to an existing drainage channel that flows through a wetland and eventually to design point 1. There are also three single family homes in this watershed that use bioretention areas to independently treat stormwater runoff from their respective lots. Bioretention was utilized for these lots due to their location and elevation, which make it difficult to convey runoff to the larger stormwater management system and its treatment practices.

In the central portion of the eastern half of the project, (north of the existing primary drainage channels), stormwater is primarily collected in roadside swales and conveyed to Bioretention areas and Dry Swales. From there it is either discharged directly to an existing channel, or conveyed to micropool extended detention basin P-2.5 for additional treatment and attenuation.

Specifically, north of the existing drainage channels and uphill of Sunrise Terrace, sheet flow from homes and roads is collected in roadside swales and conveyed to micropool extended detention pond 2.5 near design point 2. Runoff from Meadow Crossing, the adjacent residential lots and shared driveway just west of the transport lift is conveyed to a dry swale and bioretention area P2.3, where it is treated and released at a controlled rate into an existing drainage channel within a wetland that eventually flows to design point 2. Runoff from the portion of Cave Mountain Rd. just east of its intersection with Sunrise Terrace is also collected and treated in a Dry Swale, before being conveyed through a closed system to pond 2.5 for additional treatment and attenuation. Adjacent to the East Base Lodge, Bioretention Area 1.2 collects runoff from half of the Lodge roof and provides treatment before discharging to an existing drainage channel that flows to design point 1. Stormwater from the other half of the East Base Lodge, adjacent parking areas and roadways are collected in catch basins and conveyed through a pipe system to pond P2.5. Most of the stormwater is released from Pond 2.5 through a controlled release structure and pipe to the existing drainage channel at design point 2. During the larger storm events, a portion of this flow is directed over an overflow weir to an adjacent wetland and drainage channel that flows to design point 1.

Design Points 2a and 2b do not receive runoff from areas with proposed development. Runoff from these areas will sheet flow over the property line, just as it does in the pre-development condition.

The western half of the project site drains to design points, 3-9 and 11. Just west of the 'ridge' that separates the eastern and western halves of the project, stormwater runoff from Cave Mountain Rd., Meadow Crossing and adjacent single family home lots is collected in a series of Dry Swales where it is treated, and then conveyed via swales and pipes to Micropool extended detention pond P3.3. This pond provides additional treatment and attenuation, before discharging to a rip rap conveyance swale that follows the alignment of an existing logging road before discharging to the existing drainage channel at Design Point 3.

Further to the west and adjacent to the existing ski trail 'Wanderer' is the Member's Lodge. Runoff from undisturbed areas above the ski trail is routed through a conveyance swale on the south side of the trail to an existing drainage channel west of the Member's Lodge. This generally mimics the pre-development condition. There is a shared driveway and four single family home lots west of the Member's Lodge that primarily utilizes Dry Swales to provide treatment. One of the homes and a small portion of the driveway is collected in catch basins and conveyed to the bioretention area (p11.2) north of the Member's lodge. This Bioretention area also provides treatment for the Member's Lodge, the townhome units to the east, and the adjacent portions of Sheridan Drive. Runoff is conveyed to the bioretention area through a closed pipe system that discharges just above the Bioretention area and enters at the surface. The WQv is treated within this facility and discharged to the adjacent stream corridor to the west. Larger storm events are routed through a flow splitter and through an overflow pipe in the bioretention area to the Micropool extended detention pond P11.1, where further treatment and attenuation is provided. Pond 11.1 also collects runoff from Townhome lot TH3 and the adjacent section of Sheridan Drive. Discharge from P11.1 is through a controlled release structure and an overflow weir to an adjacent stream channel within a wetland. Immediately north of pond P-11.1 are three single family home lots (37-39) and a shared driveway. The driveway and lots 38-39 are treated in a bioretention area and released. Lot 37 utilizes an independent bioretention area to manage its stormwater, due to its location and elevation. There are additional single family home lots, 33-36, to the north west of Sheridan drive. These lots also utilize bioretention and dry swales to manage stormwater separate from the Project's primary system. Another Bioretention area in this location, Pond P11.7, provides stormwater treatment for a small portion of Sheridan Drive and single family home lot 40. Runoff is conveyed to the bioretention area through a closed system.

Just east of the Wellness Center, runoff from the Townhome lots and adjacent road is collected in a dry swale and treated, before it is conveyed through a series of roadside swales and pipes down Sheridan Drive to micropool extended detention pond P8.2. Runoff from the Wellness Center, adjacent single family lots, and a large portion of Sheridan Drive including the areas leading up to, and past 'the switchback', is also conveyed via the same system to pond 8.2. Seven single family lots (42-45, 47, 49 and 51) north of the Wellness Center utilize independent bioretention areas to manage stormwater on their respective lots. This provides treatment at the source and reduces the amount of WQv treatment necessary in Pond 8.2. Stormwater collected in pond 8.2 is discharged through a controlled release structure and over a weir to an existing drainage course that flows to design point 8.

Design point 4 is a small drainage channel west of 'the switchback' that collects flow from an undisturbed area. This is similar to the pre-development condition.

Design Point 5 collects runoff from a large, undisturbed area to the north of the intersection of Sheridan Drive and Cave Mountain Rd, and from four single family lots (26-29) and their associated driveways. These lots and driveways are treated in Bioretention areas before being conveyed through swales to Design point 5.

Four duplex lots (D1-D4) just south of design point 6 also utilize bioretention in order to manage runoff from their respective lots. Larger storm events will sheet flow over a weir to Design Point 6.

Stormwater runoff from the two additional duplex lots, (D5-D8) and the driveway that services them flows through a conveyance swale to a small Micropool extended detention pond, P7.1. Stormwater collected in the pond is discharged through a controlled release structure and over a weir to a conveyance swale that flows to en existing drainage channel at Design Point 7.

The last portion of the project, the area along the portion of Sheridan Drive from Trailside Rd. to the first stream crossing, collects stormwater runoff from the single family home lots and adjacent road in roadside swales and conveys it to micropool extended detention pond P9.2. The portion of Sheridan Drive east of Batavia Lane is collected and treated in dry swales, before being conveyed to Pond 9.2 for additional treatment and attenuation. The portion of existing Trailside Road between Pond 9.2 and the perennial stream that crosses under it to the south is also conveyed through a roadside swale to Pond 9.2. Stormwater collected in Pond 9.2 is discharged through a controlled release structure and over a weir to a conveyance swale that flows to the existing roadside ditch at Design Point 9. Stormwater runoff from the Townhome lots east of Pond 9.2 is collected and treated in a Bioretention area (P9.3). Larger storm events flow into an overflow pipe and also discharge to the existing roadside ditch at Design Point 9.

8.0 POST-CONSTRUCTION MAINTENANCE REQUIREMENTS

All operational phase stormwater management practices will be maintained in accordance with the project Stormwater Pollution Prevention Plan required by NYSDEC. This includes, but is not limited to, cleaning of sediment from drainage inlet sumps, removal of sediment from SMPs, cleaning conveyance piping and channels of obstructions, and regular inspection and repair as necessary of any outlet control mechanisms. The Homeowners Association will be responsible for maintenance of all of the postconstruction stormwater management practices onsite. Currently, the bylaws that will describe the responsibilities of the Homeowners Association are being drafted, and details of the maintenance of the post-construction stormwater management practices will be described therein. On lots 33, 38, 42, 43, 44, 45, 47, 49, 51, 141, 142 and 143, the lot owners will be responsible for maintenance of the postconstruction stormwater management practices (i.e. bioretention practices on the individual lots) for the life of the systems. The maintenance of these stormwater practices on the individual lots will be enforced by the Home Owners Association Offering Plan that all of the individual lot owners will be responsible for signing and abiding by for the life of the lot. This Offering Plan is being drafted and will be finalized when it is accepted by the Attorney General. The Offering Plan will clearly state the maintenance requirements of the stormwater management practices on the individual lots and if the maintenance of these practices is not conducted appropriately, the Homeowners Association will conduct the required work at the expense of the individual lot owner. The Homeowners Association responsibilities regarding

the individual lots with post-construction stormwater management practices located on the property will be clearly spelled out in the Offering Plan for the Homeowners Association.

9.0 CONCLUSION

The stormwater management goals and objectives for this project listed in the introductory paragraph, specifically meeting water quality objectives while at the same time mitigating potential impacts associated with increased stormwater runoff, have been met. The goals are met through the use of thoughtful and careful site planning, preservation of the site's natural resources and environmentally sensitive areas, minimizing development impacts and impervious areas, and incorporating design features such as green infrastructure techniques and standard stormwater management practices that effectively manage stormwater runoff and compliment the overall project design.

Additionally, the information presented above, supporting calculations and project plans demonstrate that the project and associated stormwater management plan has been developed in accordance with the New York State DEC Stormwater Management Design Manual, (August, 2010), and the Rules and Regulations for the Protection from Contamination, Degradation, and Pollution of the New York City Water Supply and its sources, 10 NYCRR §128-3.9.

10.0 REFERENCES

- 1. Urban Hydrology for Small Watersheds. Published by the U.S. Soil Conservation Service, Washington, D.C., June 1986.
- 2. HydroCAD (version 9.10) Stormwater Modeling Software, by HydroCAD Software Solutions, LLC.
- 3. NYSDEC Stormwater Management Design Manual. Published by the New York State Department of Environmental Conservation, Updated August 2010.
- 4. Rules and Regulations for the Protection from Contamination, Degradation, and Pollution of the New York City Water Supply and its sources, 10 NYCRR §128-3.9.

 $G:\Proj-08\08077_Tuck_Windham\08077hydrocad\Storm\ Report\08077_Stormreport-Final.Doc$

APPENDIX A

Figures

Unauthorized alteration or addition to this document is a violation of Section 7209 of the New York State Education Law © the LA group 2008 Ľ. TUCK EASTSIDE PARTNERS, 34 SALISBURY ROAD DARIEN, CT 06820 PREPARED FOR: The Windham Mountain Sporting Club Town of Windham, Greene County, New York Title West of Hudson Watershed Map P 2.5 Miles 08077 Project: 11/30/2011 Date:

Figure: 1-5

1,000

Feet

3-7

2,000

08077

12/07/2011

APPENDIX B

Supporting Calculations

The Windh	am Mountain Sport	na Club																		
Supporti	ing Water Quali	ty Volume Calcs												DEP-3.0"	DFC-1.1"					
	ing mater quain												Rea'd	Rea'd	Rea'd	Rea'd	Provided			Provided
DESIGN			Contributing														WOw		Min DDv	*PPv
DESIGN		Storm Dovico	Subcatchmonte	totr	al cizo (cf)	total size (ac)	total imp (cf)	total imp (ac)	1 0/			Dv	Min Dy Acro Et							
		Storm Device	Subcatchinents	1012	ai 3ize (3i)	101al 312e (ac)	total inp (SI)	total imp (ac)	1 70	-	1	IXV	MIII. IN AGET I.	Gu.r t.	Acient.	Gu.r t.	Cu.r t.	Ai (ac)	Gu.I I.	Cu.i t.
1	1 80.53																			
	00.00	P1 1 - P-1	1.3		12 843	0.29	5 380	0.12												
			1.7		216.179	4.96	51,548	1.18												
			1.8		149,900	3.44	1,395	0.03												
			1.9		54,520	1.25	0	0.00												
				Total	433,442	9.95	58,323	1.34	13	3.0	1.1	0.17	0.43	18,541	0.16	6,798	27,000			
		P1.2 - Bioretention	1.10		64,226	1.47	0	0.00												
			1.11		23,832	0.55	23,832	0.55												
				Total	88,058	2.02	23,832	0.55	27	3.0	1.1	0.29	0.15	6,463	0.05	2,370	6,900			2760
		None/Undisturbed	1.1		1,659,774	38.10	0	0.00												
_			1.2		108,960	2.50	0	0.00												
			1.4		682,225	15.66	5,600	0.13												
-			4.40		EDE 600	40.00		0.00										-		
			1.12	Total	2 086 581	12.30 68 56	0 5 600	0.00										-		
				TOTAL	2,900,001	00.50	5,000	0.15												
Entire Drai	nage Area			Total	3 508 081	80.53	87 755	2 01	3	3.0	11	0.07	1 46	63 596	0.54	23 318				
Entire Brai	liago / liou			rotai	0,000,001	00.00	01,100	2.01	Ū	0.0		0.01		00,000	0.01	20,010				
Contributi	ng to SMP			Total	521,500	11.97	82,155	1.89	16	3.0	1.1	0.19	0.57	25,004	0.21	9,168	33,900	0.57	2,146	2,760
														,		,	,		,	,
		Bioret. on Indiv Lots	1.4				2.800	0.06									800			320
			1.8				5 600	0.13									1600			640
			1.0				3,000	0.13									1000			040
Contributi	na to SMP's plus l	ndiv Lots		Total	521 500	11 07	00 555	2.08	17 36	3.0	11	0.21	0.62	26 804	0.23	0 861		0.62	2 366	3 720
Contributi				. otai	021,000		00,000	2.00		0.0		0.21	0102	20,001	0.20	0,001		0.02	2,000	0,120
						I														
2	2 43.46																			
2	2 43.46	P2.1 - Dry Swale	2.1		274,514	6.30	26,365	0.61												
2	2 43.46	P2.1 - Dry Swale	2.1	Total	274,514 274,514	6.30 6.30	26,365 26,365	0.61	10	3.0	1.1	0.14	0.21	9,364	0.08	3,433	5,200			1040
	2 43.46	P2.1 - Dry Swale	2.1	Total	274,514 274,514	6.30 6.30	26,365 26,365	0.61	10	3.0	1.1	0.14	0.21	9,364	0.08	3,433	5,200			1040
	2 43.46	P2.1 - Dry Swale P2.2 - Dry Swale	2.1	Total	274,514 274,514 188,384	6.30 6.30 4.32	26,365 26,365 46,415	0.61 0.61 1.07	10	3.0	1.1	0.14	0.21	9,364	0.08	3,433	5,200			1040
	2 43.46	P2.1 - Dry Swale P2.2 - Dry Swale	2.1	Total Total	274,514 274,514 188,384 188,384	6.30 6.30 4.32 4.32	26,365 26,365 46,415 46,415	0.61 0.61 1.07 1.07	10	3.0	1.1	0.14	0.21	9,364	0.08	3,433 4,693	5,200 6,288			1040
	2 43.46	P2.1 - Dry Swale P2.2 - Dry Swale	2.1	Total	274,514 274,514 188,384 188,384	6.30 6.30 4.32 4.32	26,365 26,365 46,415 46,415	0.61 0.61 1.07 1.07	10 25	3.0	1.1	0.14	0.21	9,364	0.08	3,433 4,693	5,200 6,288			1040
	2 43.46	P2.1 - Dry Swale P2.2 - Dry Swale P2.3 - Bioretention	2.1 2.9 2.10 2.11	Total	274,514 274,514 188,384 188,384 93,185	6.30 6.30 4.32 4.32 2.14 0.36	26,365 26,365 46,415 46,415 21,348 9,600	0.61 0.61 1.07 1.07 0.49 0.22	10 25	3.0	1.1	0.14	0.21	9,364 12,798	0.08	3,433	5,200 6,288			1040 1258
	2 43.46	P2.1 - Dry Swale P2.2 - Dry Swale P2.3 - Bioretention	2.1 2.9 2.10 2.11	Total	274,514 274,514 188,384 188,384 93,185 15,687 108,872	6.30 6.30 4.32 4.32 2.14 0.36 2.50	26,365 26,365 46,415 46,415 21,348 9,600 30,948	0.61 0.61 1.07 1.07 0.49 0.22 0.71	25	3.0	1.1	0.14	0.21	9,364 12,798 8 324	0.08	3,433 4,693	5,200 6,288			1040
	2 43.46	P2.1 - Dry Swale P2.2 - Dry Swale P2.3 - Bioretention	2.1 2.9 2.10 2.11	Total Total Total Total Total WQv r	274,514 274,514 188,384 188,384 93,185 15,687 108,872	6.30 6.30 4.32 4.32 2.14 0.36 2.50 fover from P2 2	26,365 26,365 46,415 46,415 21,348 9,600 30,948	0.61 0.61 1.07 1.07 0.49 0.22 0.71	10 25 28	3.0 3.0 3.0 3.0	1.1 1.1 1.1	0.14	0.21	9,364 12,798 8,324 14 834	0.08	3,433 4,693 3,052	5,200 6,288 15,000			1040
	2 43.46	P2.1 - Dry Swale P2.2 - Dry Swale P2.3 - Bioretention	2.1 2.9 2.10 2.11	Total Total Total Total WQv r	274,514 274,514 188,384 188,384 93,185 15,687 108,872 req'd incl. lef	6.30 6.30 4.32 4.32 2.14 0.36 2.50 ftover from P2.2	26,365 26,365 46,415 46,415 21,348 9,600 30,948	0.61 0.61 1.07 1.07 0.49 0.22 0.71	10 25 28	3.0 3.0 3.0 3.0	1.1 1.1 1.1	0.14	0.21	9,364 12,798 8,324 14,834	0.08	3,433 4,693 3,052	5,200 6,288 15,000			1040 1258
	2 43.46	P2.1 - Dry Swale P2.2 - Dry Swale P2.3 - Bioretention P2.4 - Dry Swale	2.1 2.9 2.10 2.11 2.11	Total Total Total Total WQv r	274,514 274,514 188,384 188,384 93,185 15,687 108,872 req'd incl. lef 186,305	6.30 6.30 4.32 4.32 2.14 0.36 2.50 ftover from P2.2 4.28	26,365 26,365 46,415 46,415 21,348 9,600 30,948 42,350	0.61 0.61 1.07 1.07 0.49 0.22 0.71 0.97	10 25 28	3.0 3.0 3.0 3.0 3.0	1.1 1.1 1.1	0.14	0.21	9,364 12,798 8,324 14,834	0.08	3,433 4,693 3,052	5,200 6,288 15,000			1040 1258 6000
	2 43.46	P2.1 - Dry Swale P2.2 - Dry Swale P2.3 - Bioretention P2.4 - Dry Swale	2.1 2.9 2.10 2.11 2.11	Total Total Total Total WQv r Total WQv r	274,514 274,514 188,384 188,384 93,185 15,687 108,872 req'd incl. lef 186,305 186,305	6.30 6.30 4.32 4.32 2.14 0.36 2.50 ftover from P2.2 4.28 4.28	26,365 26,365 46,415 46,415 21,348 9,600 30,948 42,350 42,350	0.61 0.61 1.07 1.07 0.49 0.22 0.71 0.71 0.97 0.97	10 25 28 28 23	3.0 3.0 3.0 3.0 3.0 3.0 3.0	1.1 1.1 1.1 1.1 1.1 1.1	0.14 0.27 0.31 0.25	0.21	9,364 12,798 8,324 14,834 11,858	0.08	3,433 4,693 3,052 4,348	5,200 6,288 15,000 6,800			1040 1258 6000 1360
	2 43.46	P2.1 - Dry Swale P2.2 - Dry Swale P2.3 - Bioretention P2.4 - Dry Swale	2.1 2.9 2.10 2.11 2.11	Total Total Total Total WQv r Total WQv r	274,514 274,514 188,384 188,384 93,185 15,687 108,872 req'd incl. lef 186,305 186,305	6.30 6.30 4.32 4.32 2.14 0.36 2.50 ftover from P2.2 4.28 4.28	26,365 26,365 46,415 46,415 21,348 9,600 30,948 42,350 42,350	0.61 0.61 1.07 1.07 0.49 0.22 0.71 0.71 0.97 0.97	10 25 28 28 23	3.0 3.0 3.0 3.0 3.0 3.0 3.0	1.1 1.1 1.1 1.1 1.1 1.1 1.1	0.14 0.27 0.31 0.25	0.21	9,364 12,798 8,324 14,834 11,858	0.08	3,433 4,693 3,052 4,348	5,200 6,288 15,000 6,800			1040 1258 6000 1360
	2 43.46	P2.1 - Dry Swale P2.2 - Dry Swale P2.3 - Bioretention P2.4 - Dry Swale P2.5 - P-1	2.1 2.9 2.10 2.11 2.11 2.4 2.4	Total Total Total Total WQv r Total WQv r	274,514 274,514 188,384 93,185 15,687 108,872 req'd incl. lef 186,305 186,305 388,505	6.30 6.30 4.32 4.32 2.14 0.36 2.50 ftover from P2.2 4.28 4.28 4.28 8.92	26,365 26,365 46,415 46,415 21,348 9,600 30,948 42,350 42,350 54,605	0.61 0.61 1.07 1.07 0.49 0.22 0.71 0.97 0.97 0.97 1.25	10 25 28 28 23	3.0 3.0 3.0 3.0 3.0 3.0 3.0	1.1 1.1 1.1 1.1 1.1 1.1 1.1	0.14	0.21 0.21 0.29 0.29 0.19 0.19 0.27	9,364 12,798 8,324 14,834 11,858	0.08	3,433 4,693 3,052 4,348	5,200 6,288 15,000 6,800			1040 1258 6000 1360
	2 43.46	P2.1 - Dry Swale P2.2 - Dry Swale P2.3 - Bioretention P2.4 - Dry Swale P2.5 - P-1	2.1 2.9 2.10 2.11 2.11 2.4 2.4 2.2 2.3	Total Total Total Total WQv r Total WQv r	274,514 274,514 188,384 93,185 15,687 108,872 req'd incl. lef 186,305 186,305 388,505 144,694	6.30 6.30 4.32 4.32 2.14 0.36 2.50 ftover from P2.2 4.28 4.28 4.28 8.92 3.32	26,365 26,365 46,415 46,415 21,348 9,600 30,948 42,350 42,350 54,605 32,385	0.61 0.61 1.07 1.07 0.49 0.22 0.71 0.97 0.97 0.97 1.25 0.74	10 25 28 28 23	3.0 3.0 3.0 3.0 3.0 3.0	1.1 1.1 1.1 1.1 1.1 1.1 1.1	0.14 0.27 0.31 0.25	0.21 0.21 0.29 0.29 0.19 0.19 0.27	9,364 12,798 8,324 14,834 11,858	0.08	3,433 4,693 3,052 4,348	5,200 6,288 15,000 6,800			1040 1258 6000 1360
	2 43.46	P2.1 - Dry Swale P2.2 - Dry Swale P2.3 - Bioretention P2.4 - Dry Swale P2.5 - P-1	2.1 2.9 2.10 2.10 2.11 2.4 2.4 2.2 2.3 2.3 2.5	Total Total Total Total WQv r Total WQv r	274,514 274,514 188,384 93,185 15,687 108,872 req'd incl. lef 186,305 186,305 388,505 144,694 111,555	6.30 6.30 4.32 4.32 2.14 0.36 2.50 ftover from P2.2 4.28 4.28 4.28 8.92 3.32 2.56	26,365 26,365 46,415 46,415 21,348 9,600 30,948 42,350 42,350 42,350 54,605 32,385 34,920	0.61 0.61 1.07 1.07 0.49 0.22 0.71 0.97 0.97 0.97 1.25 0.74 0.80	10 25 28 23	3.0 3.0 3.0 3.0 3.0 3.0 3.0	1.1 1.1 1.1 1.1 1.1 1.1 1.1	0.14 0.27 0.31 0.25	0.21 0.29 0.29 0.29 0.19 0.19 0.27	9,364 12,798 8,324 14,834 11,858	0.08	3,433 4,693 3,052 4,348	5,200 6,288 15,000 6,800			1040 1258 6000 1360
	2 43.46	P2.1 - Dry Swale P2.2 - Dry Swale P2.3 - Bioretention P2.4 - Dry Swale P2.5 - P-1	2.1 2.9 2.10 2.10 2.11 2.4 2.4 2.2 2.3 2.5 2.6	Total Total Total Total WQv r Total WQv r	274,514 274,514 188,384 93,185 15,687 108,872 req'd incl. lef 186,305 186,305 388,505 144,694 111,555 53,051	6.30 6.30 4.32 4.32 2.14 0.36 2.50 ftover from P2.2 4.28 4.28 4.28 8.92 3.32 2.56 1.22	26,365 26,365 46,415 46,415 21,348 9,600 30,948 42,350 42,350 42,350 54,605 32,385 34,920 0	0.61 0.61 1.07 1.07 0.49 0.22 0.71 0.97 0.97 0.97 1.25 0.74 0.80 0.00	10 25 28 23	3.0 3.0 3.0 3.0 3.0 3.0 3.0		0.14 0.27 0.31 0.25	0.21 0.29 0.29 0.29 0.19 0.19 0.19 0.27	9,364 12,798 8,324 14,834 11,858	0.08	3,433 4,693 3,052 4,348	5,200 6,288 15,000 6,800			1040 1258 6000 1360
	2 43.46	P2.1 - Dry Swale P2.2 - Dry Swale P2.3 - Bioretention P2.4 - Dry Swale P2.5 - P-1	2.1 2.9 2.9 2.10 2.11 2.11 2.4 2.4 2.2 2.3 2.5 2.6 2.6 2.8	Total Total Total Total WQv r Total WQv r	274,514 274,514 188,384 93,185 15,687 108,872 req'd incl. lef 186,305 186,305 388,505 144,694 111,555 53,051 31,600	6.30 6.30 4.32 4.32 2.14 0.36 2.50 ftover from P2.2 4.28 4.28 4.28 8.92 3.32 2.56 1.22 0.73	26,365 26,365 46,415 46,415 21,348 9,600 30,948 42,350 42,350 42,350 54,605 32,385 34,920 0 2,800	0.61 0.61 1.07 1.07 0.49 0.22 0.71 0.97 0.97 0.97 1.25 0.74 0.80 0.00 0.00 0.06	10 25 28 23	3.0 3.0 3.0 3.0 3.0 3.0 3.0		0.14 0.27 0.31 0.25	0.21 0.29 0.29 0.29 0.19 0.19 0.19 0.27	9,364 12,798 8,324 14,834 11,858	0.08	3,433 4,693 3,052 4,348	5,200 6,288 15,000 6,800			1040 1258 6000 1360
	2 43.46	P2.1 - Dry Swale P2.2 - Dry Swale P2.3 - Bioretention P2.4 - Dry Swale P2.5 - P-1	2.1 2.9 2.9 2.10 2.11 2.11 2.4 2.4 2.2 2.3 2.5 2.6 2.6 2.8 2.13 2.5 2.6	Total Total Total Total Total Total Total Total	274,514 274,514 188,384 93,185 15,687 108,872 req'd incl. lef 186,305 186,305 388,505 144,694 111,555 53,051 31,600 15,983	6.30 6.30 4.32 4.32 2.14 0.36 2.50 ftover from P2.2 4.28 4.28 4.28 8.92 3.32 2.56 1.22 0.73 0.37	26,365 26,365 46,415 46,415 21,348 9,600 30,948 42,350 42,350 42,350 54,605 32,385 34,920 0 2,800 15,983 24,245	0.61 0.61 1.07 1.07 0.49 0.22 0.71 0.97 0.97 0.97 1.25 0.74 0.80 0.00 0.00 0.06 0.37	10 25 28 23	3.0 3.0 3.0 3.0 3.0 3.0 3.0		0.14 0.27 0.31 0.25	0.21 0.21 0.29 0.29 0.19 0.19 0.19 0.27	9,364 12,798 8,324 14,834 11,858	0.08	3,433 4,693 3,052 4,348	5,200 6,288 15,000 6,800			1040 1258 6000 1360
	2 43.46	P2.1 - Dry Swale P2.2 - Dry Swale P2.3 - Bioretention P2.4 - Dry Swale P2.5 - P-1	2.1 2.9 2.9 2.10 2.11 2.11 2.4 2.4 2.2 2.3 2.5 2.6 2.8 2.13 2.14 2.14	Total Total Total Total Total Total Total Total	274,514 274,514 188,384 188,384 93,185 15,687 108,872 req'd incl. lef 186,305 186,305 388,505 144,694 111,555 53,051 31,600 15,983 35,191 42,460	6.30 6.30 4.32 4.32 2.14 0.36 2.50 ftover from P2.2 4.28 4.28 4.28 8.92 3.32 2.56 1.22 0.73 0.37 0.81 0.21	26,365 26,365 46,415 46,415 21,348 9,600 30,948 42,350 42,350 42,350 42,350 54,605 32,385 34,920 0 2,800 15,983 21,215	0.61 0.61 1.07 1.07 0.49 0.22 0.71 0.97 0.97 0.97 1.25 0.74 0.80 0.00 0.06 0.37 0.28	10 25 28 23	3.0 3.0 3.0 3.0 3.0 3.0 3.0		0.14 0.27 0.31 0.25	0.21 0.21 0.29 0.29 0.19 0.19 0.19 0.19 0.27	9,364 12,798 8,324 14,834 11,858	0.08	3,433 4,693 3,052 4,348	5,200 6,288 15,000 6,800			1040 1258 6000 1360
	2 43.46	P2.1 - Dry Swale P2.2 - Dry Swale P2.3 - Bioretention P2.4 - Dry Swale P2.5 - P-1	2.1 2.9 2.9 2.10 2.11 2.11 2.11 2.4 2.4 2.2 2.3 2.5 2.6 2.8 2.13 2.14 2.15	Total Total Total Total Total Total Total Total Total	274,514 274,514 188,384 188,384 93,185 15,687 108,872 req'd incl. lef 186,305 186,305 388,505 144,694 111,555 53,051 31,600 15,983 35,191 13,460 704,030	6.30 6.30 4.32 4.32 2.14 0.36 2.50 ftover from P2.2 4.28 4.28 4.28 8.92 3.32 2.56 1.22 0.73 0.37 0.37 0.31 18 23	26,365 26,365 46,415 46,415 21,348 9,600 30,948 42,350 42,350 42,350 42,350 54,605 32,385 34,920 0 2,800 15,983 21,215 12,062 173,970	0.61 0.61 1.07 1.07 0.49 0.22 0.71 0.97 0.97 0.97 1.25 0.74 0.80 0.00 0.06 0.37 0.49 0.28 3.90	10 25 28 23 23	3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0		0.14 0.27 0.31 0.25 0.25	0.21	9,364 12,798 8,324 14,834 11,858 11,858	0.08	3,433 4,693 3,052 4,348 4,348	5,200 6,288 15,000 6,800			1040 1258 6000 1360
	2 43.46	P2.1 - Dry Swale P2.2 - Dry Swale P2.3 - Bioretention P2.4 - Dry Swale P2.5 - P-1	2.1 2.9 2.9 2.10 2.11 2.11 2.11 2.4 2.4 2.2 2.3 2.5 2.6 2.8 2.13 2.14 2.15	Total	274,514 274,514 188,384 188,384 93,185 15,687 108,872 req'd incl. lef 186,305 186,305 186,305 388,505 144,694 111,555 53,051 31,600 15,983 35,191 13,460 794,039	6.30 6.30 4.32 4.32 2.14 0.36 2.50 ftover from P2.2 4.28 4.28 4.28 8.92 3.32 2.56 1.22 0.73 0.37 0.81 0.31 18.23	26,365 26,365 46,415 46,415 21,348 9,600 30,948 42,350 42,350 42,350 42,350 54,605 32,385 34,920 0 2,800 15,983 21,215 12,062 173,970 . P2.4 P2.6	0.61 0.61 1.07 1.07 0.49 0.22 0.71 0.97 0.97 0.97 0.97 1.25 0.74 0.80 0.00 0.06 0.37 0.49 0.28 3.99	10 25 28 23 23 23 23	3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0		0.14 0.27 0.31 0.25 0.25	0.21 0.21 0.29 0.29 0.19 0.19 0.19 0.19 0.27	9,364 12,798 8,324 14,834 11,858 49,069 56 307	0.08 0.11 0.07 0.10 0.10 0.41	3,433 4,693 3,052 4,348 4,348	5,200 6,288 15,000 6,800 6,800			1040 1258 6000 1360
	2 43.46	P2.1 - Dry Swale P2.2 - Dry Swale P2.3 - Bioretention P2.4 - Dry Swale P2.5 - P-1	2.1 2.9 2.10 2.11 2.11 2.11 2.4 2.4 2.4 2.3 2.5 2.6 2.6 2.8 2.13 2.14 2.15	Total	274,514 274,514 188,384 188,384 93,185 15,687 108,872 req'd incl. lef 186,305 186,305 186,305 388,505 144,694 111,555 53,051 31,600 15,983 35,191 13,460 794,039 req'd incl. lef	6.30 6.30 4.32 4.32 2.14 0.36 2.50 ftover from P2.2 4.28 4.28 4.28 4.28 4.28 5.50 ftover from P2.2 0.73 0.37 0.81 0.31 18.23 ftover from P2.1	26,365 26,365 46,415 46,415 21,348 9,600 30,948 42,350 42,350 42,350 54,605 32,385 34,920 0 2,800 15,983 21,215 12,062 173,970 , P2.4, P2.6	0.61 0.61 1.07 1.07 0.49 0.22 0.71 0.97 0.97 0.97 1.25 0.74 0.80 0.00 0.00 0.06 0.37 0.49 0.28 3.99	10 25 28 23 23 21.91	3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0		0.14 0.27 0.31 0.25 0.25	0.21 0.21 0.29 0.29 0.19 0.19 0.19 0.19 0.19 0.27 0.27	9,364 12,798 8,324 14,834 11,858 11,858 49,069 56,397	0.08 0.11 0.07 0.10 0.10 0.41	3,433 4,693 3,052 4,348 4,348 17,992	5,200 6,288 15,000 6,800 6,800 6,800			1040 1258 6000 1360
		P2.1 - Dry Swale P2.2 - Dry Swale P2.3 - Bioretention P2.4 - Dry Swale P2.5 - P-1 P2.5 - P-1	2.1 2.9 2.10 2.11 2.11 2.11 2.11 2.11 2.12 2.3 2.5 2.6 2.8 2.13 2.14 2.15 2.14 2.15	Total	274,514 274,514 188,384 188,384 93,185 15,687 108,872 req'd incl. lef 186,305 186,305 388,505 144,694 111,555 53,051 31,600 15,983 35,191 13,460 794,039 req'd incl. lef 170,481	6.30 6.30 4.32 4.32 2.14 0.36 2.50 fover from P2.2 4.28 4.28 4.28 4.28 8.92 3.32 2.56 1.22 0.73 0.37 0.81 0.31 18.23 ftover from P2.1	26,365 26,365 46,415 46,415 21,348 9,600 30,948 42,350 42,350 42,350 54,605 32,385 32,385 34,920 0 2,800 15,983 21,215 12,062 173,970 , P2.4, P2.6	0.61 0.61 1.07 1.07 0.49 0.22 0.71 0.97 0.97 0.97 1.25 0.74 0.80 0.00 0.00 0.06 0.37 0.49 0.28 3.99 0.22 0.71	10 25 28 23 23 21.91	3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0		0.14 0.27 0.31 0.25 0.25	0.21 0.21 0.29 0.29 0.19 0.19 0.19 0.19 0.27 0.27 0.27 0.27 0.27 0.21 0.11 0.11 0.11 0.11 0.11 0.11 0.11	9,364 12,798 8,324 14,834 11,858 11,858 49,069 56,397	0.08 0.11 0.07 0.10 0.10 0.11 0.11	3,433 4,693 3,052 4,348 4,348 17,992	5,200 6,288 15,000 6,800 6,800 6,800			1040 1258 6000 1360
		P2.1 - Dry Swale P2.2 - Dry Swale P2.3 - Bioretention P2.4 - Dry Swale P2.5 - P-1 P2.5 - P-1 P2.6 - Dry Swale	2.1 2.9 2.10 2.11 2.11 2.11 2.4 2.4 2.4 2.3 2.5 2.6 2.8 2.13 2.14 2.15 2.14 2.15	Total	274,514 274,514 188,384 188,384 93,185 15,687 108,872 eq'd incl. lef 186,305 186,305 388,505 144,694 111,555 53,051 31,600 15,983 35,191 13,460 794,039 req'd incl. lef 170,481	6.30 6.30 4.32 4.32 2.14 0.36 2.50 fover from P2.2 4.28 4.28 4.28 4.28 3.32 2.56 1.22 0.73 0.37 0.81 0.31 18.23 ftover from P2.1	26,365 26,365 46,415 46,415 21,348 9,600 30,948 42,350 42,350 42,350 54,605 32,385 34,920 0 2,800 15,983 21,215 12,062 173,970 , P2.4, P2.6	0.61 0.61 1.07 1.07 0.49 0.22 0.71 0.97 0.97 0.97 1.25 0.74 0.97 0.49 0.28 0.99 0.97 0.45	10 25 28 23 23 21.91	3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0		0.14 0.27 0.31 0.25 0.25 0.25 0.15	0.21 0.21 0.29 0.29 0.19 0.19 0.19 0.19 0.27 0.27 0.27	9,364 12,798 8,324 14,834 11,858 11,858 49,069 56,397 6,528	0.08 0.11 0.07 0.07 0.10 0.10 0.10 0.41 0.41 0.05	3,433 4,693 3,052 4,348 4,348 17,992 17,992 2,393	5,200 6,288 15,000 6,800 6,800 6,800 6,800 6,800			1040 1258 6000 1360 1360
		P2.1 - Dry Swale P2.2 - Dry Swale P2.3 - Bioretention P2.4 - Dry Swale P2.5 - P-1 P2.5 - P-1 P2.6 - Dry Swale	2.1 2.9 2.10 2.11 2.11 2.11 2.11 2.11 2.12 2.3 2.5 2.6 2.8 2.13 2.14 2.15 2.14 2.15	Total	274,514 274,514 188,384 188,384 93,185 15,687 108,872 eq'd incl. lef 186,305 186,305 388,505 388,505 388,505 388,505 388,505 144,694 111,555 53,051 31,600 15,983 35,191 13,460 794,039 req'd incl. lef 170,481	6.30 6.30 4.32 4.32 2.14 0.36 2.50 fover from P2.2 4.28 4.28 4.28 4.28 4.28 4.28 4.28 4	26,365 26,365 46,415 46,415 21,348 9,600 30,948 42,350 42,350 42,350 54,605 32,385 34,920 0 2,800 15,983 21,215 12,062 173,970 , P2.4, P2.6	0.61 0.61 1.07 1.07 0.49 0.22 0.71 0.97 0.97 0.97 1.25 0.74 0.80 0.00 0.06 0.37 0.49 0.28 3.99 0.45 0.45	10 25 28 23 23 21.91	3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0		0.14 0.27 0.31 0.25 0.25 0.15	0.21 0.21 0.29 0.29 0.19 0.19 0.19 0.19 0.19 0.27 0.27 0.27	9,364 12,798 8,324 14,834 11,858 11,858 49,069 56,397 6,528	0.08 0.11 0.07 0.07 0.10 0.10 0.10 0.11 0.10 0.10	3,433 4,693 3,052 4,348 4,348 17,992 17,992 2,393	5,200 6,288 15,000 6,800 6,800 6,800 6,800			1040 1258 6000 1360 1360
		P2.1 - Dry Swale P2.2 - Dry Swale P2.3 - Bioretention P2.4 - Dry Swale P2.5 - P-1 P2.6 - Dry Swale P2.6 - Dry Swale None/Undisturbed	2.1 2.9 2.10 2.11 2.11 2.11 2.11 2.11 2.12 2.3 2.5 2.6 2.8 2.13 2.14 2.15 2.14 2.15 2.12 2.12 2.7	Total	274,514 274,514 188,384 93,185 15,687 108,872 eq'd incl. lef 186,305 186,305 388,505 144,694 111,555 53,051 31,600 15,983 35,191 13,460 794,039 req'd incl. lef 170,481 170,665	6.30 6.30 4.32 4.32 2.14 0.36 2.50 ftover from P2.2 4.28 4.28 4.28 4.28 4.28 3.32 2.56 1.22 0.73 0.37 0.81 0.31 18.23 ftover from P2.1 5.25 1.22 0.73 0.37 0.81 0.31 18.23 ftover from P2.1 3.91 3.91	26,365 26,365 46,415 46,415 21,348 9,600 30,948 42,350 42,350 42,350 54,605 32,385 34,920 0 2,800 15,983 21,215 12,062 173,970 , P2.4, P2.6 19,540 19,540	0.61 0.61 1.07 1.07 0.49 0.22 0.71 0.97 0.97 0.97 1.25 0.74 0.80 0.00 0.00 0.06 0.37 0.49 0.28 3.99 0.45 0.45 0.45 0.07	10 25 28 23 23 21.91 11	3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0	1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1	0.14 0.27 0.31 0.25 0.25 0.15	0.21 0.21 0.29 0.29 0.19 0.19 0.19 0.19 0.19 0.27 0.27 0.27 0.27	9,364 12,798 8,324 14,834 11,858 11,858 49,069 56,397 6,528	0.08 0.11 0.07 0.07 0.10 0.10 0.10 0.10 0.11 0.10 0.10	3,433 4,693 3,052 4,348 4,348 17,992 17,992 2,393	5,200 6,288 15,000 6,800 6,800 6,800 6,800			1040 1258 6000 1360 1360
		P2.1 - Dry Swale P2.2 - Dry Swale P2.3 - Bioretention P2.4 - Dry Swale P2.5 - P-1 P2.6 - Dry Swale P2.6 - Dry Swale None/Undisturbed	2.1 2.9 2.10 2.11 2.11 2.11 2.11 2.11 2.12 2.3 2.5 2.6 2.8 2.13 2.14 2.15 2.14 2.15 2.12 2.12	Total	274,514 274,514 188,384 93,185 15,687 108,872 req'd incl. lef 186,305 186,305 388,505 144,694 111,555 53,051 31,600 15,983 35,191 13,460 794,039 req'd incl. lef 170,481 170,665	6.30 6.30 4.32 4.32 2.14 0.36 2.50 ftover from P2.2 4.28 4.28 4.28 4.28 3.32 2.56 1.22 0.73 0.37 0.81 0.31 18.23 ftover from P2.1 3.91 3.91 3.92	26,365 26,365 46,415 46,415 21,348 9,600 30,948 42,350 42,350 42,350 54,605 32,385 34,920 0 2,800 15,983 21,215 12,062 173,970 , P2.4, P2.6 19,540 19,540	0.61 0.61 1.07 1.07 0.49 0.22 0.71 0.97 0.97 0.97 1.25 0.74 0.80 0.00 0.06 0.37 0.49 0.28 3.99 0.45 0.45 0.45 0.07	10 25 28 23 23 21.91 11	3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0		0.14 0.27 0.31 0.25 0.25 0.15	0.21 0.21 0.29 0.29 0.29 0.19 0.19 0.19 0.19 0.19 0.27 0.27 0.27 0.27	9,364 12,798 8,324 14,834 11,858 11,858 49,069 56,397 6,528	0.08 0.11 0.07 0.07 0.10 0.10 0.10 0.10 0.41 0.41	3,433 4,693 3,052 4,348 4,348 17,992 2,393	5,200 6,288 15,000 6,800 6,800 6,800 6,800 6,800			1040 1258 6000 1360 1360 13684
	2 43.46	P2.1 - Dry Swale P2.2 - Dry Swale P2.3 - Bioretention P2.4 - Dry Swale P2.5 - P-1 P2.6 - Dry Swale P2.6 - Dry Swale None/Undisturbed	2.1 2.9 2.9 2.10 2.11 2.11 2.11 2.11 2.2 2.3 2.5 2.6 2.8 2.13 2.14 2.15 2.14 2.15 2.12 2.12	Total	274,514 274,514 188,384 188,384 93,185 15,687 108,872 req'd incl. lef 186,305 186,305 388,505 144,694 111,555 53,051 31,600 15,983 35,191 13,460 794,039 req'd incl. lef 170,481 170,665 1,893,260	6.30 6.30 4.32 4.32 2.14 0.36 2.50 ftover from P2.2 4.28 4.28 4.28 4.28 3.32 2.56 1.22 0.73 0.37 0.81 0.31 18.23 ftover from P2.1 3.91 3.91 3.92 4.3	26,365 26,365 46,415 46,415 21,348 9,600 30,948 42,350 42,350 42,350 54,605 32,385 34,920 0 2,800 15,983 21,215 12,062 173,970 , P2.4, P2.6 19,540 19,540 3,186	0.61 0.61 1.07 1.07 0.49 0.22 0.71 0.97 0.97 0.97 1.25 0.74 0.80 0.00 0.06 0.37 0.49 0.28 3.99 0.28 3.99 0.45 0.45 0.45 0.45 0.07	10 25 28 23 23 21.91 11 11 18.10	3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0	1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1	0.14 0.27 0.31 0.25 0.25 0.15 0.15	0.21 0.29 0.29 0.29 0.19 0.19 0.19 0.19 0.19 0.19 0.27 0.27 0.27 0.27 0.27 0.27 0.27	9,364 12,798 8,324 14,834 11,858 11,858 49,069 56,397 6,528 6,528 100,790	0.08 0.11 0.11 0.07 0.07 0.10 0.10 0.10 0.10	3,433 4,693 3,052 4,348 4,348 17,992 2,393 2,393 2,393	5,200 6,288 15,000 6,800 6,800 6,800 6,800 6,800			1040 1258 6000 1360 1360
	2 43.46	P2.1 - Dry Swale P2.2 - Dry Swale P2.3 - Bioretention P2.4 - Dry Swale P2.5 - P-1 P2.5 - P-1 P2.6 - Dry Swale P2.6 - Dry Swale P2.6 - Dry Swale	2.1 2.9 2.9 2.10 2.11 2.11 2.11 2.11 2.2 2.3 2.5 2.6 2.8 2.13 2.14 2.15 2.14 2.15 2.12 2.12	Total	274,514 274,514 188,384 188,384 93,185 15,687 108,872 req'd incl. lef 186,305 186,305 388,505 144,694 111,555 53,051 31,600 15,983 35,191 13,460 794,039 req'd incl. lef 170,481 170,665 1,893,260 1,425,339	6.30 6.30 4.32 4.32 2.14 0.36 2.50 ftover from P2.2 4.28 4.28 4.28 4.28 4.28 3.32 2.56 1.22 0.73 0.37 0.81 0.31 18.23 ftover from P2.1 3.91 3.91 3.91 3.92 43 3.32	26,365 26,365 46,415 46,415 21,348 9,600 30,948 42,350 42,350 42,350 54,605 32,385 34,920 0 2,800 15,983 21,215 12,062 173,970 , P2.4, P2.6 19,540 19,540 3,186 342,774 262,225	0.61 0.61 1.07 1.07 0.49 0.22 0.71 0.97 0.97 0.97 1.25 0.74 0.80 0.00 0.06 0.37 0.49 0.28 3.99 0.28 3.99 0.45 0.45 0.45 0.45 0.07 8 6	10 25 28 23 23 23 21.91 11 11 18.10 18.40	3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0	1.1 1.1	0.14 0.27 0.31 0.25 0.25 0.25 0.15 0.15 0.21 0.22	0.21 0.29 0.29 0.29 0.19 0.19 0.19 0.19 0.19 0.27 0.27 0.27 0.27 0.27 0.27 0.27 0.27	9,364 12,798 8,324 14,834 11,858 11,858 49,069 56,397 6,528 6,528 100,790 76,817	0.08 0.11 0.11 0.07 0.07 0.10 0.10 0.10 0.10	3,433 4,693 3,052 4,348 4,348 17,992 2,393 2,393 36,956 28,166	5,200 6,288 15,000 6,800 6,800 6,800 6,800 6,800			1040 1258 6000 1360 1360 1360
	2 43.46	P2.1 - Dry Swale P2.2 - Dry Swale P2.3 - Bioretention P2.4 - Dry Swale P2.5 - P-1 P2.6 - Dry Swale P2.6 - Dry Swale None/Undisturbed	2.1 2.9 2.9 2.10 2.11 2.11 2.4 2.4 2.2 2.3 2.5 2.6 2.8 2.13 2.14 2.15 2.12 2.12 2.7	Total	274,514 274,514 188,384 188,384 93,185 15,687 108,872 req'd incl. lef 186,305 186,305 388,505 144,694 111,555 53,051 31,600 15,983 35,191 13,460 794,039 req'd incl. lef 170,481 170,665 1,893,260 1,425,339	6.30 6.30 4.32 4.32 2.14 0.36 2.50 ftover from P2.2 4.28 4.28 4.28 4.28 3.32 2.56 1.22 0.73 0.37 0.81 0.31 18.23 ftover from P2.1 3.91 3.91 3.92 43 3.32	26,365 26,365 46,415 46,415 21,348 9,600 30,948 42,350 42,350 42,350 54,605 32,385 34,920 0 2,800 15,983 21,215 12,062 173,970 , P2.4, P2.6 19,540 19,540 19,540 3,186 342,774 262,225	0.61 0.61 1.07 1.07 0.49 0.22 0.71 0.97 0.97 0.97 1.25 0.74 0.80 0.00 0.06 0.37 0.49 0.28 3.99 0.28 3.99 0.45 0.45 0.45 0.45 0.45 0.07	10 25 28 23 23 21.91 11 11 18.10 18.40	3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0		0.14 0.27 0.31 0.25 0.25 0.25 0.15 0.15 0.21 0.22	0.21 0.29 0.29 0.29 0.19 0.19 0.19 0.19 0.19 0.27 0.27 0.27 0.27 0.27 0.27 0.27	9,364 12,798 8,324 14,834 11,858 11,858 49,069 56,397 6,528 100,790 76,817 07,6817	0.08 0.11 0.11 0.07 0.07 0.10 0.10 0.10 0.10	3,433 4,693 3,052 4,348 4,348 2,393 2,393 2,393 36,956 28,166	5,200 6,288 15,000 6,800 6,800 65,418 8,420			1040 1258 6000 1360 1360
	2 43.46	P2.1 - Dry Swale P2.2 - Dry Swale P2.3 - Bioretention P2.4 - Dry Swale P2.5 - P-1 P2.6 - Dry Swale P2.6 - Dry Swale None/Undisturbed P2.6 - Dry Swale	2.1 2.9 2.9 2.10 2.11 2.11 2.4 2.4 2.2 2.3 2.5 2.6 2.8 2.13 2.14 2.15 2.14 2.15 2.12 2.12	Total	274,514 274,514 188,384 93,185 15,687 108,872 req'd incl. lef 186,305 186,305 388,505 144,694 111,555 53,051 31,600 15,983 35,191 13,460 794,039 req'd incl. lef 170,481 170,665 1,893,260 1,425,339 1,722,595	6.30 6.30 4.32 4.32 2.14 0.36 2.50 ftover from P2.2 4.28 4.28 4.28 4.28 4.28 3.32 2.56 1.22 0.73 0.37 0.81 0.31 18.23 ftover from P2.1 3.91 3.91 3.91 3.92 43 33	26,365 26,365 46,415 46,415 21,348 9,600 30,948 42,350 42,350 42,350 54,605 32,385 34,920 0 2,800 15,983 21,215 12,062 173,970 , P2.4, P2.6 19,540 19,540 3,186 342,774 262,225 339,588	0.61 0.61 1.07 1.07 0.49 0.22 0.71 0.97 0.98 0.08 0.00 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.09 0.98 0.99 0.98 0.99 0.98 0.99 0.98 0.99 0.98 0.99 0.98 0.99 0.98 0.99 0.98 0.99 0.98 0.99 0.98 0.99 0.98 0.99 0.98 0.99 0.98 0.99 0.98 0.99 0.98 0.99 0.97 0.97 0.97 0.98 0.99 0.98 0.99 0.98 0.99 0.98 0.99 0.97 0.97 0.98 0.99 0.98 0.99 0.98	10 25 28 23 23 21.91 11 11 18.10 18.40 19.71	3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0	1.1 1.1	0.14 0.27 0.31 0.25 0.25 0.25 0.15 0.15 0.21 0.22 0.22	0.21 0.29 0.29 0.29 0.19 0.19 0.19 0.19 0.19 0.19 0.27 0.27 0.27 0.27 0.27 0.27 0.27 0.23 0.15 0.15 0.15 0.15 0.15 0.15 0.231 1.76 0.231	9,364 12,798 8,324 14,834 11,858 11,858 49,069 56,397 6,528 6,528 100,790 76,817 97,940	0.08 0.11 0.11 0.07 0.07 0.10 0.10 0.10 0.10	3,433 4,693 3,052 3,052 4,348 4,348 2,393 2,393 2,393 2,393 36,956 28,166 28,166 35,911	5,200 6,288 15,000 6,800 6,800 6,800 6,800 6,800 6,800 6,800		8,872	1040 1258 6000 1360 1360 1360 1368 1684 1684

The Wind	dham Mountain Sporti	ng Club																	
Suppor	ting Water Qualit	y Volume Calcs											DEP-3.0"	DEC-1.1"					
												Req'd	Req'd	Req'd	Req'd	Provided			Provided
DESIGN	DRAINAGE		Contributing						DEP	DEC		DEP WQv	DEP WQv	DEC WQv	DEC WQv	WQv		Min. RRv	*RRv
POINT	AREA (Ac)	Storm Device	Subcatchments	total size (sf)	total size (ac)	total imp (sf) t	otal imp (ac)	Ι%	Р	Р	Rv	Min. Rv Acre Ft.	Cu.Ft.	Acre Ft.	Cu.Ft.	Cu.Ft.	Ai (ac)	Cu.Ft.	Cu.Ft.
	2 27.20	П									[1				4		
	3 27.39	P3.1 - Dry Swale	3.1	404 592	9 9 9	29.280	0.67												
		1 5.1 - Dry Owald	3.2	34.344	0.79	28,650	0.66												
				Total 438,936	10.08	57,930	1.33	13	3.0	1.1	0.17	0.43	18,521	0.16	6,791	10249			2050
		P3.2 - Dry Swale	3.3	343,308	7.88	72,040	1.65												
				lotal 343,308	7.88	72,040	1.65	21	3.0	1.1	0.24	0.47	20,500	0.17	7,517	6906			1381
		P3 3 - P-1	34	88 013	2 02	15 960	0.37												
			3.5	30,050	0.69	0	0.00												
				Total 118,063	2.71	15,960	0.37	14	3.0	1.1	0.17	0.12	5,067	0.04	1,858				
				Total WQv req'd incl. le	ftover from P3.1	, P3.2							26,933		·	27000			
			2.6	000.050	0.70		0.00												
		None/Undisturbed	3.6	292,656	6.72	0	0.00		+ +										├───┠
Entire D				Total 4 400 000	07	145.000		10	20	1 1	0.40	A 40	17 710	0.40	17 507				<u> </u>
Enure Dr	ramaye Area			1,192,963	21	145,930	3	12	3.0	1.1	0.16	1.10	47,746	0.40	106,11				<u> </u>
Contribu	ting to SMPs			Total 900.307	21	145.930	3	16.21	3.0	1.1	0.20	1.01	44.088	0.37	16,166	44,155	1.01	3.812	3,431
																	-	·	
						I I			- T - T				1						
	5 24.15	P5.1 Biorotontion	5.4	20.800	0.68	4 820	0.11												<u> </u>
		F 5.1 - DIOTELETILIOT	5.4	Total 29,800	0.68	4,830	0.11	16	3.0	1.1	0.20	0.03	1,459	0.01	535	1608			643.2
				20,000	0.00	1,000	0.11	10	0.0		0.20	0.00	1,100	0.01		1000			010.2
		None/Undisturbed	5.1	520,495	5 11.95	0	0.00												
			5.2	151,968	3.49	2,800	0.06								·				
			5.3	349,595	8.03	0	0.00												
			total	1,022,058	23.40	2,800	0.06												
Entire Dr	rainage Area			Total 1 051 858	24 15	7 630	0.18	1	3.0	11	0.06	0.34	14 865	0.13	5 450				
Entro Di				1,001,000	24.10	7,000	0.10		0.0		0.00	0.01	14,000	0.10	0,400				
Contribu	ting to SMP			Total 29,800) 1	4,830	0	16	3.0	1.1	0.20	0.03	1,459	0.01	535	1,608	0.03	126	643
		Bioret. on Indiv Lots	5.2			8,400	0.19								,	2400			960
															,				
Contribu	iting to SMP's plus li	ndiv Lots		Total 29,800	0.68	13,230	0.30	44.40	3.0	1.1	0.45	0.08	3,349	0.03	1,228		0.09	346	1,603
															·				
																	_ _		
	6 2.00	[]																	
	2.00	P6.1 - Bioretention	6.2	9,809	0.23	4,800	0.11												
				Total 9,809	0.23	4,800	0.11	49	3.0	1.1	0.49	0.03	1,203	0.01	441	1250			500
																			├─── ┣
		P6.2 - Bioretention	6.3	10,833	0.25	4,800	0.11	11	3.0	1 1	0 15	0.02	1 015	0.01	116	1250			500
				10,000	0.25	4,000	0.11	44	5.0	1.1	0.40	0.03	1,210	0.01	440	1230			500
		None/Undisturbed	6.1	66,488	1.53	0	0.00												
Entire Dr	rainage Area			Total 87,130	2	9,600	0	11	3.0	1.1	0.15	0.07	3,249	0.03	1,191				
-																			
Contribu	ting to SMP			i otal 20,642	. 0	9,600	0	47	3.0	1.1	0.47	0.06	2,418	0.02	887	2,500	0.07	251	1,000
																			-
	7 4.92														т				
		P7.1	7.2	129,498	2.97	9,600	0.22								·				<u> </u>
				Total 129,498	2.97	9,600	0.22	7	3.0	1.1	0.12	0.09	3,779	0.03	1,386	14500			
_		None/Undisturbed	7.1	84,705	5 1.94	0	0.00												<u> </u>
Entire Dr	rainage Area			Total 214,203	4.92	9,600	0.22	4	3.0	1.1	0.09	0.11	4,838	0.04	1,774				├ ─── ┠
Contribu	ting to SMP			Total 120 /09	2	003 0	0	7	3.0	11	0 1 2	0.00	3 770	0 03	1 396	14 500	0.07	251	
Contribu				123,430	, <u> </u>	5,000	5		5.0		0.12	0.03	3,119	0.03	1,000	14,000	0.07	231	<u> </u>
		1 1	1	1	1						l	1	L						L

The Windh	nam Mountain Sporti	ng Club																				\mp
Support	ing Water Qualit	ty Volume Calcs												Pog'd	DEP-3.0"	DEC-1.1"	Pogld	Browided			Drovidod	_
DESIGN			Contributing								DEC							WOy		Min PRv	*PPv	
POINT	AREA (Ac)	Storm Device	Subcatchments		total size (sf) to	otal size (ac)	total imp (sf)	total imp (ac)	Ι%	P	P	Rv	Min. Rv	Acre Ft.	Cu.Ft.	Acre Ft.	Cu.Ft.	Cu.Ft.	Ai (ac)	Cu.Ft.	Cu.Ft.	-
	50.00	11		1						1	1	1					1			1		
8	8 52.82	P8 1 - Dry Swale	8.6		118 266	2.7	2 22 800	0.52														
		1 0.1 - Dry Swale	0.0	Total	118,266	2.72	2 22,800	0.52	19.28	3.0	1.1	0.22		0.15	6.608	0.06	2.423	3.515			70	03
							,					-			- ,		, -	- ,			-	-
		P8.2 - P-1	8.2		100,400	2.30	9,600	0.22														
			8.7		171,819	3.94	+ 15,024 4 56,624	+ 0.34 4 1.30														-
			8.8		84,486	1.94	4 2,800	0.06														
			8.9		31,465	0.72	2 22,800	0 0.52														
			8.10		240,018	5.5	1 23,370	0.54														
			8.12		27,016	0.6	2 17,800	0.41														
			8.15		97,618	2.24	4 34,940	0.80														
				Total	1,016,252	23.33	3 200,558	3 4.60	19.74	3.0	1.1	0.23		1.33	57,829	0.49	21,204					-
				Total W	Qv req'd incl. lefto	over from P8.	1								60,922			67076				
		D9.2 Dry Swola	0.0		40,800	1 11	= 0 <i>1 1</i>	0.10													+	
		Po.3 - Dry Swale	0.3	Total	49,890	1.1:	5 8,440	0.19	16.92	3.0	1.1	0.20		0.06	2,523	0.02	925	2,615			52	23
					.0,000		0,11	00		0.0		0.20		0.00	2,020	0.02	010	_,0.0				
		None/Undisturbed	8.1		274,920	6.3	1 6,400	0.15														
			8.5		841,461	19.32	2 5,600	0.13														
				Total	1,116,381	26	6 12,000	0 0														
Entire Dra	unage Area			Total	2,300,789	52.82	2 243,798	3 5.60 5 5 1 2	10.60	3.0	1.1	0.15		1.92	83,614	0.70	30,659					_
Contributin	IG 10 F 0.2			Total	1,134,310	20.04	+ 223,330	5 5.15	19.09	3.0	1.1	0.23		1.40	04,437	0.34	23,027					-
Contributi	ing to SMPs			Total	1,184,408	27.19	231,79	3 5.32	19.57	3.0	1.1	0.23		1.54	66,960	0.56	24,552	73,206	1.60	6,056	i 1,22	26
																						_
		Bioret. on Indiv Lots	8.4				2,800	0.06														
			8.8				5,600	0.13														
			8.10				14,000	0.32													<u> </u>	
				Total			22,400	0 0.51										6400			256	ک ز
Contributi	ing to SMP's plus l	ndiv Loto		Total	1 104 409	2-	7 254 10	5 5 6 4	21.46	2.0	1 1	0.24		1 65	72 000	0.61	26.400		1 75	6 6 4 4	2 7(26
Contributi	ing to SMF's plus if			Total	1,104,400	Ζ.	254,190	5 5.04	21.40	3.0	1.1	0.24		1.05	72,000	0.01	20,400		1.75	0,04	3,70	00
ę	9 24.72																					_
		P9.1 - Dry Swale	9.11		180,827	4.1	5 38,900	0.89													<u> </u>	
				Iotal	180,827	4.1	38,900	0.89	22	3.0	1.1	0.24		0.25	11,013	0.09	4,038	5889			11/	<u>′8</u>
		P9.2 - P-1	9.3		13.200	0.30	6.610	0.15													-	
			9.5		43,175	0.99	9 4,000	0.09														
			9.6		189,355	4.3	5 40,220	0.92														
			9.9		84,854	1.9	5 (0.00														
			9.10	Total	667 730	15.3	41,420	3 0.95	14	3.0	1 1	0.17		0.67	29 105	0.24	10.672				+	
				Total W	Qv reg'd incl. lefto	over from P9.	1	2.12	17	0.0		0.17		0.07	34,229	0.24	10,072	56000				
					•																	
		P9.3 - Bioretention	9.2	Total	58,685	1.3	5 20,79	0.48	25	2.0	1 1	0.27		0.12	5 /12	0.05	1 095	5800			22'	20
				IUIAI	00,000	1.3	20,79	0.48	30	3.0	1.1	0.37		0.12	5,412	0.05	1,905	5600				.0
1		None/Undisturbed	9.1		44,704	1.03	3 4.600	0.11													+	-
1			9.4		125,000	2.8	7 5,600	0.13			1										1	
				Total	169,704	3.90	0 10,200	0.23														_
																						\square
Entire Dra	inage Area			Total Total	1,076,946	24.72	2 162,15	3.72	15	3.0	1.1	0.19		1.15	49,946	0.42	18,314					-
Contributin	IY IU F9.2			TOTAL	040,007	19.48	131,150	3.01	ci	3.0	1.1	0.19		0.92	40,118	0.34	14,710					+
Contributi	ing to SMPs			Total	907,242	20.83	3 151,953	3 3.49	17	3.0	1.1	0.20		1.05	45,530	0.38	16,694	67,689	1.05	3,970	3,49) 8
							·			1								-			· · ·	
																						_

The Windh	am Mountain Sportin	ng Club																	 	
Supporti	ing Water Quality	y Volume Calcs											D 11	DEP-3.0"	DEC-1.1"				 	_
									050	050			Req'd	Req'd	Req'd	Req'd	Provided			Provided
		Storm Device	Subcatchments	total size (sf)	total size (ac)	total imp (sf)	total imp (ac)	1 %	DEP	PEC	Rv	Min Rv	DEP WQV					Ai (ac)	Cu Et	Cu Et
		Storin Device	Oubcatchinents	10101 3120 (31)				1 70					Acient.	00.1 1.	Acie i t.	00.11.	00.11.		00.11.	00.1 t.
11	169.25	D (1 () D (007.040	5.04													_		
		P 11.1 - P-1	11.8	227,013	5.21	45 440	0.00													
			11.11	62.503	1.43	35.866	0.82													
			Total	664,068	15	81,306	1.87	12	3.0	1.1	0.16		0.61	26,595	0.22	9,751				
			Total W	/Qv req'd incl. le	ftover from P11	.2								48,827		9,163	50,000			
		D11.2 Pieretention	11.4	120.019	2 10	112 169	2.60											_		
		PTI.2-Dioretention	11.4	195,010	3.19	113,100	2.60												I	
			11.10	27,810	0.64	17,554	0.40											1		<u> </u>
			11.12	62,712	1.44	0	0.00													
	┨】		11.13	7,422	0.17	5,400	0.12				0.000		0.00	00.000	0.00	40.010	40.000		↓	
			Total	432,355	9.93	136,122	3.12	31	3	1.1	0.333		0.83	36,032	0.30	13,212	13,800			552
		P11.4-Dry Swale	11.20	10,142	0.23	1.092	0.03											1	<u> </u>]	<u> </u>
		,	Total	10,142	0.23	1,092	0.03	11	3	1.1	0.147		0.01	372	0.00	137	441			8
		D11 5 Dry Swola	11 7	5.052	0.12	1 272	0.02													
		PTT.5-DTy Swale	Total	5,053	0.12	1,372	0.03	27	3	1 1	0 294		0.01	372	0.00	136	414			8
				0,000	0.12	1,072	0.00	21	Ŭ		0.204		0.01	012	0.00	100				
		P11.6-Dry Swale	11.22	143,911	3.30	5,850	0.13													
			Total	143,911	3.30	5,850	0.13	4	3	1.1	0.087		0.07	3,115	0.03	1,142	3,428	_		686
		D11.7 Disrotantian	11.16	22.250	0.74	17 707	0.41											_		
		FTT.7 - DIOTELETILIOT	Total	32,259	0.74	17,787	0.41	55	3	1.1	0.546		0.10	4.405	0.04	1.615	6.900		J	2760
				02,200	0	,	0		0		01010		0.10	1,100	0.0.	.,010	0,000			
		P11.8 - Bioretention	11.17	18,810	0.43	14,530	0.33													
			Total	18,810	0.43	14,530	0.33	77	3	1.1	0.745		0.08	3,504	0.03	1,285	4,020		 	1608
		P11 9 - Bioretention	11 24	25.034	0.57	5 620	0.13													
		TTT: Diotecention	Total	25,034	0.57	5,620	0.13	22	3	1.1	0.252		0.04	1,577	0.01	578	2,800			112
				,										,			,			
		P11.11 - Dry Swale	11.25	68,066	1.56	8,400	0.19													
			Total	68,066	1.56	8,400	0.19	12	3	1.1	0.161		0.06	2,741	0.02	1,005	3,100	_		620
		P11.10 - Dry Swale	11.23	54,266	1.25	6,960	0.16												J	
			Total	54,266	1.25	6,960	0.16	13	3	1.1	0.165		0.05	2,244	0.02	823	2,774			555
		None/Undisturbed	11.2	1,238,435	28.43	0	0.00													
			11.3	24,573	0.56	0	0.00													+
			11.14	194,057	4.45	0	0.00											1		
			11.15	45,543	1.05	0	0.00													
			11.18	496,244	11.39	2,800	0.06													<u> </u>
			11.19	20,122	0.46	490 448	0.01													
			Total	5,918,453	135.87	3.738	0.09											1	<u> </u>]	+
				,,		-,														
Entire Drai	inage Area		Total	7,372,417	169.25	282,777	6.49	4	2.8	1.1	0.085		3.34	145,395	1.31	57,119		_		
Contributin	g to PT1.1		Iotal	1,096,423	25.17	217,428	4.99	19.83	2.8	1.1	0.228		1.34	JØ,451	0.53	22,963				
Contributi	ng to SMPs		Total	1,453,964	33.38	279,039	6.41	19	2.8	1.1	0.223		1.73	75,561	0.68	29,685	87,677	1.92	7,290	13,03
	-					, -								· .		-	-			
		Bioret. on Indiv Lots	11.3			11,200	0.26										3200			1280
-																				
Contributi	ng to SMP's plus In	div Lots	Total	1,453,964	33.38	290,239	6.66	19.96	3.0	1.1	0.23		1.92	83,478	0.70	30,609		2.00	7,582	14,319
																			1	1

The Windham Mountain Sport	ing Club																	
Supporting Water Quali	ty Volume Calcs											DEP-3.0"	DEC-1.1"					
											Req'd	Req'd	Req'd	Req'd	Provided			Provided
DESIGN DRAINAGE		Contributing						DEP	DEC		DEP WQv	DEP WQv	DEC WQv	DEC WQv	WQv		Min. RRv	*RRv
POINT AREA (Ac)	Storm Device	Subcatchments	total size (sf) tota	al size (ac) to	otal imp (sf)	total imp (ac)	1 %	Р	P	Rv	Min. Rv Acre Ft.	Cu.Ft.	Acre Ft.	Cu.Ft.	Cu.Ft.	Ai (ac)	Cu.Ft.	Cu.Ft.
				. ,		1 \ /										· · · · · · · · · · · · · · · · · · ·		
12 40.21	1																	
	P12.1 - P1	12.2	755,625	17.35	53,970	1.24												
		12.4	23,780	0.55	22,690	0.52												
		Total	779,405	17.89	76,660	1.76	10	3.0	1.1	0.14	0.62	26,991	0.23	9,897	34500			
	P12.2 - Dry Swale	12.3	16,392	0.38	4,410	0.10												
		Total	16,392	0.38	4,410	0.10	27	3.0	1.1	0.29	0.03	1,197	0.01	439	1250			250
	Niews - Albert States - d	40.4	055.045	04.04												_		
	None/Undisturbed	12.1	955,915	21.94		0.00										_		
		total	955,915	21.94	L L	0.00										_		
		-	4 705 000	40.04	70.000	4 70				0.00		00.445	0.00	44.050				
Entire Drainage Area		Total	1,735,320	40.21	76,660	1.76	4	3.0	1.1	0.09	0.90	39,145	0.33	14,353		_		
Contributing to SMP		Total	770 405	19	76 660	1 76	10	2.0	11	0.14	0.62	26 001	0.23	0 907	25 750	0.52	2 002	250
		TOLAI	119,405	10	70,000	1.70	10	5.0	1.1	0.14	0.02	20,991	0.23	9,097	33,730	0.55	2,003	230
																		+
TOTAL SITE																		<u>+</u>
Entire Drainage Area		Total	20 432 967	469.08	1 368 677	7 31.42	7	3.0	11	0.11	12 03	563 364	4 74	206 567				
		10(2)	20,402,007	403.00	1,000,077	51.42	'	0.0	1.1	0.11	12.55	303,304	7.77	200,007				
Contributing to SMP		Total	7,649,361	175.61	1,364,753	31.33	18	3.0	1.1	0.21	9.24	402,686	3.39	147,652	468,111	9.40	35,654	41,029
					· ·													
Treatment / Bioretention req	uirement	2-unit																
for individual lots/units		Townhome	4,800	0.11	4,800	0.11	100	3.0	1.1	0.95	0.03	1,140	0.01	418	1250			
		sing fam home	2,800	0.06	2,800	0.06	100	3.0	1.1	0.95	0.02	665	0.01	244	800			320
		Homes w/ Boiretention																000
		dp 1 3																960
		dp3 3																960 2560
		dp0 0																1280
																		1200
	WQv = [(P)(Rv)(A)]/12		Mi	n. RRv = [(P)(R	Rv*)(Ai)]/12 ((in acre feet)			1									
	Where:		W	here:	/, / . \	· · · · ·												
	Rv = 0.05 + 0.009(I	1)	Rv	$v^* = 0.05 + 0.009$	9(I) where I is	s 100% imp.												
	I = impervious cove	er in percent	Ai	=(S)(Aic), when	e Ái=imp. Co	ver targeted for ru	noff redu	ction		1								
	P = 90% rainfall (Fi	g 4.1 inDesign Manual)	Aic	c=total area of r	new impervio	us cover									_			
	A = site area in acre	es	S=	HSG Specific r	eduction fact	or (S)												
			P =	= 90% rainfall (s	see Figure 4.	1 inDesign Manua	l)											ļ
																		<u> </u>
						+			+									<u>↓</u>
						+												<u> </u>
						+			+							+		
									1	1		1						

APPENDIX C

HydroCAD Data - Existing Model -

- 1. Existing Model Diagram, Area/Soil Listings and Subcatchment Summaries
- 2. Existing Reach and Culvert Summaries 1 & 10-yr Storm Events
- 3. Existing Design Point Summaries 1-yr Event
- 4. Existing Design Point Totals 10 and 100-yr Storm Events

Model Diagram, Area and Soil Listings and Subcatchment Summaries

Area Listing (all nodes)

Area	CN	Description
(acres)		(subcatchment-numbers)
8.129	71	Meadow, non-grazed, HSG C (6S, 7S)
451.996	72	Woods/grass comb., Good, HSG C (1.1S, 1.2S, 2aS, 2bS, 2S, 3S, 4S, 5S, 8A, 8S,
		9S, 11.2S, 11.3S, 11.4S, 11.5S, 12.1S)
15.082	79	Woods/grass comb., Good, HSG D (1.1S, 1.2S, 2S, 3S, 5S, 8A, 8S, 9S, 11.2S,
		11.3S, 11.4S, 11.5S, 12.1S)
3.263	98	Paved parking & roofs (11.3S)
0.389	98	Paved parking, HSG C (9S)
0.232	98	Roofs, HSG C (9S)
Soil Listing (all nodes)

Area	Soil	Subcatchment
(acres)	Group	Numbers
0.000	HSG A	
0.000	HSG B	
460.746	HSG C	1.1S, 1.2S, 2aS, 2bS, 2S, 3S, 4S, 5S, 6S, 7S, 8A, 8S, 9S, 11.2S, 11.3S, 11.4S,
		11.5S, 12.1S
15.082	HSG D	1.1S, 1.2S, 2S, 3S, 5S, 8A, 8S, 9S, 11.2S, 11.3S, 11.4S, 11.5S, 12.1S
3.263	Other	11.3S

Summary for Subcatchment 1.1S: Area-1.1

Runoff = 65.12 cfs @ 12.18 hrs, Volume= 5.562 af, Depth= 2.20"

Runoff by SCS TR-20 method, UH=SCS, Time Span= 0.00-144.00 hrs, dt= 0.05 hrs Type II 24-hr 10-Year Rainfall=5.00"

Area (sf)	CN	Description		
1,315,3	45	72	Woods/gras	ss comb., G	Bood, HSG C
7,5	75	79	Woods/gras	ss comb., G	Good, HSG D
1,322,92	20	72	Weighted A	verage	
1,322,9	20		100.00% P	ervious Are	а
To len	ath	Slone	Velocity	Canacity	Description
(min) (fe	et)	(ft/ft	(ft/sec)	(cfs)	
14.5	150	0.1300	0.17		Sheet Flow, Sheet flow: Woods
					Woods: Light underbrush n= 0.400 P2= 3.00"
2.2	320	0.2400	2.45		Shallow Concentrated Flow, Shallow concentrated: Woods Woodland Kv= 5.0 fps
1.7 2	215	0.0930	2.13		Shallow Concentrated Flow, Shallow concentrated: Meadow
					Short Grass Pasture Kv= 7.0 fps
5.2 1,0	000	0.4160	3.22		Shallow Concentrated Flow, Shallow concentrated: Woods
		0 0000	40.05	40.00	Woodland Kv= 5.0 tps
0.6 4	440	0.2000	12.05	48.22	Irap/Vee/Rect Channel Flow, Mountain Stream
					BUT. $V = 2.00$ D=1.00 Z= 2.0 / 10p. $V = 6.00^{\circ}$
					n= 0.040 Mountain Streams

24.2 2,125 Total

Summary for Subcatchment 1.2S: Area-1.2

Runoff = 110.33 cfs @ 12.14 hrs, Volume= 8.426 af, Depth= 2.28"

Α	rea (sf)	CN I	Description		
1,7	41,605	72	Noods/gras	ss comb., G	Bood, HSG C
1	89,870	79	Noods/gras	ss comb., G	Good, HSG D
1,9	931,475 73 Weighted Average			verage	
1,9	31,475		100.00% Pe	ervious Are	a
Tc	Length	Slope	Velocity	Capacity	Description
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	
8.8	150	0.4500	0.28		Sheet Flow, Sheet flow: Woods
	4 9 4 9		0.40		Woods: Light underbrush n= 0.400 P2= 3.00"
9.9	1,846	0.3900	3.12		Shallow Concentrated Flow, Shallow concentrated: Woods
1.5	1,218	0.2200	13.24	176.52	Parabolic Channel,
					W=20.00' D=1.00' Area=13.3 sf Perim=20.1'
					n= 0.040 Winding stream, pools & shoals
20.2	3,214	Total			

Summary for Subcatchment 2aS: Area 2a

Runoff = 9.43 cfs @ 12.03 hrs, Volume= 0.529 af, Depth= 2.20"

Runoff by SCS TR-20 method, UH=SCS, Time Span= 0.00-144.00 hrs, dt= 0.05 hrs Type II 24-hr 10-Year Rainfall=5.00"

A	rea (sf)	CN D	escription		
1	25,720	72 V	Voods/gras	s comb., G	Good, HSG C
1	25,720	1	00.00% Pe	ervious Are	a
Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
7.8	150	0.0860	0.32		Sheet Flow,
			o (=		Grass: Short n= 0.150 P2= 3.00"
2.7	405	0.1230	2.45		Shallow Concentrated Flow,
					Short Grass Pasture KV= 7.0 fps
10.5	555	Total			

Summary for Subcatchment 2bS: Area 2b

Runoff = 45.24 cfs @ 12.12 hrs, Volume= 3.291 af, Depth= 2.20"

Runoff by SCS TR-20 method, UH=SCS, Time Span= 0.00-144.00 hrs, dt= 0.05 hrs Type II 24-hr 10-Year Rainfall=5.00"

Area (sf)	CN E	Description							
782,773	72 V	72 Woods/grass comb., Good, HSG C							
782,773	1	00.00% P	ervious Are	a					
Tc Length (min) (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description					
10.7 150	0.2800	0.23		Sheet Flow,					
7.8 1,140	0.2350	2.42		Woods: Light underbrush n= 0.400 P2= 3.00" Shallow Concentrated Flow, Woodland Kv= 5.0 fps					
18.5 1,290	Total								

Summary for Subcatchment 2S: Area-2

Runoff = 68.67 cfs @ 12.27 hrs, Volume= 6.960 af, Depth= 2.20"

08077_Existing

Type II 24-hr 10-Year Rainfall=5.00" Printed 12/9/2011 C Page 3

Prepared by The LA Group P.C. HydroCAD® 9.10 s/n 00439 © 2010 HydroCAD Software Solutions LLC

Area	ı (sf)	CN	Description			
1,593,	,805 535	72 79	Woods/gras	ss comb., G	Good, HSG C Good, HSG D	
1,655, 1,655,	,340 ,340 ,340	72	Weighted A 100.00% P	verage ervious Are	a	
Tc Le (min)	ength (feet)	Slope (ft/ft	e Velocity) (ft/sec)	Capacity (cfs)	Description	
13.8	150	0.1467	0.18		Sheet Flow, Sheet flow: Woods	
7.7	1,360	0.3456	6 2.94		Shallow Concentrated Flow, Shallow concentrated: Woo Woodland Kv= 5.0 fps	ods
2.0	270	0.1070) 2.29		Shallow Concentrated Flow, Shallow concentrated: Mea	dow
5.9	630	0.1254	1.77		Shallow Concentrated Flow, Shallow concentrated: Woo Woodland Kv= 5.0 fps	ods
1.7	230	0.1040	2.26		Shallow Concentrated Flow, Shallow concentrated: Mea Short Grass Pasture Ky= 7.0 fps	dow
0.4	275	0.2100) 12.35	49.41	Trap/Vee/Rect Channel Flow, Mountain Stream Bot.W=2.00' D=1.00' Z= 2.0 '/' Top.W=6.00' n= 0.040 Mountain streams	

31.5 2,915 Total

Summary for Subcatchment 3S: Area-3

Runoff =	35.10 cfs @	12.14 hrs,	Volume=	2.689 af,	Depth= 2.20"
----------	-------------	------------	---------	-----------	--------------

	Are	ea (sf)	CN	Description		
	63	3,639 5,847	72 79	Woods/gras Woods/gras	ss comb., G ss comb., G	Good, HSG C Good, HSG D
	63 63	9,486 9,486	72	Weighted A 100.00% Pe	verage ervious Are	а
٦ miı)	Гс n)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
9	.8	150	0.3500	0.26		Sheet Flow, Sheet flow: Woods
5	.4	910	0.3200	2.83		Shallow Concentrated Flow, Shallow concentrated: Woods Woodland Ky= 5.0 fps
2	.6	540	0.2500	3.50		Shallow Concentrated Flow, Shallow concentrated: Meadow Short Grass Pasture Kv= 7.0 fps
2	.2	420	0.4000	3.16		Shallow Concentrated Flow, Shallow concentrated: Woods Woodland Ky= 5.0 fps
0	.2	200	0.2000	20.67	124.02	Trap/Vee/Rect Channel Flow, DITCH Bot.W=1.00' D=2.00' Z= 1.0 '/' Top.W=5.00'
20	.2	2,220	Total			n= 0.030 ⊨arth, grassed & Winding

Summary for Subcatchment 4S: Area-4

Runoff = 29.08 cfs @ 12.14 hrs, Volume= 2.259 af, Depth= 2.20"

Runoff by SCS TR-20 method, UH=SCS, Time Span= 0.00-144.00 hrs, dt= 0.05 hrs Type II 24-hr 10-Year Rainfall=5.00"

A	rea (sf)	CN E	Description		
5	37,225	72 V	Voods/gras	ss comb., G	Good, HSG C
5	37,225	1	00.00% Pe	ervious Are	a
Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
10.4	150	0.3000	0.24		Sheet Flow, WOODS
					Woods: Light underbrush n= 0.400 P2= 3.00"
10.1	1,738	0.3300	2.87		Shallow Concentrated Flow, WOODS/MEADOW
0.2	245	0 2000	20.67	124 02	Woodland KV= 5.0 Ips
0.2	240	0.2000	20.07	124.02	Bot.W=1.00' D=2.00' Z= 1.0 '/' Top.W=5.00'
					n= 0.030 Earth, grassed & winding

20.7 2,133 Total

Summary for Subcatchment 5S: Area-5

Runoff = 105.04 cfs @ 12.14 hrs, Volume= 8.132 af, Depth= 2.20"

Runoff by SCS TR-20 method, UH=SCS, Time Span= 0.00-144.00 hrs, dt= 0.05 hrs Type II 24-hr 10-Year Rainfall=5.00"

_	A	rea (sf)	CN	Description		
	1,8	81,207	72	Woods/gras	ss comb., G	Bood, HSG C
	-	52,915	79	Woods/gras	s comb., C	Good, HSG D
	1,9	34,122	72	Weighted A	verage	
	1,9	34,122		100.00% Pe	ervious Are	a
	Тс	l enath	Slope	Velocity	Canacity	Description
_	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	
	11.2	150	0.2460	0.22		Sheet Flow, Sheet flow: Woods
						Woods: Light underbrush n= 0.400 P2= 3.00"
	8.8	1,510	0.3300	2.87		Shallow Concentrated Flow, Shallow concentrated: Woods
						Woodland Kv= 5.0 fps
	0.6	430	0.0800	12.68	95.12	Trap/Vee/Rect Channel Flow,
						Bot.W=2.00' D=1.50' Z= 2.0 '/' Top.W=8.00'
_						n= 0.030 Earth, grassed & winding
	~~ ~	~ ~ ~ ~	T • •			

20.6 2,090 Total

Summary for Subcatchment 6S: Area-6

Runoff = 10.13 cfs @ 11.99 hrs, Volume= 0.497 af, Depth= 2.12"

Runoff by SCS TR-20 method, UH=SCS, Time Span= 0.00-144.00 hrs, dt= 0.05 hrs Type II 24-hr 10-Year Rainfall=5.00"

Area (s	sf) CN	l De	scription			
122,69	92 71	Me	adow, no	on-grazed, l	HSG C	
122,69)2	100	0.00% Pe	ervious Area	a	
Tc Len (min) (fe	gth SI et) (ope ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description	
5.4 1	50 0.1	600	0.46		Sheet Flow, Sheet flow: Meadow	
1.5 2	40 0.1	500	2.71		Range n= 0.130 P2= 3.00" Shallow Concentrated Flow, Shallow concentrated: Me Short Grass Pasture Kv= 7.0 fps	eadow
6.9 3	90 Tot	tal				

Summary for Subcatchment 7S: Area-7

Runoff = 18.93 cfs @ 11.99 hrs, Volume= 0.937 af, Depth= 2.12"

Runoff by SCS TR-20 method, UH=SCS, Time Span= 0.00-144.00 hrs, dt= 0.05 hrs Type II 24-hr 10-Year Rainfall=5.00"

	Α	rea (sf)	CN I	Description						
	2	31,410	71 I	71 Meadow, non-grazed, HSG C						
	2	31,410		100.00% P	ervious Are	a				
(1	Tc min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description				
	5.8	150	0.1800	0.43		Sheet Flow, Sheet flow: Meadow				
	0.9	206	0.0700	3.97		Shallow Concentrated Flow, Shallow concentrated: Meadow				
	0.5	250	0.3500	8.87		Grassed Waterway KV= 15.0 fps Shallow Concentrated Flow, field Grassed Waterway Kv= 15.0 fps				
	7.2	606	Total							

Summary for Subcatchment 8A: Area-8A

Runoff = 68.05 cfs @ 12.12 hrs, Volume= 5.056 af, Depth= 2.20"

08077_Existing

 Type II 24-hr 10-Year Rainfall=5.00"

 Printed 12/9/2011

 C
 Page 6

Prepared by The LA Group P.C. HydroCAD® 9.10 s/n 00439 © 2010 HydroCAD Software Solutions LLC

A	rea (sf)	CN I	Description			_
1,1	83,365	72 \	Woods/gras	s comb., G	Good, HSG C	
	19,084	79 \	Woods/gras	s comb., G	Good, HSG D	
1,2 1,2	202,449 202,449	72	Weighted A 100.00% Pe	verage ervious Are	a	
Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description	
11.4	150	0.2400	0.22		Sheet Flow, Sheet flow: Woods Woods: Light underbrush n= 0.400 P2= 3.00"	_
6.5	1,135	0.3400	2.92		Shallow Concentrated Flow, Shallow concentrated: Woodland Ky= 5.0 fps	Woods
1.3	595	0.0780	7.53	30.11	Trap/Vee/Rect Channel Flow, SWALE Bot.W=2.00' D=1.00' Z= 2.0 '/' Top.W=6.00' n= 0.040 Mountain streams	
19.2	1,880	Total				-
			Summ	ary for S	ubcatchment 8S: Area-8	
Runoff	=	34.66 c	fs @ 12.09	9 hrs, Volu	me= 2.363 af, Depth= 2.20"	
Runoff b Type II 2	y SCS TF 4-hr 10-Y	R-20 met ⁄ear Rai	hod, UH=S nfall=5.00"	CS, Time S	Span= 0.00-144.00 hrs, dt= 0.05 hrs	
A	rea (sf)	CN I	Description			_
5	50,764 11.266	72 \ 79 \	Woods/gras Woods/gras	ss comb., G ss comb., G	Good, HSG C Good, HSG D	
5	62,030	72	Weighted A	verage		-
5	62,030		100.00% Pe	ervious Are	a	
Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description	
13.0	150	0.1700	0.19		Sheet Flow, Sheet flow: Woods	_
1.3	235	0.1900	3.05		Shallow Concentrated Flow, Shallow concentrated: Short Grass Pasture Kv= 7.0 fps	Meadow
2.1	1,320	0.1000	10.63	79.76	Trap/Vee/Rect Channel Flow, mountain stream Bot.W=2.00' D=1.50' Z= 2.0 '/' Top.W=8.00' n= 0.040 Mountain streams	
10.4	4 705	Tatal				_

16.4 1,705 Total

Summary for Subcatchment 9S: Area-9

Runoff=69.48 cfs @12.11 hrs, Volume=4.950 af, Depth=2.28"Runoff by SCS TR-20 method, UH=SCS, Time Span=0.00-144.00 hrs, dt=0.05 hrs

Type II 24-hr 10-Year Rainfall=5.00"

08077_Existing

 Type II 24-hr 10-Year Rainfall=5.00"

 Printed 12/9/2011

 C
 Page 7

Prepared by The LA Group P.C. HydroCAD® 9.10 s/n 00439 © 2010 HydroCAD Software Solutions LLC

_	A	rea (sf)	CN	Description		
		16,935	98	Paved park	ing, HSG C	
		10,120	98	Roofs, HSC	θČ	
	4	25,195	72	Woods/gras	ss comb., G	Good, HSG C
	6	76,065	72	Woods/gras	ss comb., G	Good, HSG C
_		6,220	79	Woods/gras	ss comb., G	Bood, HSG D
	1,1	34,535	73	Weighted A	verage	
	1,1	07,480	9	97.62% Pe	rvious Area	
		27,055	2	2.38% Impe	ervious Area	a
	Тс	Length	Slope	Velocity	Capacity	Description
	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	
	10.5	150	0.2900	0.24		Sheet Flow, Sheet flow: Woods
						Woods: Light underbrush n= 0.400 P2= 3.00"
	0.9	170	0.4000	3.16		Shallow Concentrated Flow, Shallow concentrated: Woods
						Woodland Kv= 5.0 fps
	6.5	1,385	0.2600	3.57		Shallow Concentrated Flow, Shallow concentrated: Meadow
_						Short Grass Pasture Kv= 7.0 fps
	17.9	1,705	Total			

Summary for Subcatchment 11.2S: Area-11.2

Runoff = 47.62 cfs @ 12.38 hrs, Volume= 5.719 af, Depth= 2.20"

Runoff by SCS TR-20 method, UH=SCS, Time Span= 0.00-144.00 hrs, dt= 0.05 hrs Type II 24-hr 10-Year Rainfall=5.00"

הופמ נטון טרא טפטטוןעוטוו	
1,255,520 72 Woods/grass comb., Good, HSG C	-
85,445 72 Woods/grass comb., Good, HSG C	
19,210 79 Woods/grass comb., Good, HSG D	_
1,360,175 72 Weighted Average	
1,360,175 100.00% Pervious Area	
To Longth Clans Velocity Conscity Description	
(min) (feet) (ft/ft) (ft/sec) (cfs)	
28.8 150 0.0933 0.09 Sheet Flow, Sheet flow: Woods	_
Woods: Dense underbrush n= 0.800 P2= 3.00"	
3.85000.09602.17Shallow Concentrated Flow, Shallow concentrated:	Meadov
Short Grass Pasture Kv= 7.0 fps	
5.38850.31102.79Shallow Concentrated Flow, Shallow concentrated:	Woods
Woodland Kv= 5.0 fps	
1.63550.28173.72Shallow Concentrated Flow, Shallow concentrated:	Meadov
Short Grass Pasture Kv= 7.0 fps	
0.8 830 0.2600 17.15 128.61 Trap/Vee/Rect Channel Flow,	
Bot.W=2.00' D=1.50' Z= 2.0 '/' Top.W=8.00'	
n= 0.040 Mountain streams	_

40.3 2,720 Total

Summary for Subcatchment 11.3S: Area-11.3

Runoff = 198.80 cfs @ 12.31 hrs, Volume= 21.503 af, Depth= 2.28"

Runoff by SCS TR-20 method, UH=SCS, Time Span= 0.00-144.00 hrs, dt= 0.05 hrs Type II 24-hr 10-Year Rainfall=5.00"

_	Ai	rea (sf)	CN	Description		
	4,3	43,934	72	Woods/gras	ss comb., G	Bood, HSG C
	2	27,862	72	Woods/gras	ss comb., G	Bood, HSG C
	1	42,150	98	Paved park	ing & roofs	
_	2	14,881	79	Woods/gras	ss comb., G	Good, HSG D
	4,9	28,827	73	Weighted A	verage	
	4,7	86,677	9	97.12% Pe	rvious Area	
	1	42,150		2.88% Impe	ervious Area	a
	Tc (min)	Length	Slope	Velocity	Capacity	Description
-	10.2	150	0.1133	0.25	(010)	Sheet Flow, Sheet flow: Meadow
				0.20		Grass: Dense n= 0.240 P2= 3.00"
	4.7	970	0.2412	3.44		Shallow Concentrated Flow, Shallow concentrated: Meadow
						Short Grass Pasture Kv= 7.0 fps
	8.3	1,435	0.3300	2.87		Shallow Concentrated Flow, Shallow concentrated: Woods
						Woodland Kv= 5.0 fps
	2.6	270	0.0593	1.70		Shallow Concentrated Flow, Shallow concentrated: Meadow
						Short Grass Pasture Kv= 7.0 fps
	4.6	730	0.2800	2.65		Shallow Concentrated Flow, woods
						Woodland Kv= 5.0 fps
	3.5	790	0.2810	3.71		Shallow Concentrated Flow, Shallow concentrated: Develope
						Short Grass Pasture Kv= 7.0 fps
	0.7	850	0.1500	19.75	158.03	Trap/Vee/Rect Channel Flow, road ditch
						Bot.W=2.00' D=2.00' Z= 1.0 '/' Top.W=6.00'
	0 4		0 4 5 0 0	00.74	504 50	n= 0.030 Earth, grassed & winding
	0.1	90	0.1500	26.71	524.52	Pipe Channel, culvert
						60.0" Round Area= 19.6 st Perim= 15.7' r= 1.25'
	0.0	075	0 0000	00.04	4 0 4 0 0 0	n= 0.025 Corrugated metal
	0.2	375	0.2000	28.04	1,346.06	Irap/vee/Rect Channel Flow, stream
						BUT. $VV = 4.00$ D=4.00 Z= 2.07 IOP. $VV = 20.00$
_	010	E 000	.			n= 0.040 Earth, CODDIE DOTTOM, Clean Sides
	34.9	5,660	i otal			

Summary for Subcatchment 11.4S: Area-11.4

 Runoff
 =
 38.19 cfs @
 12.12 hrs, Volume=
 2.812 af, Depth=
 2.20"

 Runoff by SCS TR-20 method, UH=SCS, Time Span=
 0.00-144.00 hrs, dt=
 0.05 hrs

Type II 24-hr 10-Year Rainfall=5.00"

08077_Existing

 Type II 24-hr 10-Year Rainfall=5.00"

 Printed 12/9/2011

 C
 Page 9

Prepared by The LA Group P.C. HydroCAD® 9.10 s/n 00439 © 2010 HydroCAD Software Solutions LLC

A	rea (sf)	CN	Descriptior	า	
5	80,570	72	Woods/gra	iss comb.,	Good, HSG C
	61,400	72	Woods/gra	iss comb.,	Good, HSG C
	26,785	79	Woods/gra	iss comb.,	Good, HSG D
6	68,755	72	Weighted A	Average	
6	68,755		100.00% F	Pervious Ar	ea
Тс	l enath	Slope	Velocity	Canacity	Description
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	
10.1	150	0.3200	0.25		Sheet Flow, Sheet flow: Woods
					Woods: Light underbrush n= 0.400 P2= 3.00"
1.7	255	0.2400	2.45		Shallow Concentrated Flow, Shallow concentrated: Woods
					Woodland Kv= 5.0 fps
0.8	130	0.1500	2.71		Shallow Concentrated Flow, Shallow concentrated: Meadow
<u> </u>	4 055	0.0400	0.70		Short Grass Pasture Kv= 7.0 fps
6.3	1,055	0.3100	2.78		Shallow Concentrated Flow, Shallow concentrated: woods
18.9	1,590	Total			
			Summar	y for Sub	ocatchment 11.5S: Area-11.5
Runoff	=	12.93 c	fs @ 12.′	13 hrs, Vol	ume= 0.976 af, Depth= 2.20"

Runoff by SCS TR-20 method, UH=SCS, Time Span= 0.00-144.00 hrs, dt= 0.05 hrs Type II 24-hr 10-Year Rainfall=5.00"

Area (s) CN	Description				
204,00	0 72	Woods/gra	Woods/grass comb., Good, HSG C			
17,93	0 72	Woods/gra	ss comb., G	Good, HSG C		
10,28	5 79	Woods/gra	ss comb., G	Good, HSG D		
232,21	5 72	Weighted A	Verage			
232,21	5	100.00% P	ervious Are	a		
Tc Lenç (min) (fe	th Slo et) (ft/	be Velocity ft) (ft/sec)	Capacity (cfs)	Description		
12.0 1	50 0.21	0.21	· · · · · ·	Sheet Flow, Sheet flow: Woods		
1.9 3	20 0.31	00 2.78		Woods: Light underbrush n= 0.400 P2= 3.00" Shallow Concentrated Flow, Shallow concentrated: Woods Woodland Ky= 5.0 fps		
1.0 1	75 0.17	2.89		Shallow Concentrated Flow, Shallow concentrated: Meadow		
4.8 8	15 0.320	00 2.83		Short Grass Pasture Kv= 7.0 fps Shallow Concentrated Flow, Shallow concentrated: Woods Woodland Kv= 5.0 fps		

19.7 1,460 Total

Summary for Subcatchment 12.1S: Area-12.1

Runoff = 76.97 cfs @ 12.16 hrs, Volume= 6.295 af, Depth= 2.20"

Runoff by SCS TR-20 method, UH=SCS, Time Span= 0.00-144.00 hrs, dt= 0.05 hrs Type II 24-hr 10-Year Rainfall=5.00"

_	A	rea (sf)	CN D	escription			
	31,505 79 Woods/grass comb., Good, HSG D						
-	1,4	05,505	72 V	Volus/yras			
	1,4	97,070	/	veignted A	verage	2	
	1,4	97,070	1	00.00% Pe	ervious Are	d	
	Tc	Length	Slope	Velocity	Capacity	Description	
_	(min)	(feet)	(ft/ft)	(ft/sec)	(cts)		
	11.7	100	0.1000	0.14		Sheet Flow, Sheet flow: Woods	
						Woods: Light underbrush n= 0.400 P2= 3.00"	
	7.5	1,337	0.3500	2.96		Shallow Concentrated Flow, woods	
						Woodland Kv= 5.0 fps	
	2.6	350	0.2000	2.24		Shallow Concentrated Flow, wetland	
						Woodland Kv= 5.0 fps	
	0.8	300	0.2000	6.16	12.32	Trap/Vee/Rect Channel Flow, stream/wetland	
						Bot.W=1.00' D=1.00' Z= 1.0 '/' Top.W=3.00'	
_						n= 0.070 Sluggish weedy reaches w/pools	
	00 C	2 007	Total				

22.6 2,087 Total

Reach and Culvert Summaries 1 & 10-yr Storm Events

Summary for Reach 1R: Mountain Stream

 Inflow Area =
 30.370 ac, 0.00% Impervious, Inflow Depth = 0.81" for 1-Year event

 Inflow =
 21.79 cfs @ 12.20 hrs, Volume=
 2.045 af

 Outflow =
 20.34 cfs @ 12.35 hrs, Volume=
 2.045 af, Atten= 7%, Lag= 8.8 min

Routing by Stor-Ind+Trans method, Time Span= 0.00-144.00 hrs, dt= 0.05 hrs Max. Velocity= 6.03 fps, Min. Travel Time= 4.9 min Avg. Velocity = 1.93 fps, Avg. Travel Time= 15.2 min

Peak Storage= 5,988 cf @ 12.26 hrs Average Depth at Peak Storage= 0.40' Bank-Full Depth= 1.00', Capacity at Bank-Full= 147.41 cfs

20.00' x 1.00' deep Parabolic Channel, n= 0.040 Mountain streams Length= 1,760.0' Slope= 0.1534 '/' Inlet Invert= 2,380.00', Outlet Invert= 2,110.00'

Summary for Reach 8.0: Intermediate Point

Inflow /	Area	=	27.604 ac,	0.00% Impervious,	Inflow Depth = 0.8	31" for 1-Year event
Inflow		=	22.95 cfs @	12.14 hrs, Volume	= 1.859 af	
Outflov	V	=	22.95 cfs @	12.14 hrs, Volume	= 1.859 af,	Atten= 0%, Lag= 0.0 min

Routing by Stor-Ind+Trans method, Time Span= 0.00-144.00 hrs, dt= 0.05 hrs

Summary for Reach 8.1R: Mountain stream

 Inflow Area =
 27.604 ac, 0.00% Impervious, Inflow Depth = 0.81" for 1-Year event

 Inflow =
 22.95 cfs @ 12.14 hrs, Volume=
 1.859 af

 Outflow =
 22.38 cfs @ 12.18 hrs, Volume=
 1.859 af, Atten= 2%, Lag= 2.7 min

Routing by Stor-Ind+Trans method, Time Span= 0.00-144.00 hrs, dt= 0.05 hrs Max. Velocity= 9.51 fps, Min. Travel Time= 1.5 min Avg. Velocity = 3.29 fps, Avg. Travel Time= 4.3 min

Peak Storage= 2,040 cf @ 12.16 hrs Average Depth at Peak Storage= 0.64' Bank-Full Depth= 1.50', Capacity at Bank-Full= 124.35 cfs

2.50' x 1.50' deep channel, n= 0.040 Mountain streams Side Slope Z-value= 2.0 '/' Top Width= 8.50' Length= 850.0' Slope= 0.1906 '/' Inlet Invert= 1,816.00', Outlet Invert= 1,654.00'

Type II 24-hr 1-Year Rainfall=3.00" 08077 Existing Prepared by The LA Group P.C. Printed 12/9/2011 HydroCAD® 9.10 s/n 00439 © 2010 HydroCAD Software Solutions LLC Page 2 Summary for Reach 11.10R: Mountain stream 51.909 ac, 0.00% Impervious, Inflow Depth = 0.81" for 1-Year event Inflow Area = 24.38 cfs @ 12.45 hrs. Volume= Inflow 3.495 af = Outflow 24.31 cfs @ 12.48 hrs, Volume= 3.495 af, Atten= 0%, Lag= 1.3 min = Routing by Stor-Ind+Trans method, Time Span= 0.00-144.00 hrs, dt= 0.05 hrs Max. Velocity= 8.22 fps, Min. Travel Time= 0.8 min Avg. Velocity = 3.33 fps, Avg. Travel Time= 1.9 min Peak Storage= 1,112 cf @ 12.46 hrs Average Depth at Peak Storage= 0.58' Bank-Full Depth= 4.00', Capacity at Bank-Full= 1,501.63 cfs 20.00' x 4.00' deep Parabolic Channel, n= 0.040 Mountain streams Length= 375.0' Slope= 0.1760 '/' Inlet Invert= 1,760.00', Outlet Invert= 1,694.00'

Summary for Reach 11.1R: Mountain stream

 Inflow Area =
 15.353 ac, 0.00% Impervious, Inflow Depth = 0.81" for 1-Year event

 Inflow =
 12.87 cfs @ 12.13 hrs, Volume=
 1.034 af

 Outflow =
 12.43 cfs @ 12.22 hrs, Volume=
 1.034 af, Atten= 3%, Lag= 5.4 min

Routing by Stor-Ind+Trans method, Time Span= 0.00-144.00 hrs, dt= 0.05 hrs Max. Velocity= 8.51 fps, Min. Travel Time= 3.1 min Avg. Velocity = 3.07 fps, Avg. Travel Time= 8.5 min

Peak Storage= 2,274 cf @ 12.17 hrs Average Depth at Peak Storage= 0.64' Bank-Full Depth= 2.00', Capacity at Bank-Full= 133.18 cfs

6.00' x 2.00' deep Parabolic Channel, n= 0.040 Mountain streams Length= 1,560.0' Slope= 0.1833 '/' Inlet Invert= 2,274.00', Outlet Invert= 1,988.00'

Summary for Reach 11.2R: Sluggish/weedy stream

Inflow Area	a =	5.331 ac,	0.00% Imper	vious, Inflow D	epth = 0.81"	for 1-Yea	ar event
Inflow	=	4.37 cfs @	12.15 hrs, V	/olume=	0.359 af		
Outflow	=	3.82 cfs @	12.33 hrs, V	/olume=	0.359 af, Atte	en= 13%,	Lag= 11.0 min

Routing by Stor-Ind+Trans method, Time Span= 0.00-144.00 hrs, dt= 0.05 hrs Max. Velocity= 1.94 fps, Min. Travel Time= 6.4 min Avg. Velocity = 0.63 fps, Avg. Travel Time= 19.7 min

Peak Storage= 1,468 cf @ 12.22 hrs Average Depth at Peak Storage= 0.28' Bank-Full Depth= 1.00', Capacity at Bank-Full= 60.21 cfs

20.00' x 1.00' deep Parabolic Channel, n= 0.070 Sluggish weedy reaches w/pools Length= 740.0' Slope= 0.0784 '/' Inlet Invert= 2,300.00', Outlet Invert= 2,242.00'

‡

Summary for Reach 11.4R: Bouldery stream

Inflow Area =31.225 ac, 0.00% Impervious, Inflow Depth =0.81" for 1-Year eventInflow =15.65 cfs @12.41 hrs, Volume=2.103 afOutflow =15.54 cfs @12.47 hrs, Volume=2.103 af, Atten= 1%, Lag= 3.1 min

Routing by Stor-Ind+Trans method, Time Span= 0.00-144.00 hrs, dt= 0.05 hrs Max. Velocity= 6.35 fps, Min. Travel Time= 1.7 min Avg. Velocity = 2.69 fps, Avg. Travel Time= 4.0 min

Peak Storage= 1,595 cf @ 12.44 hrs Average Depth at Peak Storage= 0.41' Bank-Full Depth= 2.00', Capacity at Bank-Full= 482.65 cfs

20.00' x 2.00' deep Parabolic Channel, n= 0.050 Mountain streams w/large boulders Length= 650.0' Slope= 0.2615 '/' Inlet Invert= 2,390.00', Outlet Invert= 2,220.00'

Peak Storage= 835 cf @ 12.43 hrs Average Depth at Peak Storage= 0.62' Bank-Full Depth= 2.00', Capacity at Bank-Full= 294.12 cfs

10.00' x 2.00' deep Parabolic Channel, n= 0.040 Mountain streams Length= 360.0' Slope= 0.2722 '/' Inlet Invert= 1,988.00', Outlet Invert= 1,890.00' **08077_Existing** Prepared by The LA Group P.C. HydroCAD® 9.10 s/n 00439 © 2010 HydroCAD Software Solutions LLC

Summary for Reach 11.8R: Mountain stream

Inflow /	Area =	51.909 ac,	0.00% Impervious,	Inflow Depth = 0.8	31" for 1-Year event
Inflow	=	24.46 cfs @	12.44 hrs, Volume	= 3.496 af	
Outflov	v =	24.41 cfs @	12.45 hrs, Volume	= 3.496 af,	Atten= 0%, Lag= 0.9 min

Routing by Stor-Ind+Trans method, Time Span= 0.00-144.00 hrs, dt= 0.05 hrs Max. Velocity= 11.07 fps, Min. Travel Time= 0.5 min Avg. Velocity = 4.64 fps, Avg. Travel Time= 1.3 min

Peak Storage= 773 cf @ 12.44 hrs Average Depth at Peak Storage= 0.41' Bank-Full Depth= 4.00', Capacity at Bank-Full= 3,230.06 cfs

25.00' x 4.00' deep Parabolic Channel, n= 0.040 Mountain streams Length= 350.0' Slope= 0.5000 '/' Inlet Invert= 1,882.00', Outlet Invert= 1,707.00'

Summary for Reach 1R: Mountain Stream

Inflow Area =30.370 ac, 0.00% Impervious, Inflow Depth =2.20" for 10-Year eventInflow =65.12 cfs @12.18 hrs, Volume=5.562 afOutflow =62.96 cfs @12.28 hrs, Volume=5.562 af, Atten= 3%, Lag= 6.1 min

Routing by Stor-Ind+Trans method, Time Span= 0.00-144.00 hrs, dt= 0.05 hrs Max. Velocity= 8.51 fps, Min. Travel Time= 3.4 min Avg. Velocity = 2.42 fps, Avg. Travel Time= 12.1 min

Peak Storage= 13,054 cf @ 12.23 hrs Average Depth at Peak Storage= 0.68' Bank-Full Depth= 1.00', Capacity at Bank-Full= 147.41 cfs

20.00' x 1.00' deep Parabolic Channel, n= 0.040 Mountain streams Length= 1,760.0' Slope= 0.1534 '/' Inlet Invert= 2,380.00', Outlet Invert= 2,110.00'

Summary for Reach 8.0: Intermediate Point

Inflow /	Area	=	27.604 ac,	0.00% Impervious,	Inflow Depth = 2.2	20" for 10-Year event
Inflow		=	68.05 cfs @	12.12 hrs, Volume	= 5.056 af	
Outflov	N	=	68.05 cfs @	12.12 hrs, Volume	= 5.056 af,	Atten= 0%, Lag= 0.0 min

Routing by Stor-Ind+Trans method, Time Span= 0.00-144.00 hrs, dt= 0.05 hrs

Summary for Reach 8.1R: Mountain stream

Inflow Area =27.604 ac,0.00% Impervious,Inflow Depth =2.20" for 10-Year eventInflow =68.05 cfs @12.12 hrs,Volume=5.056 afOutflow =66.77 cfs @12.16 hrs,Volume=5.056 af,

Routing by Stor-Ind+Trans method, Time Span= 0.00-144.00 hrs, dt= 0.05 hrs Max. Velocity= 12.83 fps, Min. Travel Time= 1.1 min Avg. Velocity = 4.19 fps, Avg. Travel Time= 3.4 min

Peak Storage= 4,481 cf @ 12.14 hrs Average Depth at Peak Storage= 1.11' Bank-Full Depth= 1.50', Capacity at Bank-Full= 124.35 cfs

2.50' x 1.50' deep channel, n= 0.040 Mountain streams Side Slope Z-value= 2.0 '/' Top Width= 8.50' Length= 850.0' Slope= 0.1906 '/' Inlet Invert= 1,816.00', Outlet Invert= 1,654.00' **08077_Existing** Prepared by The LA Group P.C.

HydroCAD® 9.10 s/n 00439 © 2010 HydroCAD Software Solutions LLC

Summary for Reach 11.10R: Mountain stream

Inflow Are	ea =	51.909 ac,	0.00% Impervious,	Inflow Depth = 2.2	20" for 10-Year event
Inflow	=	76.72 cfs @	12.34 hrs, Volume	= 9.507 af	
Outflow	=	76.58 cfs @	12.36 hrs, Volume	= 9.507 af,	Atten= 0%, Lag= 1.0 min

Routing by Stor-Ind+Trans method, Time Span= 0.00-144.00 hrs, dt= 0.05 hrs Max. Velocity= 11.64 fps, Min. Travel Time= 0.5 min Avg. Velocity = 4.12 fps, Avg. Travel Time= 1.5 min

Peak Storage= 2,472 cf @ 12.35 hrs Average Depth at Peak Storage= 0.99' Bank-Full Depth= 4.00', Capacity at Bank-Full= 1,501.63 cfs

20.00' x 4.00' deep Parabolic Channel, n= 0.040 Mountain streams Length= 375.0' Slope= 0.1760 '/' Inlet Invert= 1,760.00', Outlet Invert= 1,694.00'

Summary for Reach 11.1R: Mountain stream

Inflow Area =15.353 ac,0.00% Impervious,Inflow Depth =2.20"for10-Year eventInflow =38.19 cfs @12.12 hrs,Volume=2.812 afOutflow =36.98 cfs @12.19 hrs,Volume=2.812 af,

Routing by Stor-Ind+Trans method, Time Span= 0.00-144.00 hrs, dt= 0.05 hrs Max. Velocity= 11.72 fps, Min. Travel Time= 2.2 min Avg. Velocity = 3.80 fps, Avg. Travel Time= 6.8 min

Peak Storage= 4,985 cf @ 12.15 hrs Average Depth at Peak Storage= 1.08' Bank-Full Depth= 2.00', Capacity at Bank-Full= 133.18 cfs

6.00' x 2.00' deep Parabolic Channel, n= 0.040 Mountain streams Length= 1,560.0' Slope= 0.1833 '/' Inlet Invert= 2,274.00', Outlet Invert= 1,988.00'

Summary for Reach 11.2R: Sluggish/weedy stream

Inflow Are	ea =	5.331 ac,	0.00% Impervious,	Inflow Depth = 2.2	20" for 10-Year event
Inflow	=	12.93 cfs @	12.13 hrs, Volume=	= 0.976 af	
Outflow	=	12.01 cfs @	12.26 hrs, Volume=	= 0.976 af,	Atten= 7%, Lag= 7.8 min

Routing by Stor-Ind+Trans method, Time Span= 0.00-144.00 hrs, dt= 0.05 hrs Max. Velocity= 2.76 fps, Min. Travel Time= 4.5 min Avg. Velocity = 0.78 fps, Avg. Travel Time= 15.9 min

Peak Storage= 3,253 cf @ 12.18 hrs Average Depth at Peak Storage= 0.48' Bank-Full Depth= 1.00', Capacity at Bank-Full= 60.21 cfs

20.00' x 1.00' deep Parabolic Channel, n= 0.070 Sluggish weedy reaches w/pools Length= 740.0' Slope= 0.0784 '/' Inlet Invert= 2,300.00', Outlet Invert= 2,242.00'

‡

Summary for Reach 11.4R: Bouldery stream

Inflow Area =31.225 ac, 0.00% Impervious, Inflow Depth = 2.20" for 10-Year eventInflow =47.62 cfs @12.39 hrs, Volume=5.719 afOutflow =47.37 cfs @12.42 hrs, Volume=5.719 af, Atten= 1%, Lag= 2.0 min

Routing by Stor-Ind+Trans method, Time Span= 0.00-144.00 hrs, dt= 0.05 hrs Max. Velocity= 8.94 fps, Min. Travel Time= 1.2 min Avg. Velocity = 3.34 fps, Avg. Travel Time= 3.2 min

Peak Storage= 3,457 cf @ 12.40 hrs Average Depth at Peak Storage= 0.68' Bank-Full Depth= 2.00', Capacity at Bank-Full= 482.65 cfs

20.00' x 2.00' deep Parabolic Channel, n= 0.050 Mountain streams w/large boulders Length= 650.0' Slope= 0.2615 '/' Inlet Invert= 2,390.00', Outlet Invert= 2,220.00'

Peak Storage= 1,867 cf @ 12.32 hrs Average Depth at Peak Storage= 1.07' Bank-Full Depth= 2.00', Capacity at Bank-Full= 294.12 cfs

10.00' x 2.00' deep Parabolic Channel, n= 0.040 Mountain streams Length= 360.0' Slope= 0.2722 '/' Inlet Invert= 1,988.00', Outlet Invert= 1,890.00' **08077_Existing** Prepared by The LA Group P.C. HydroCAD® 9.10 s/n 00439 © 2010 HydroCAD Software Solutions LLC

Summary for Reach 11.8R: Mountain stream

Inflow <i>J</i>	Area	I =	51.909 ac,	0.00% Impervious	Inflow Depth = 2.	.20" for 10-Year event
Inflow		=	77.12 cfs @	12.32 hrs, Volum	e= 9.507 af	
Outflov	N	=	76.88 cfs @	12.34 hrs, Volum	e= 9.507 af,	, Atten= 0%, Lag= 0.8 min

Routing by Stor-Ind+Trans method, Time Span= 0.00-144.00 hrs, dt= 0.05 hrs Max. Velocity= 15.71 fps, Min. Travel Time= 0.4 min Avg. Velocity = 5.67 fps, Avg. Travel Time= 1.0 min

Peak Storage= 1,715 cf @ 12.33 hrs Average Depth at Peak Storage= 0.70' Bank-Full Depth= 4.00', Capacity at Bank-Full= 3,230.06 cfs

25.00' x 4.00' deep Parabolic Channel, n= 0.040 Mountain streams Length= 350.0' Slope= 0.5000 '/' Inlet Invert= 1,882.00', Outlet Invert= 1,707.00'

Summary for Pond 11.3R: 72" CMP (x2)

Inflow Area	=	31.225 ac,	0.00% Impervious,	Inflow Depth = 0	.81" for 1-Year	event
Inflow	=	15.65 cfs @	12.41 hrs, Volume	= 2.103 af		
Outflow	=	15.65 cfs @	12.41 hrs, Volume	= 2.103 af	, Atten= 0%, Lag	g= 0.0 min
Primary	=	15.65 cfs @	12.41 hrs, Volume	= 2.103 af		

Routing by Stor-Ind method, Time Span= 0.00-144.00 hrs, dt= 0.05 hrs / 3 Peak Elev= 2,412.97' @ 12.41 hrs Surf.Area= 79 sf Storage= 67 cf

Plug-Flow detention time= 0.2 min calculated for 2.102 af (100% of inflow) Center-of-Mass det. time= 0.2 min (902.1 - 901.9)

Volume	Inv	ert Avail.	Storage	Storage	Description			
#1	2,412.0	00' 2	2,120 cf	Custom	Stage Data (Pr	r ismatic) Lisi	ted below (Red	calc)
Elevatio (fee	n t)	Surf.Area	Inc. (cubic	Store	Cum.Store			
2,412.0	0	60 100	(00010	0	0			
2,414.0	0	260		360 640	520 1 160			
2,410.0	0	580		960	2,120			
Device	Routing	Inve	ert Outle	t Devices	S			
#1	Primary	2,412.0	00' 72.0' L= 12 Inlet n= 0.	' Round 20.0' CF / Outlet In 025 Cor	Culvert X 2.00 PP, projecting, nonvert= 2,412.00' rugated metal	o headwall, / 2,394.00'	Ke= 0.900 S= 0.1500 '/'	Cc= 0.900

Primary OutFlow Max=15.59 cfs @ 12.41 hrs HW=2,412.97' (Free Discharge) -1=Culvert (Inlet Controls 15.59 cfs @ 2.64 fps)

Summary for Pond 11.7R: Culvert

Inflow Area	I =	51.909 ac,	0.00% Impervious,	Inflow Depth = 0	.81" for 1-Year event
Inflow	=	24.46 cfs @	12.44 hrs, Volume	= 3.496 af	
Outflow	=	24.46 cfs @	12.44 hrs, Volume	= 3.496 af	ⁱ , Atten= 0%, Lag= 0.0 min
Primary	=	24.46 cfs @	12.44 hrs, Volume	= 3.496 af	-

Routing by Stor-Ind method, Time Span= 0.00-144.00 hrs, dt= 0.05 hrs Peak Elev= 1,890.78' @ 12.44 hrs

Device	Routing	Invert	Outlet Devices
#1	Primary	1,889.00'	48.0" Round Culvert
	2		L= 46.0' CPP, end-section conforming to fill, Ke= 0.500
			Inlet / Outlet Invert= 1,889.00' / 1,882.00' S= 0.1522 '/' Cc= 0.900
			n= 0.025 Corrugated metal
#2	Primary	1,894.00'	15.0' long x 35.0' breadth Broad-Crested Rectangular Weir
			Head (feet) 0.20 0.40 0.60 0.80 1.00 1.20 1.40 1.60
			Coef. (English) 2.68 2.70 2.70 2.64 2.63 2.64 2.64 2.63

Primary OutFlow Max=24.40 cfs @ 12.44 hrs HW=1,890.77' (Free Discharge) -1=Culvert (Inlet Controls 24.40 cfs @ 4.53 fps) -2=Broad-Crested Rectangular Weir (Controls 0.00 cfs)

Summary for Pond 11.9R: Culvert

Inflow Are	a =	51.909 ac,	0.00% Impervious,	Inflow Depth = 0).81" for 1-Year event
Inflow	=	24.41 cfs @	12.45 hrs, Volume=	= 3.496 a	f
Outflow	=	24.38 cfs @	12.45 hrs, Volume=	= 3.495 a	f, Atten= 0%, Lag= 0.1 min
Primary	=	24.38 cfs @	12.45 hrs, Volume=	= 3.495 a	f

Routing by Stor-Ind method, Time Span= 0.00-144.00 hrs, dt= 0.05 hrs / 2 Peak Elev= 1,775.64' @ 12.45 hrs Surf.Area= 112 sf Storage= 136 cf

Plug-Flow detention time= 0.2 min calculated for 3.494 af (100% of inflow) Center-of-Mass det. time= 0.1 min (909.4 - 909.3)

Volume	Inv	ert Avail.S	Storage	Storage	Description	
#1	1,773.0	00' 4	,126 cf	Custom	Stage Data (Pi	r ismatic) Listed below (Recalc)
Elevatio (feet	n t)	Surf.Area (sq-ft)	Inc. (cubic	.Store c-feet)	Cum.Store (cubic-feet)	
1,773.0	0	10		0	0	
1,774.0	0	30		20	20	
1,776.0	0	130		160	180	
1,778.0	0	470		600	780	
1,780.0	0	1,317		1,787	2,567	
1,781.0	0	1,800		1,559	4,126	
Device	Routing	Inve	rt Outle	et Device	S	
#1	Primary	1,774.00	0' 60.0' L= 90 Inlet n= 0.	" Round 0.0' CPF / Outlet I .025 Cor	l Culvert P, square edge l nvert= 1,774.00 ^r rugated metal	neadwall, Ke= 0.500 / 1,760.00' S= 0.1556 '/' Cc= 0.900

Primary OutFlow Max=24.35 cfs @ 12.45 hrs HW=1,775.64' (Free Discharge) -1=Culvert (Inlet Controls 24.35 cfs @ 4.36 fps)

Summary for Pond 11.3R: 72" CMP (x2)

Inflow Area	=	31.225 ac,	0.00% Impervious,	Inflow Depth = 2	.20" for 10-Year event
Inflow	=	47.62 cfs @	12.38 hrs, Volume	= 5.719 af	
Outflow	=	47.62 cfs @	12.39 hrs, Volume	= 5.719 af	, Atten= 0%, Lag= 0.0 min
Primary	=	47.62 cfs @	12.39 hrs, Volume	= 5.719 af	

Routing by Stor-Ind method, Time Span= 0.00-144.00 hrs, dt= 0.05 hrs / 3 Peak Elev= 2,413.73' @ 12.39 hrs Surf.Area= 95 sf Storage= 133 cf

Plug-Flow detention time= 0.1 min calculated for 5.717 af (100% of inflow) Center-of-Mass det. time= 0.1 min (871.2 - 871.0)

Volume	Inv	ert Avail.S	torage	Storage	Description			
#1	2,412.0	00' 2,	120 cf (Custom	Stage Data (Pi	r ismatic) Lisi	ted below (Red	calc)
Elevatio (feet	n t)	Surf.Area (sq-ft)	Inc.S (cubic-	Store feet)	Cum.Store (cubic-feet)			
2,412.0 2,414.0 2,416.0 2,418.0 2,420.0	0 0 0 0 0	60 100 260 380 580		0 160 360 640 960	0 160 520 1,160 2,120			
Device	Routing	Inver	t Outlet	Devices	S			
#1	Primary	2,412.00	72.0" L= 120 Inlet / n= 0.0	Round 0.0' CF Outlet In 25 Cor	Culvert X 2.00 PP, projecting, novert= 2,412.00 rugated metal	o headwall, / 2,394.00'	Ke= 0.900 S= 0.1500 '/'	Cc= 0.900

Primary OutFlow Max=47.43 cfs @ 12.39 hrs HW=2,413.72' (Free Discharge) -1=Culvert (Inlet Controls 47.43 cfs @ 3.53 fps)

Summary for Pond 11.7R: Culvert

Inflow A	rea =	51.909 ac,	0.00% Impervious,	Inflow Depth = 2	.20" for 10-Year event
Inflow	=	77.12 cfs @	12.32 hrs, Volume	= 9.507 af	
Outflow	=	77.12 cfs @	12.32 hrs, Volume	= 9.507 af	, Atten= 0%, Lag= 0.0 min
Primary	=	77.12 cfs @	12.32 hrs, Volume	= 9.507 af	

Routing by Stor-Ind method, Time Span= 0.00-144.00 hrs, dt= 0.05 hrs Peak Elev= 1,892.61' @ 12.32 hrs

Device	Routing	Invert	Outlet Devices
#1	Primary	1,889.00'	48.0" Round Culvert
	-		L= 46.0' CPP, end-section conforming to fill, Ke= 0.500
			Inlet / Outlet Invert= 1,889.00' / 1,882.00' S= 0.1522 '/' Cc= 0.900
			n= 0.025 Corrugated metal
#2	Primary	1,894.00'	15.0' long x 35.0' breadth Broad-Crested Rectangular Weir
			Head (feet) 0.20 0.40 0.60 0.80 1.00 1.20 1.40 1.60
			Coef. (English) 2.68 2.70 2.70 2.64 2.63 2.64 2.64 2.63

Primary OutFlow Max=76.78 cfs @ 12.32 hrs HW=1,892.59' (Free Discharge) -1=Culvert (Inlet Controls 76.78 cfs @ 6.45 fps) -2=Broad-Crested Rectangular Weir (Controls 0.00 cfs)

Summary for Pond 11.9R: Culvert

Inflow Area	a =	51.909 ac,	0.00% Impervious,	Inflow Depth =	2.20" for	10-Year event
Inflow	=	76.88 cfs @	12.34 hrs, Volume	= 9.507	af	
Outflow	=	76.72 cfs @	12.34 hrs, Volume	= 9.507	af, Atten=	0%, Lag= 0.2 min
Primary	=	76.72 cfs @	12.34 hrs, Volume	= 9.507	af	

Routing by Stor-Ind method, Time Span= 0.00-144.00 hrs, dt= 0.05 hrs / 2 Peak Elev= 1,777.10' @ 12.34 hrs Surf.Area= 317 sf Storage= 426 cf

Plug-Flow detention time= 0.4 min calculated for 9.507 af (100% of inflow) Center-of-Mass det. time= 0.1 min (874.3 - 874.2)

Volume	Inv	ert Avail.S	Storage	Storage	Description	
#1	1,773.0	00' 4	,126 cf	Custom	Stage Data (Pi	r ismatic) Listed below (Recalc)
Elevatio (feet	n t)	Surf.Area (sq-ft)	Inc. (cubic	.Store c-feet)	Cum.Store (cubic-feet)	
1,773.0	0	10		0	0	
1,774.0	0	30		20	20	
1,776.0	0	130		160	180	
1,778.0	0	470		600	780	
1,780.0	0	1,317		1,787	2,567	
1,781.0	0	1,800		1,559	4,126	
Device	Routing	Inve	rt Outle	et Device	S	
#1	Primary	1,774.00	0' 60.0' L= 90 Inlet n= 0.	" Round 0.0' CPF / Outlet I .025 Cor	l Culvert P, square edge l nvert= 1,774.00 ^r rugated metal	neadwall, Ke= 0.500 / 1,760.00' S= 0.1556 '/' Cc= 0.900

Primary OutFlow Max=76.55 cfs @ 12.34 hrs HW=1,777.10' (Free Discharge) -1=Culvert (Inlet Controls 76.55 cfs @ 5.99 fps) Design Point Summary 1-yr Storm Event Design Point Totals 10 & 100-yr Storm Events

Summary for Reach DP-1: Design Point-1

Inflow /	Area	I =	74.711 ac,	0.00% Impervious	, Inflow Depth = 0.8	84" for 1-Year event
Inflow		=	49.52 cfs @	12.21 hrs, Volum	e= 5.213 af	
Outflov	N	=	49.52 cfs @	12.21 hrs, Volum	e= 5.213 af,	Atten= 0%, Lag= 0.0 min

Routing by Stor-Ind+Trans method, Time Span= 0.00-144.00 hrs, dt= 0.05 hrs

Summary for Reach DP-11: Design Point-11

Inflow .	Area	i =	165.059 ac,	1.98% Impervious, In	flow Depth = 0.84"	for 1-Year event
Inflow		=	90.27 cfs @	12.37 hrs, Volume=	11.579 af	
Outflow	N	=	90.27 cfs @	12.37 hrs, Volume=	11.579 af, At	ten= 0%, Lag= 0.0 min

Routing by Stor-Ind+Trans method, Time Span= 0.00-144.00 hrs, dt= 0.05 hrs

Summary for Reach DP-2: Design Point-2

Inflow /	Area	=	38.001 ac,	0.00% Impervious,	Inflow Depth = 0.8	31" for 1-Year event
Inflow		=	22.71 cfs @	12.30 hrs, Volume	= 2.559 af	
Outflov	N	=	22.71 cfs @	12.30 hrs, Volume	= 2.559 af,	Atten= 0%, Lag= 0.0 min

Routing by Stor-Ind+Trans method, Time Span= 0.00-144.00 hrs, dt= 0.05 hrs

Summary for Reach DP-2a: Design Point 2a

Inflow Ar	ea =	2.886 ac,	0.00% Impervious,	Inflow Depth = 0.8	31" for 1-Year event
Inflow	=	3.29 cfs @	12.04 hrs, Volume:	= 0.194 af	
Outflow	=	3.29 cfs @	12.04 hrs, Volume	= 0.194 af,	Atten= 0%, Lag= 0.0 min

Routing by Stor-Ind+Trans method, Time Span= 0.00-144.00 hrs, dt= 0.05 hrs

Summary for Reach DP-2b: Design Point 2b

Inflow /	Area	a =	17.970 ac,	0.00% Impervious,	Inflow Depth = 0.8	31" for 1-Year event
Inflow		=	15.25 cfs @	12.13 hrs, Volume	= 1.210 af	
Outflov	N	=	15.25 cfs @	12.13 hrs, Volume	= 1.210 af,	Atten= 0%, Lag= 0.0 min

Routing by Stor-Ind+Trans method, Time Span= 0.00-144.00 hrs, dt= 0.05 hrs

Summary for Reach DP-3: Design Point-3

Inflow /	Area =	14.681 ac,	0.00% Impervious,	Inflow Depth = 0.8	31" for 1-Year event
Inflow	=	11.84 cfs @	12.15 hrs, Volume	= 0.989 af	
Outflov	v =	11.84 cfs @	12.15 hrs, Volume	= 0.989 af,	Atten= 0%, Lag= 0.0 min

Routing by Stor-Ind+Trans method, Time Span= 0.00-144.00 hrs, dt= 0.05 hrs

Summary for Reach DP-4: Design Point-4

Inflow /	Area	=	12.333 ac,	0.00% Impervi	ous, Inflow D	epth = 0.8	1" for 1-Y	ear event
Inflow		=	9.80 cfs @	12.16 hrs, Vo	lume=	0.831 af		
Outflov	N	=	9.80 cfs @	12.16 hrs, Vo	lume=	0.831 af, <i>i</i>	Atten= 0%,	Lag= 0.0 min

Routing by Stor-Ind+Trans method, Time Span= 0.00-144.00 hrs, dt= 0.05 hrs

Summary for Reach DP-5: Design Point-5

Inflow /	Area	I =	44.401 ac,	0.00% Impe	rvious,	Inflow De	pth = 0	.81" fo	or 1-Y	ear even	t
Inflow		=	35.40 cfs @	12.16 hrs, \	Volume	=	2.990 af				
Outflov	N	=	35.40 cfs @	12.16 hrs, \	Volume	=	2.990 af	, Atten	= 0%,	Lag= 0.0) min

Routing by Stor-Ind+Trans method, Time Span= 0.00-144.00 hrs, dt= 0.05 hrs

Summary for Reach DP-6: Design Point-6

Inflow A	Area	=	2.817 ac,	0.00% Imp	ervious,	Inflow Dept	h = 0.7	76" for 1-Y	'ear event
Inflow		=	3.48 cfs @	11.99 hrs,	Volume	= 0.	178 af		
Outflow	/	=	3.48 cfs @	11.99 hrs,	Volume	= 0.	178 af,	Atten= 0%,	Lag= 0.0 min

Routing by Stor-Ind+Trans method, Time Span= 0.00-144.00 hrs, dt= 0.05 hrs

Summary for Reach DP-7: Design Point-7

Inflow A	rea =	5.312 ac,	0.00% Impervious,	Inflow Depth = 0.7	76" for 1-Year event
Inflow	=	6.49 cfs @	12.00 hrs, Volume	= 0.337 af	
Outflow	=	6.49 cfs @	12.00 hrs, Volume	= 0.337 af,	Atten= 0%, Lag= 0.0 min

Routing by Stor-Ind+Trans method, Time Span= 0.00-144.00 hrs, dt= 0.05 hrs

Summary for Reach DP-8: Design Point-8

Inflow /	Area	a =	40.507 ac,	0.00% Impervious,	Inflow Depth = 0.8	31" for 1-Year event
Inflow		=	32.83 cfs @	12.16 hrs, Volume	= 2.728 af	
Outflov	N	=	32.83 cfs @	12.16 hrs, Volume	= 2.728 af,	Atten= 0%, Lag= 0.0 min

Routing by Stor-Ind+Trans method, Time Span= 0.00-144.00 hrs, dt= 0.05 hrs

Summary for Reach DP-9: Design Point-9

Inflow /	Area	=	26.045 ac,	2.38% Impervious,	Inflow Depth = 0.8	36" for 1-Year event
Inflow		=	24.38 cfs @	12.12 hrs, Volume	= 1.861 af	
Outflov	v	=	24.38 cfs @	12.12 hrs, Volume	= 1.861 af,	Atten= 0%, Lag= 0.0 min

Routing by Stor-Ind+Trans method, Time Span= 0.00-144.00 hrs, dt= 0.05 hrs

Summary for Reach DP12: Design Point-12

Inflow /	Area	=	34.368 ac,	0.00% Imperv	vious, Inflow D	Depth = 0.8	1" for 1-Y	ear event
Inflow		=	25.72 cfs @	12.18 hrs, V	/olume=	2.314 af		
Outflov	V	=	25.72 cfs @	12.18 hrs, V	/olume=	2.314 af,	Atten= 0%,	Lag= 0.0 min

Routing by Stor-Ind+Trans method, Time Span= 0.00-144.00 hrs, dt= 0.05 hrs

08077_Existing Prepared by The LA Group P.C. HydroCAD® 9.10 s/n 00439 © 2010 HydroCAD Software Solutions LLC

Type II 24-hr 10-Year Rainfall=5.00" Printed 12/9/2011 C Page 1

Time span=0.00-144.00 hrs, dt=0.05 hrs, 2881 points Runoff by SCS TR-20 method, UH=SCS Reach routing by Stor-Ind+Trans method - Pond routing by Stor-Ind method

Reach DP-1: Design Point-1	Inflow=156.98 cfs 13.989 af
	Outflow=156.98 cfs 13.989 at
Reach DP-11: Design Point-11	Inflow=274.77 cfs 31.010 af
C C	Outflow=274.77 cfs 31.010 af
Reach DP-2: Design Point-2	Inflow=68.67 cfs 6.960 af
	Outflow=68.67 cfs 6.960 af
Reach DP-2a: Design Point 2a	Inflow=9.43 cfs 0.529 af
	Outflow=9.43 cfs 0.529 af
Reach DP-2h: Design Point 2h	Inflow=45 24 cfs .3 291 af
	Outflow=45.24 cfs 3.291 af
Reach DB-3: Design Point-3	Inflow-35 10 cfs 2 689 af
Reach DI -5. Design Tolin-5	Outflow=35.10 cfs 2.689 af
Peach DR 4: Design Point 4	Inflow-29.08 cfs. 2.259 af
Reach Dr-4. Design roint-4	Outflow=29.08 cfs 2.259 af
Reach DR 5: Decim Reint 5	Inflow-105.04 of a 8.122 of
Reach DF-5. Design Foint-5	Outflow=105.04 cfs 8.132 af
Reach DR & Decime Reint C	Inflow 10.12 efc. 0.407 ef
Reach DP-6: Design Point-6	Outflow=10.13 cfs 0.497 af
Reach DP-7: Design Point-7	Inflow=18.93 cfs 0.937 af Outflow=18.93 cfs 0.937 af
Reach DP-8: Design Point-8	Inflow=98.47 cfs 7.419 af
Reach DP-9: Design Point-9	Inflow=69.48 cfs 4.950 af
	Outflow=69.48 cts 4.950 af
Reach DP12: Design Point-12	Inflow=76.97 cfs 6.295 af
	Outflow=76.97 cfs 6.295 af

08077_Existing Type II 2 Prepared by The LA Group P.C. HydroCAD® 9.10 s/n 00439 © 2010 HydroCAD Software Solutions LLC

 Type II 24-hr 100-Year Rainfall=7.50"

 Printed 12/9/2011

 LC
 Page 2

Time span=0.00-144.00 hrs, dt=0.05 hrs, 2881 points Runoff by SCS TR-20 method, UH=SCS Reach routing by Stor-Ind+Trans method - Pond routing by Stor-Ind method

Reach DP-1: Design Point-1	Inflow=315.08 cfs 26.924 af
	Outflow=315.08 cts 26.924 at
Reach DP-11: Design Point-11	Inflow=541.52 cfs 59.622 af
J	Outflow=541.52 cfs 59.622 af
Reach DP-2: Design Point-2	Inflow=135.61 cfs 13.486 af
	Outflow=135.61 cfs 13.486 af
Reach DP-2a: Design Point 2a	Inflow=18.20 cfs 1.024 af
J	Outflow=18.20 cfs 1.024 af
Reach DP-2b: Design Point 2b	Inflow=88.47 cfs 6.377 af
C C	Outflow=88.47 cfs 6.377 af
Reach DP-3: Design Point-3	Inflow=68.74 cfs 5.210 af
C C	Outflow=68.74 cfs 5.210 af
Reach DP-4: Design Point-4	Inflow=56.97 cfs 4.377 af
-	Outflow=56.97 cfs 4.377 af
Reach DP-5: Design Point-5	Inflow=205.76 cfs 15.757 af
-	Outflow=205.76 cfs 15.757 af
Reach DP-6: Design Point-6	Inflow=19.68 cfs 0.974 af
-	Outflow=19.68 cfs 0.974 af
Reach DP-7: Design Point-7	Inflow=36.82 cfs 1.836 af
-	Outflow=36.82 cfs 1.836 af
Reach DP-8: Design Point-8	Inflow=194.23 cfs 14.375 af
-	Outflow=194.23 cfs 14.375 af
Reach DP-9: Design Point-9	Inflow=133.81 cfs 9.484 af
-	Outflow=133.81 cfs 9.484 af
Reach DP12: Design Point-12	Inflow=151.11 cfs 12.197 af
-	Outflow=151.11 cfs 12.197 af

APPENDIX D

HydroCAD Data - Proposed Model

- 1. Proposed Model Diagram, Area/Soil Listings and Subcatchment Summaries
- 2. Proposed Reach and Culvert Summaries 1 & 10-yr Storm Events
- 3. Proposed Pond Summaries 1, 10 & 100-yr Storm Events
- 4. Proposed Design Point Summaries 1-yr Event
- 5. Proposed Design Point Totals 10 and 100-yr Storm Events

Model Diagram, Area and Soil Listings and Subcatchment Summaries

Reach and Culvert Summaries 1 & 10-yr Storm Events
Summary for Reach 11.10R: Mountain stream

Routing by Stor-Ind+Trans method, Time Span= 0.00-144.00 hrs, dt= 0.05 hrs / 2 Max. Velocity= 8.15 fps, Min. Travel Time= 0.8 min Avg. Velocity = 1.99 fps, Avg. Travel Time= 3.1 min

Peak Storage= 1,111 cf @ 12.43 hrs Average Depth at Peak Storage= 0.58' Bank-Full Depth= 4.00', Capacity at Bank-Full= 1,490.21 cfs

20.00' x 4.00' deep Parabolic Channel, n= 0.040 Mountain streams Length= 375.0' Slope= 0.1733 '/' Inlet Invert= 1,759.00', Outlet Invert= 1,694.00'

Summary for Reach 11.4R: Bouldery stream

Inflow .	Area	I =	46.597 ac,	0.59% Impervious,	Inflow Depth = 0.9	99" for 1-Year event
Inflow		=	21.46 cfs @	12.34 hrs, Volume=	= 3.827 af	
Outflov	N	=	21.37 cfs @	12.38 hrs, Volume=	= 3.827 af,	Atten= 0%, Lag= 2.5 min

Routing by Stor-Ind+Trans method, Time Span= 0.00-144.00 hrs, dt= 0.05 hrs Max. Velocity= 7.01 fps, Min. Travel Time= 1.5 min Avg. Velocity = 1.92 fps, Avg. Travel Time= 5.6 min

Peak Storage= 1,988 cf @ 12.35 hrs Average Depth at Peak Storage= 0.47' Bank-Full Depth= 2.00', Capacity at Bank-Full= 482.65 cfs

20.00' x 2.00' deep Parabolic Channel, n= 0.050 Mountain streams w/large boulders Length= 650.0' Slope= 0.2615 '/' Inlet Invert= 2,390.00', Outlet Invert= 2,220.00'

‡

Summary for Reach 11.5R: Mountain stream

Inflow Area = 72.944 ac, 7.27% Impervious, Inflow Depth > 0.94" for 1-Year event Inflow 22.10 cfs @ 12.36 hrs. Volume= 5.690 af = 22.01 cfs @ 12.43 hrs, Volume= Outflow 5.690 af, Atten= 0%, Lag= 4.2 min = Routing by Stor-Ind+Trans method, Time Span= 0.00-144.00 hrs, dt= 0.05 hrs Max. Velocity= 7.60 fps, Min. Travel Time= 2.5 min Avg. Velocity = 1.73 fps, Avg. Travel Time= 10.8 min Peak Storage= 3,264 cf @ 12.39 hrs Average Depth at Peak Storage= 0.46' Bank-Full Depth= 2.00', Capacity at Bank-Full= 535.72 cfs 20.00' x 2.00' deep Parabolic Channel, n= 0.040 Mountain streams Length= 1.125.0' Slope= 0.2062 '/' Inlet Invert= 2,220.00', Outlet Invert= 1,988.00'

Summary for Reach 11.6R: Mountain stream

Inflow A	Area	=	81.523 ac,	7.59% Impervious,	Inflow Depth > 0.9	95" for 1-Year event
Inflow		=	24.31 cfs @	12.38 hrs, Volume	= 6.452 af	
Outflow	/	=	24.28 cfs @	12.41 hrs, Volume	= 6.452 af,	Atten= 0%, Lag= 1.2 min

Routing by Stor-Ind+Trans method, Time Span= 0.00-144.00 hrs, dt= 0.05 hrs Max. Velocity= 10.54 fps, Min. Travel Time= 0.6 min Avg. Velocity = 2.35 fps, Avg. Travel Time= 2.5 min

Peak Storage= 830 cf @ 12.39 hrs Average Depth at Peak Storage= 0.62' Bank-Full Depth= 2.00', Capacity at Bank-Full= 294.12 cfs

‡

10.00' x 2.00' deep Parabolic Channel, n= 0.040 Mountain streams Length= 360.0' Slope= 0.2722 '/' Inlet Invert= 1,988.00', Outlet Invert= 1,890.00'

Summary for Reach 11.8R: Mountain stream

Routing by Stor-Ind+Trans method, Time Span= 0.00-144.00 hrs, dt= 0.05 hrs Max. Velocity= 11.05 fps, Min. Travel Time= 0.5 min Avg. Velocity = 2.89 fps, Avg. Travel Time= 2.0 min

Peak Storage= 769 cf @ 12.41 hrs Average Depth at Peak Storage= 0.41' Bank-Full Depth= 4.00', Capacity at Bank-Full= 3,230.06 cfs

25.00' x 4.00' deep Parabolic Channel, n= 0.040 Mountain streams Length= 350.0' Slope= 0.5000 '/' Inlet Invert= 1,882.00', Outlet Invert= 1,707.00'

Summary for Reach R1.1: Swale

Inflow .	Area =	12.296 ac,	0.00% Impervious,	Inflow Depth = 0.8	81" for 1-Year event
Inflow	=	12.34 cfs @	12.07 hrs, Volume	e 0.828 af	
Outflow	v =	11.96 cfs @	12.11 hrs, Volume	e 0.828 af,	Atten= 3%, Lag= 2.1 min

Routing by Stor-Ind+Trans method, Time Span= 0.00-144.00 hrs, dt= 0.05 hrs Max. Velocity= 4.12 fps, Min. Travel Time= 1.1 min Avg. Velocity = 1.30 fps, Avg. Travel Time= 3.6 min

Peak Storage= 830 cf @ 12.09 hrs Average Depth at Peak Storage= 0.58' Bank-Full Depth= 2.00', Capacity at Bank-Full= 129.38 cfs

4.00' x 2.00' deep channel, n= 0.040 Mountain streams Side Slope Z-value= 2.0 '/' Top Width= 12.00' Length= 280.0' Slope= 0.0357 '/' Inlet Invert= 2,440.00', Outlet Invert= 2,430.00'

Summary for Reach R1.11: Stream

4.67% Impervious, Inflow Depth = 0.96" for 1-Year event Inflow Area = 3.441 ac. Inflow 5.69 cfs @ 11.98 hrs. Volume= 0.276 af = 5.53 cfs @ 11.99 hrs, Volume= Outflow 0.276 af, Atten= 3%, Lag= 0.9 min = Routing by Stor-Ind+Trans method, Time Span= 0.00-144.00 hrs, dt= 0.05 hrs Max. Velocity= 3.51 fps, Min. Travel Time= 0.6 min Avg. Velocity = 1.14 fps, Avg. Travel Time= 1.7 min Peak Storage= 194 cf @ 11.99 hrs Average Depth at Peak Storage= 0.25' Bank-Full Depth= 1.00', Capacity at Bank-Full= 119.42 cfs $20.00' \times 1.00'$ deep Parabolic Channel, n= 0.070 Sluggish weedy reaches w/pools Length= 120.0' Slope= 0.3083 '/' Inlet Invert= 2,205.00', Outlet Invert= 2,168.00' ‡ Summary for Reach R1.12: Stream

Inflow Area	a =	9.950 ac, 1	4.75% Impe	rvious, In	flow Depth >	1.08"	for 1-Yea	ar event
Inflow	=	0.52 cfs @	15.61 hrs, \	√olume=	0.899	af		
Outflow	=	0.52 cfs @	15.76 hrs, \	√olume=	0.898	af, Atte	en= 0%, La	ag= 9.4 min

Routing by Stor-Ind+Trans method, Time Span= 0.00-144.00 hrs, dt= 0.05 hrs Max. Velocity= 1.21 fps, Min. Travel Time= 5.6 min Avg. Velocity = 0.54 fps, Avg. Travel Time= 12.5 min

Peak Storage= 174 cf @ 15.67 hrs Average Depth at Peak Storage= 0.10' Bank-Full Depth= 1.00', Capacity at Bank-Full= 73.77 cfs

20.00' x 1.00' deep Parabolic Channel, n= 0.070 Sluggish weedy reaches w/pools Length= 405.0' Slope= 0.1177 '/' Inlet Invert= 2,157.65', Outlet Invert= 2,110.00'

‡

Summary for Reach R1.2: Mountain Stream

Inflow Area = 12.296 ac, 0.00% Impervious, Inflow Depth = 0.81" for 1-Year event 11.96 cfs @ 12.11 hrs. Volume= Inflow 0.828 af = 11.52 cfs @ 12.15 hrs, Volume= Outflow 0.828 af, Atten= 4%, Lag= 2.9 min = Routing by Stor-Ind+Trans method, Time Span= 0.00-144.00 hrs, dt= 0.05 hrs Max. Velocity= 5.88 fps, Min. Travel Time= 1.6 min Avg. Velocity = 2.07 fps, Avg. Travel Time= 4.4 min Peak Storage= 1,093 cf @ 12.13 hrs Average Depth at Peak Storage= 0.28' Bank-Full Depth= 1.00', Capacity at Bank-Full= 182.97 cfs 20.00' x 1.00' deep Parabolic Channel, n= 0.040 Mountain streams Length= 550.0' Slope= 0.2364 '/' Inlet Invert= 2,430.00', Outlet Invert= 2,300.00' ‡

Summary for Reach R1.3: Mountain Stream

Inflow A	Area =	=	52.901 ac,	0.00% Impervious,	Inflow Depth = 0.8	31" for 1-Year event
Inflow	=		40.46 cfs @	12.17 hrs, Volume	= 3.573 af	
Outflow	/ =		39.61 cfs @	12.22 hrs, Volume	= 3.573 af,	Atten= 2%, Lag= 3.1 min

Routing by Stor-Ind+Trans method, Time Span= 0.00-144.00 hrs, dt= 0.05 hrs Max. Velocity= 7.45 fps, Min. Travel Time= 1.7 min Avg. Velocity = 2.63 fps, Avg. Travel Time= 4.9 min

Peak Storage= 4,123 cf @ 12.19 hrs Average Depth at Peak Storage= 0.62' Bank-Full Depth= 1.50', Capacity at Bank-Full= 265.67 cfs

20.00' x 1.50' deep Parabolic Channel, n= 0.040 Mountain streams Length= 767.0' Slope= 0.1304 '/' Inlet Invert= 2,300.00', Outlet Invert= 2,200.00'

‡

Summary for Reach R1.4: Mountain Stream

Inflow Area = 1.00% Impervious, Inflow Depth = 0.83" for 1-Year event 54.922 ac. Inflow 39.73 cfs @ 12.22 hrs. Volume= 3.804 af = 39.24 cfs @ 12.25 hrs, Volume= Outflow 3.804 af, Atten= 1%, Lag= 1.5 min = Routing by Stor-Ind+Trans method, Time Span= 0.00-144.00 hrs, dt= 0.05 hrs Max. Velocity= 8.03 fps, Min. Travel Time= 0.8 min Avg. Velocity = 1.75 fps, Avg. Travel Time= 3.5 min Peak Storage= 1,796 cf @ 12.23 hrs Average Depth at Peak Storage= 0.59' Bank-Full Depth= 1.50', Capacity at Bank-Full= 298.31 cfs 20.00' x 1.50' deep Parabolic Channel, n= 0.040 Mountain streams Length= 365.0' Slope= 0.1644 '/' Inlet Invert= 2,200.00', Outlet Invert= 2,140.00' ‡ Summary for Reach R1.5: Stream Inflow 0.00 cfs @ 0.00 hrs. Volume= 0.000 af = 0.00 hrs, Volume= Outflow 0.00 cfs @ 0.000 af, Atten= 0%, Lag= 0.0 min = Routing by Stor-Ind+Trans method, Time Span= 0.00-144.00 hrs, dt= 0.05 hrs Max. Velocity= 0.00 fps, Min. Travel Time= 0.0 min Avg. Velocity = 0.00 fps, Avg. Travel Time= 0.0 min Peak Storage= 0 cf @ 0.00 hrs Average Depth at Peak Storage= 0.00' Bank-Full Depth= 1.50', Capacity at Bank-Full= 438.14 cfs 35.00' x 1.50' deep Parabolic Channel, n= 0.040 Mountain streams Length= 175.0' Slope= 0.1143 '/' Inlet Invert= 2,160.00', Outlet Invert= 2,140.00' ±

Summary for Reach R1.6: Mountain Stream

 Inflow Area =
 54.922 ac,
 1.00% Impervious, Inflow Depth =
 0.83" for
 1-Year event

 Inflow =
 39.24 cfs @
 12.25 hrs, Volume=
 3.804 af

 Outflow =
 38.93 cfs @
 12.27 hrs, Volume=
 3.804 af, Atten=
 1%, Lag=
 1.1 min

Routing by Stor-Ind+Trans method, Time Span= 0.00-144.00 hrs, dt= 0.05 hrs Max. Velocity= 5.27 fps, Min. Travel Time= 0.6 min Avg. Velocity = 1.13 fps, Avg. Travel Time= 3.0 min

Peak Storage= 1,489 cf @ 12.26 hrs Average Depth at Peak Storage= 0.78' Bank-Full Depth= 1.50', Capacity at Bank-Full= 162.83 cfs

20.00' x 1.50' deep Parabolic Channel, n= 0.070 Sluggish weedy reaches w/pools Length= 200.0' Slope= 0.1500 '/' Inlet Invert= 2,140.00', Outlet Invert= 2,110.00'

Summary for Reach R11.1: Mountain stream

Inflow /	Area	I =	4.455 ac,	0.00% Impervious,	Inflow Depth = 0.8	36" for 1-Year event
Inflow		=	4.83 cfs @	12.07 hrs, Volume	= 0.318 af	
Outflov	v	=	4.74 cfs @	12.09 hrs, Volume	= 0.318 af,	Atten= 2%, Lag= 0.9 min

Routing by Stor-Ind+Trans method, Time Span= 0.00-144.00 hrs, dt= 0.05 hrs Max. Velocity= 6.95 fps, Min. Travel Time= 0.5 min Avg. Velocity = 2.59 fps, Avg. Travel Time= 1.3 min

Peak Storage= 137 cf @ 12.08 hrs Average Depth at Peak Storage= 0.39' Bank-Full Depth= 2.00', Capacity at Bank-Full= 149.17 cfs

6.00' x 2.00' deep Parabolic Channel, n= 0.040 Mountain streams Length= 200.0' Slope= 0.2300 '/' Inlet Invert= 2,274.00', Outlet Invert= 2,228.00'

Summary for Reach R11.12: Mountain stream

Inflow Area = 5.399 ac, 2.68% Impervious, Inflow Depth = 0.84" for 1-Year event Inflow 2.19 cfs @ 12.07 hrs. Volume= 0.377 af = 2.14 cfs @ 12.09 hrs, Volume= 0.377 af, Atten= 2%, Lag= 1.2 min Outflow = Routing by Stor-Ind+Trans method, Time Span= 0.00-144.00 hrs, dt= 0.05 hrs Max. Velocity= 5.24 fps, Min. Travel Time= 0.6 min Avg. Velocity = 1.73 fps, Avg. Travel Time= 1.9 min Peak Storage= 83 cf @ 12.08 hrs Average Depth at Peak Storage= 0.22' Bank-Full Depth= 1.00', Capacity at Bank-Full= 62.87 cfs 1.00' x 1.00' deep channel, n= 0.040 Mountain streams Side Slope Z-value= 4.0 '/' Top Width= 9.00' Length= 200.0' Slope= 0.2600 '/' Inlet Invert= 2,472.00', Outlet Invert= 2,420.00' ‡

Summary for Reach R11.13: Mountain stream

Inflow A	rea =	28.547 ac,	0.11% Impervious,	Inflow Depth = 0.8	31" for 1-Year event
Inflow	=	14.20 cfs @	12.42 hrs, Volume=	= 1.926 af	
Outflow	=	14.17 cfs @	12.43 hrs, Volume=	= 1.926 af,	Atten= 0%, Lag= 0.8 min

Routing by Stor-Ind+Trans method, Time Span= 0.00-144.00 hrs, dt= 0.05 hrs Max. Velocity= 7.15 fps, Min. Travel Time= 0.5 min Avg. Velocity = 2.35 fps, Avg. Travel Time= 1.4 min

Peak Storage= 397 cf @ 12.42 hrs Average Depth at Peak Storage= 0.51' Bank-Full Depth= 6.00', Capacity at Bank-Full= 2,646.35 cfs

20.00' x 6.00' deep Parabolic Channel, n= 0.050 Mountain streams w/large boulders Length= 200.0' Slope= 0.2500 '/' Inlet Invert= 2,470.00', Outlet Invert= 2,420.00'

Summary for Reach R11.14: Mountain stream

Routing by Stor-Ind+Trans method, Time Span= 0.00-144.00 hrs, dt= 0.05 hrs Max. Velocity= 3.07 fps, Min. Travel Time= 2.6 min Avg. Velocity = 0.83 fps, Avg. Travel Time= 9.6 min

Peak Storage= 99 cf @ 12.01 hrs Average Depth at Peak Storage= 0.14' Bank-Full Depth= 1.00', Capacity at Bank-Full= 44.26 cfs

6.00' x 1.00' deep Parabolic Channel, n= 0.040 Mountain streams Length= 480.0' Slope= 0.1667 '/' Inlet Invert= 2,470.00', Outlet Invert= 2,390.00'

Summary for Reach R11.16: SWALE

Inflow Are	ea =	11.392 ac,	0.56% Impervious, In	nflow Depth = 0.8	1" for 1-Year event
Inflow	=	9.05 cfs @	12.16 hrs, Volume=	0.767 af	
Outflow	=	8.86 cfs @	12.20 hrs, Volume=	0.767 af,	Atten= 2%, Lag= 2.6 min

Routing by Stor-Ind+Trans method, Time Span= 0.00-144.00 hrs, dt= 0.05 hrs Max. Velocity= 6.56 fps, Min. Travel Time= 1.4 min Avg. Velocity = 2.29 fps, Avg. Travel Time= 4.0 min

Peak Storage= 752 cf @ 12.17 hrs Average Depth at Peak Storage= 0.54' Bank-Full Depth= 2.00', Capacity at Bank-Full= 101.91 cfs

2.00' x 2.00' deep channel, n= 0.040 Earth, cobble bottom, clean sides Side Slope Z-value= 1.0 '/' Top Width= 6.00' Length= 550.0' Slope= 0.1109 '/' Inlet Invert= 2,451.00', Outlet Invert= 2,390.00'

Summary for Reach R11.1A: Mountain stream

Routing by Stor-Ind+Trans method, Time Span= 0.00-144.00 hrs, dt= 0.05 hrs Max. Velocity= 6.01 fps, Min. Travel Time= 0.9 min Avg. Velocity = 1.71 fps, Avg. Travel Time= 3.1 min

Peak Storage= 261 cf @ 12.10 hrs Average Depth at Peak Storage= 0.43' Bank-Full Depth= 2.00', Capacity at Bank-Full= 119.72 cfs

6.00' x 2.00' deep Parabolic Channel, n= 0.040 Mountain streams Length= 324.0' Slope= 0.1481 '/' Inlet Invert= 2,228.00', Outlet Invert= 2,180.00'

Summary for Reach R11.1B: Mountain stream

Inflow .	Area	I =	8.579 ac,	10.37% Imp	ervious,	Inflow Do	epth =	1.0	7" for 1-ነ	'ear ever	nt
Inflow		=	4.79 cfs @	12.11 hrs,	Volume	;=	0.762 a	af			
Outflov	N	=	4.56 cfs @	12.19 hrs,	Volume	;=	0.762 a	af,	Atten= 5%,	Lag= 5.	0 min

Routing by Stor-Ind+Trans method, Time Span= 0.00-144.00 hrs, dt= 0.05 hrs Max. Velocity= 6.33 fps, Min. Travel Time= 2.7 min Avg. Velocity = 1.34 fps, Avg. Travel Time= 12.9 min

Peak Storage= 753 cf @ 12.15 hrs Average Depth at Peak Storage= 0.40' Bank-Full Depth= 2.00', Capacity at Bank-Full= 131.79 cfs

 $6.00' \times 2.00'$ deep Parabolic Channel, n= 0.040 Mountain streams Length= 1,036.0' Slope= 0.1795 '/' Inlet Invert= 2,174.00', Outlet Invert= 1,988.00'

Summary for Reach R11.2: Wetland stream

 Inflow Area =
 1.046 ac,
 0.00% Impervious, Inflow Depth =
 0.91" for
 1-Year event

 Inflow =
 1.63 cfs @
 11.98 hrs, Volume=
 0.079 af

 Outflow =
 1.32 cfs @
 12.10 hrs, Volume=
 0.079 af, Atten=
 19%, Lag=
 7.4 min

Routing by Stor-Ind+Trans method, Time Span= 0.00-144.00 hrs, dt= 0.05 hrs Max. Velocity= 1.14 fps, Min. Travel Time= 4.7 min Avg. Velocity = 0.36 fps, Avg. Travel Time= 14.8 min

Peak Storage= 379 cf @ 12.02 hrs Average Depth at Peak Storage= 0.20' Bank-Full Depth= 1.00', Capacity at Bank-Full= 44.98 cfs

20.00' x 1.00' deep Parabolic Channel, n= 0.070 Sluggish weedy reaches w/pools Length= 320.0' Slope= 0.0437 '/' Inlet Invert= 2,302.00', Outlet Invert= 2,288.00'

‡

Summary for Reach R11.21: SWALE

Inflow Ar	ea =	5.212 ac,	0.00% Impervious, Inflov	w Depth = 0.81"	for 1-Year event
Inflow	=	4.95 cfs @	12.09 hrs, Volume=	0.351 af	
Outflow	=	4.26 cfs @	12.26 hrs, Volume=	0.351 af, Atte	en= 14%, Lag= 10.2 min

Routing by Stor-Ind+Trans method, Time Span= 0.00-144.00 hrs, dt= 0.05 hrs Max. Velocity= 4.81 fps, Min. Travel Time= 6.1 min Avg. Velocity = 1.42 fps, Avg. Travel Time= 20.6 min

Peak Storage= 1,561 cf @ 12.16 hrs Average Depth at Peak Storage= 0.37' Bank-Full Depth= 1.50', Capacity at Bank-Full= 51.40 cfs

2.00' x 1.50' deep channel, n= 0.040 Earth, cobble bottom, clean sides Side Slope Z-value= 1.0 '/' Top Width= 5.00' Length= 1,760.0' Slope= 0.0875 '/' Inlet Invert= 2,458.00', Outlet Invert= 2,304.00'

Summary for Reach R11.24: Stream

Inflow Area = 25.915 ac, 18.10% Impervious, Inflow Depth > 0.83" for 1-Year event Inflow 1.46 cfs @ 12.11 hrs. Volume= 1.783 af = Outflow 1.38 cfs @ 12.19 hrs, Volume= 1.783 af, Atten= 6%, Lag= 4.9 min = Routing by Stor-Ind+Trans method, Time Span= 0.00-144.00 hrs, dt= 0.05 hrs Max. Velocity= 1.85 fps, Min. Travel Time= 2.7 min Avg. Velocity = 0.82 fps, Avg. Travel Time= 6.1 min Peak Storage= 226 cf @ 12.14 hrs Average Depth at Peak Storage= 0.11' Bank-Full Depth= 1.00', Capacity at Bank-Full= 158.42 cfs $30.00' \times 1.00'$ deep Parabolic Channel, n= 0.070 Sluggish weedy reaches w/pools Length= 300.0' Slope= 0.2400 '/' Inlet Invert= 2,292.00', Outlet Invert= 2,220.00' ‡ Summary for Reach R11.26: Wetland stream Inflow Area = 0.432 ac, 77.25% Impervious, Inflow Depth = 2.25" for 1-Year event Inflow 0.07 cfs @ 12.00 hrs, Volume= 0.081 af = 0.07 cfs @ 12.75 hrs, Volume= Outflow 0.081 af, Atten= 0%, Lag= 45.0 min = Routing by Stor-Ind+Trans method, Time Span= 0.00-144.00 hrs, dt= 0.05 hrs Max. Velocity= 1.05 fps, Min. Travel Time= 2.5 min Avg. Velocity = 0.71 fps, Avg. Travel Time= 3.6 min

Peak Storage= 10 cf @ 12.70 hrs Average Depth at Peak Storage= 0.04' Bank-Full Depth= 1.00', Capacity at Bank-Full= 53.93 cfs

10.00' x 1.00' deep Parabolic Channel, n= 0.070 Sluggish weedy reaches w/pools Length= 155.0' Slope= 0.2581 '/' Inlet Invert= 2,260.00', Outlet Invert= 2,220.00'

‡

Summary for Reach R11.29: SWALE

Inflow Area =9.625 ac, 29.34% Impervious, Inflow Depth =0.51" for 1-Year eventInflow =2.97 cfs @12.23 hrs, Volume =0.412 afOutflow =2.97 cfs @12.26 hrs, Volume =0.412 af, Atten = 0%, Lag = 1.3 min

Routing by Stor-Ind+Trans method, Time Span= 0.00-144.00 hrs, dt= 0.05 hrs / 2 Max. Velocity= 6.93 fps, Min. Travel Time= 0.4 min Avg. Velocity = 3.14 fps, Avg. Travel Time= 0.9 min

Peak Storage= 71 cf @ 12.25 hrs Average Depth at Peak Storage= 0.20' Bank-Full Depth= 1.50', Capacity at Bank-Full= 106.52 cfs

2.00' x 1.50' deep channel, n= 0.040 Earth, cobble bottom, clean sides Side Slope Z-value= 1.0 '/' Top Width= 5.00' Length= 165.0' Slope= 0.3758 '/' Inlet Invert= 2,366.00', Outlet Invert= 2,304.00'

Summary for Reach R11.30: SWALE

Inflow Are	ea =	0.575 ac, 2	2.45% Impervious, Inflo	ow Depth = 2.07"	for 1-Year event
Inflow	=	0.06 cfs @	0.00 hrs, Volume=	0.099 af	
Outflow	=	0.05 cfs @	0.05 hrs, Volume=	0.099 af, Atte	en= 23%, Lag= 3.0 min

Routing by Stor-Ind+Trans method, Time Span= 0.00-144.00 hrs, dt= 0.05 hrs Max. Velocity= 1.68 fps, Min. Travel Time= 0.8 min Avg. Velocity = 1.34 fps, Avg. Travel Time= 1.1 min

Peak Storage= 3 cf @ 0.05 hrs Average Depth at Peak Storage= 0.02' Bank-Full Depth= 1.50', Capacity at Bank-Full= 148.59 cfs

2.00' x 1.50' deep channel, n= 0.040 Earth, cobble bottom, clean sides Side Slope Z-value= 2.0 '/' Top Width= 8.00' Length= 85.0' Slope= 0.3471 '/' Inlet Invert= 2,213.50', Outlet Invert= 2,184.00'

Summary for Reach R11.31: SWALE

Inflow Area = 1.246 ac, 12.83% Impervious, Inflow Depth > 1.01" for 1-Year event Inflow 0.05 cfs @ 16.27 hrs. Volume= 0.105 af = Outflow 0.05 cfs @ 16.41 hrs, Volume= 0.105 af, Atten= 0%, Lag= 8.6 min = Routing by Stor-Ind+Trans method, Time Span= 0.00-144.00 hrs, dt= 0.05 hrs Max. Velocity= 0.88 fps, Min. Travel Time= 4.3 min Avg. Velocity = 0.58 fps, Avg. Travel Time= 6.4 min Peak Storage= 14 cf @ 16.34 hrs Average Depth at Peak Storage= 0.03' Bank-Full Depth= 1.50', Capacity at Bank-Full= 63.41 cfs 2.00' x 1.50' deep channel, n= 0.030 Earth, grassed & winding

2.00' x 1.50' deep channel, n= 0.030 Earth, grassed & winding Side Slope Z-value= 2.0 '/' Top Width= 8.00' Length= 225.0' Slope= 0.0356 '/' Inlet Invert= 2,192.00', Outlet Invert= 2,184.00'

Summary for Reach R12.1: Mountain Stream/Wetland

Inflow Ar	ea =	17.893 ac,	9.84% Impervious,	Inflow Depth > 0.9	96" for 1-Year event
Inflow	=	0.80 cfs @	16.04 hrs, Volume=	= 1.433 af	
Outflow	=	0.80 cfs @	16.15 hrs, Volume=	= 1.433 af,	Atten= 0%, Lag= 6.1 min

Routing by Stor-Ind+Trans method, Time Span= 0.00-144.00 hrs, dt= 0.05 hrs Max. Velocity= 1.21 fps, Min. Travel Time= 3.6 min Avg. Velocity = 0.55 fps, Avg. Travel Time= 7.9 min

Peak Storage= 172 cf @ 16.09 hrs Average Depth at Peak Storage= 0.13' Bank-Full Depth= 1.00', Capacity at Bank-Full= 61.12 cfs

20.00' x 1.00' deep Parabolic Channel, n= 0.070 Sluggish weedy reaches w/pools Length= 260.0' Slope= 0.0808 '/' Inlet Invert= 2,290.00', Outlet Invert= 2,269.00'

‡

Summary for Reach R12.2: Mountain Stream/Wetland

Inflow Area = 18.269 ac, 10.19% Impervious, Inflow Depth > 0.97" for 1-Year event Inflow 0.82 cfs @ 16.14 hrs. Volume= 1.472 af = Outflow 0.82 cfs @ 16.19 hrs, Volume= 1.472 af, Atten= 0%, Lag= 2.9 min = Routing by Stor-Ind+Trans method, Time Span= 0.00-144.00 hrs, dt= 0.05 hrs Max. Velocity= 1.72 fps, Min. Travel Time= 1.7 min Avg. Velocity = 0.79 fps, Avg. Travel Time= 3.7 min Peak Storage= 84 cf @ 16.16 hrs Average Depth at Peak Storage= 0.11' Bank-Full Depth= 1.00', Capacity at Bank-Full= 100.21 cfs $20.00' \times 1.00'$ deep Parabolic Channel, n= 0.070 Sluggish weedy reaches w/pools Length= 175.0' Slope= 0.2171 '/' Inlet Invert= 2,268.00', Outlet Invert= 2,230.00' ‡ Summary for Reach R2.1: Roadside Swale

Inflow Area	a =	6.302 ac,	9.60% Impervious,	Inflow Depth = 0.9	96" for 1-Year event
Inflow	=	4.18 cfs @	12.24 hrs, Volume	= 0.505 af	
Outflow	=	4.16 cfs @	12.27 hrs, Volume	≔ 0.505 af,	Atten= 0%, Lag= 1.8 min

Routing by Stor-Ind+Trans method, Time Span= 0.00-144.00 hrs, dt= 0.05 hrs Max. Velocity= 3.35 fps, Min. Travel Time= 0.8 min Avg. Velocity = 0.86 fps, Avg. Travel Time= 3.1 min

Peak Storage= 201 cf @ 12.25 hrs Average Depth at Peak Storage= 0.44' Bank-Full Depth= 2.00', Capacity at Bank-Full= 91.79 cfs

2.00' x 2.00' deep channel, n= 0.040 Earth, cobble bottom, clean sides Side Slope Z-value= 2.0 '/' Top Width= 10.00' Length= 160.0' Slope= 0.0375 '/' Inlet Invert= 2,300.00', Outlet Invert= 2,294.00'

Summary for Reach R2.11: Overland Flow

Inflow Area = 3.914 ac, 11.46% Impervious, Inflow Depth = 1.01" for 1-Year event Inflow 0.24 cfs @ 14.79 hrs. Volume= 0.331 af = Outflow 0.22 cfs @ 16.03 hrs, Volume= 0.331 af, Atten= 7%, Lag= 74.4 min = Routing by Stor-Ind+Trans method, Time Span= 0.00-144.00 hrs, dt= 0.05 hrs Max. Velocity= 0.20 fps, Min. Travel Time= 38.2 min Avg. Velocity = 0.11 fps, Avg. Travel Time= 67.4 min Peak Storage= 503 cf @ 15.40 hrs Average Depth at Peak Storage= 0.05' Bank-Full Depth= 0.50', Capacity at Bank-Full= 30.99 cfs 100.00' x 0.50' deep Parabolic Channel, n= 0.400 Sheet flow: Woods+light brush Length= 465.0' Slope= 0.2710 '/' Inlet Invert= 2,420.00', Outlet Invert= 2,294.00' ‡

Summary for Reach R2.12: Swale

Inflow Are	ea =	3.322 ac, 2	22.38% Impervious,	Inflow Depth = $1.^{\circ}$	19" for 1-Year event
Inflow	=	4.41 cfs @	12.11 hrs, Volume	= 0.328 af	
Outflow	=	4.46 cfs @	12.12 hrs, Volume	= 0.328 af,	Atten= 0%, Lag= 0.5 min

Routing by Stor-Ind+Trans method, Time Span= 0.00-144.00 hrs, dt= 0.05 hrs Max. Velocity= 5.93 fps, Min. Travel Time= 0.5 min Avg. Velocity = 1.37 fps, Avg. Travel Time= 2.1 min

Peak Storage= 135 cf @ 12.11 hrs Average Depth at Peak Storage= 0.30' Bank-Full Depth= 2.00', Capacity at Bank-Full= 199.13 cfs

2.00' x 2.00' deep channel, n= 0.040 Earth, cobble bottom, clean sides Side Slope Z-value= 2.0 '/' Top Width= 10.00' Length= 170.0' Slope= 0.1765 '/' Inlet Invert= 2,260.00', Outlet Invert= 2,230.00'

Summary for Reach R2.13: Wetland Flow

Inflow Area = 5.821 ac, 24.98% Impervious, Inflow Depth = 1.21" for 1-Year event Inflow 0.36 cfs @ 15.27 hrs. Volume= 0.587 af = Outflow 0.36 cfs @ 15.35 hrs, Volume= 0.587 af, Atten= 0%, Lag= 4.9 min = Routing by Stor-Ind+Trans method, Time Span= 0.00-144.00 hrs, dt= 0.05 hrs Max. Velocity= 1.06 fps, Min. Travel Time= 2.9 min Avg. Velocity = 0.70 fps, Avg. Travel Time= 4.3 min Peak Storage= 62 cf @ 15.30 hrs Average Depth at Peak Storage= 0.09' Bank-Full Depth= 1.00', Capacity at Bank-Full= 71.29 cfs 20.00' x 1.00' deep Parabolic Channel, n = 0.070 Sluggish weedy reaches w/pools Length= 182.0' Slope= 0.1099 '/' Inlet Invert= 2,220.00', Outlet Invert= 2,200.00' ‡

Summary for Reach R2.14: Mountain Stream

Inflow Area	a =	5.821 ac, 2	4.98% Impervious,	Inflow Depth = 1.	21" for 1-Year event
Inflow	=	0.36 cfs @	15.35 hrs, Volume	= 0.587 af	
Outflow	=	0.36 cfs @	15.46 hrs, Volume	= 0.587 af,	Atten= 0%, Lag= 6.5 min

Routing by Stor-Ind+Trans method, Time Span= 0.00-144.00 hrs, dt= 0.05 hrs Max. Velocity= 1.24 fps, Min. Travel Time= 3.8 min Avg. Velocity = 0.83 fps, Avg. Travel Time= 5.7 min

Peak Storage= 82 cf @ 15.39 hrs Average Depth at Peak Storage= 0.08' Bank-Full Depth= 1.00', Capacity at Bank-Full= 90.24 cfs

20.00' x 1.00' deep Parabolic Channel, n= 0.070 Sluggish weedy reaches w/pools Length= 284.0' Slope= 0.1761 '/' Inlet Invert= 2,200.00', Outlet Invert= 2,150.00'

‡

Summary for Reach R2.2: Roadside Swale

10.216 ac, 10.32% Impervious, Inflow Depth = 0.98" for 1-Year event Inflow Area = Inflow 4.17 cfs @ 12.27 hrs. Volume= 0.836 af = Outflow 3.93 cfs @ 12.30 hrs, Volume= 0.836 af, Atten= 6%, Lag= 2.3 min = Routing by Stor-Ind+Trans method, Time Span= 0.00-144.00 hrs, dt= 0.05 hrs / 2 Max. Velocity= 4.57 fps, Min. Travel Time= 0.9 min Avg. Velocity = 1.39 fps, Avg. Travel Time= 3.0 min Peak Storage= 218 cf @ 12.28 hrs Average Depth at Peak Storage= 0.33' Bank-Full Depth= 2.00', Capacity at Bank-Full= 146.87 cfs 2.00' x 2.00' deep channel, n= 0.040 Earth, cobble bottom, clean sides Side Slope Z-value= 2.0 '/' Top Width= 10.00' Length= 250.0' Slope= 0.0960 '/' Inlet Invert= 2,294.00', Outlet Invert= 2,270.00' Summary for Reach R2.4: Roadside Swale

 Inflow Area =
 19.135 ac, 12.06% Impervious, Inflow Depth =
 1.00" for 1-Year event

 Inflow =
 13.17 cfs @
 12.03 hrs, Volume=
 1.590 af

 Outflow =
 12.10 cfs @
 12.12 hrs, Volume=
 1.590 af, Atten= 8%, Lag= 5.4 min

Routing by Stor-Ind+Trans method, Time Span= 0.00-144.00 hrs, dt= 0.05 hrs Max. Velocity= 4.71 fps, Min. Travel Time= 3.2 min Avg. Velocity = 1.18 fps, Avg. Travel Time= 13.0 min

Peak Storage= 2,360 cf @ 12.07 hrs Average Depth at Peak Storage= 0.74' Bank-Full Depth= 2.50', Capacity at Bank-Full= 162.14 cfs

2.00' x 2.50' deep channel, n= 0.040 Earth, cobble bottom, clean sides Side Slope Z-value= 2.0 '/' Top Width= 12.00' Length= 915.0' Slope= 0.0426 '/' Inlet Invert= 2,269.00', Outlet Invert= 2,230.00'

Summary for Reach R3.1: SWALE

Inflow Area = 10.077 ac, 13.20% Impervious, Inflow Depth = 1.02" for 1-Year event Inflow 8.31 cfs @ 12.14 hrs. Volume= 0.857 af = 0.857 af, Atten= 3%, Lag= 2.1 min Outflow 8.03 cfs @ 12.17 hrs, Volume= = Routing by Stor-Ind+Trans method, Time Span= 0.00-144.00 hrs, dt= 0.05 hrs Max. Velocity= 5.76 fps, Min. Travel Time= 1.0 min Avg. Velocity = 1.22 fps, Avg. Travel Time= 4.8 min Peak Storage= 559 cf @ 12.16 hrs Average Depth at Peak Storage= 0.25' Bank-Full Depth= 1.50', Capacity at Bank-Full= 219.76 cfs 6.00' x 1.50' deep channel, n= 0.040 Earth, cobble bottom, clean sides Side Slope Z-value= 2.0 '/' Top Width= 12.00' Length= 350.0' Slope= 0.1771 '/' Inlet Invert= 2,280.00', Outlet Invert= 2,218.00' ‡ Summary for Reach R3.4: SWALE 20.668 ac, 16.21% Impervious, Inflow Depth > 1.07" for 1-Year event Inflow Area = Inflow 1.21 cfs @ 15.11 hrs, Volume= 1.840 af = Outflow 1.21 cfs @ 15.16 hrs, Volume= 1.840 af, Atten= 0%, Lag= 2.8 min =

Routing by Stor-Ind+Trans method, Time Span= 0.00-144.00 hrs, dt= 0.05 hrs Max. Velocity= 4.21 fps, Min. Travel Time= 1.7 min Avg. Velocity = 1.83 fps, Avg. Travel Time= 3.8 min

Peak Storage= 121 cf @ 15.13 hrs Average Depth at Peak Storage= 0.13' Bank-Full Depth= 1.50', Capacity at Bank-Full= 123.07 cfs

2.00' x 1.50' deep channel, n= 0.040 Earth, cobble bottom, clean sides Side Slope Z-value= 2.0 '/' Top Width= 8.00' Length= 420.0' Slope= 0.2381 '/' Inlet Invert= 2,180.00', Outlet Invert= 2,080.00'

Summary for Reach R5.2: SWALE

 Inflow Area =
 8.026 ac,
 0.00% Impervious,
 Inflow Depth =
 0.81"
 for
 1-Year event

 Inflow =
 9.40 cfs @
 12.03 hrs,
 Volume=
 0.540 af

 Outflow =
 8.81 cfs @
 12.08 hrs,
 Volume=
 0.540 af,
 Atten= 6%,
 Lag= 3.4 min

Routing by Stor-Ind+Trans method, Time Span= 0.00-144.00 hrs, dt= 0.05 hrs Max. Velocity= 6.18 fps, Min. Travel Time= 1.9 min Avg. Velocity = 1.84 fps, Avg. Travel Time= 6.2 min

Peak Storage= 1,024 cf @ 12.05 hrs Average Depth at Peak Storage= 0.58' Bank-Full Depth= 1.50', Capacity at Bank-Full= 52.51 cfs

2.00' x 1.50' deep channel, n= 0.040 Earth, cobble bottom, clean sides Side Slope Z-value= 1.0 '/' Top Width= 5.00' Length= 690.0' Slope= 0.0913 '/' Inlet Invert= 1,901.00', Outlet Invert= 1,838.00'

Summary for Reach R5.4: SWALE

Inflow Ar	ea =	8.026 ac,	0.00% Impervious,	Inflow Depth = 0.8	31" for 1-Year event
Inflow	=	8.81 cfs @	12.08 hrs, Volume	= 0.540 af	
Outflow	=	8.36 cfs @	12.13 hrs, Volume	= 0.540 af,	Atten= 5%, Lag= 2.9 min

Routing by Stor-Ind+Trans method, Time Span= 0.00-144.00 hrs, dt= 0.05 hrs Max. Velocity= 6.67 fps, Min. Travel Time= 1.6 min Avg. Velocity = 2.02 fps, Avg. Travel Time= 5.3 min

Peak Storage= 833 cf @ 12.10 hrs Average Depth at Peak Storage= 0.52' Bank-Full Depth= 2.00', Capacity at Bank-Full= 105.45 cfs

2.00' x 2.00' deep channel, n= 0.040 Earth, cobble bottom, clean sides Side Slope Z-value= 1.0 '/' Top Width= 6.00' Length= 640.0' Slope= 0.1187 '/' Inlet Invert= 1,822.00', Outlet Invert= 1,746.00'

Summary for Reach R5.5: SWALE

 Inflow Area =
 0.684 ac, 16.21% Impervious, Inflow Depth =
 1.47" for 1-Year event

 Inflow =
 0.10 cfs @
 12.75 hrs, Volume=
 0.084 af

 Outflow =
 0.10 cfs @
 12.82 hrs, Volume=
 0.084 af, Atten= 0%, Lag= 3.8 min

Routing by Stor-Ind+Trans method, Time Span= 0.00-144.00 hrs, dt= 0.05 hrs Max. Velocity= 1.60 fps, Min. Travel Time= 2.0 min Avg. Velocity = 1.06 fps, Avg. Travel Time= 3.0 min

Peak Storage= 11 cf @ 12.78 hrs Average Depth at Peak Storage= 0.03' Bank-Full Depth= 1.50', Capacity at Bank-Full= 79.73 cfs

2.00' x 1.50' deep channel, n= 0.040 Earth, cobble bottom, clean sides Side Slope Z-value= 1.0 '/' Top Width= 5.00' Length= 190.0' Slope= 0.2105 '/' Inlet Invert= 1,780.00', Outlet Invert= 1,740.00'

Summary for Reach R5.6: SWALE

Inflow A	Area =	12.198 ac,	3.02% Impervious,	Inflow Depth = 0.9	90" for 1-Year event
Inflow	=	11.94 cfs @	12.09 hrs, Volume=	= 0.919 af	
Outflow	/ =	11.77 cfs @	12.11 hrs, Volume=	= 0.919 af,	Atten= 1%, Lag= 1.2 min

Routing by Stor-Ind+Trans method, Time Span= 0.00-144.00 hrs, dt= 0.05 hrs Max. Velocity= 4.49 fps, Min. Travel Time= 0.7 min Avg. Velocity = 0.94 fps, Avg. Travel Time= 3.3 min

Peak Storage= 497 cf @ 12.10 hrs Average Depth at Peak Storage= 0.76' Bank-Full Depth= 2.50', Capacity at Bank-Full= 151.95 cfs

2.00' x 2.50' deep channel, n= 0.040 Earth, cobble bottom, clean sides Side Slope Z-value= 2.0 '/' Top Width= 12.00' Length= 187.0' Slope= 0.0374 '/' Inlet Invert= 1,745.00', Outlet Invert= 1,738.00'

Summary for Reach R7.1: swale

Inflow Area = 2.973 ac, 39.49% Impervious, Inflow Depth > 1.45" for 1-Year event Inflow 0.12 cfs @ 18.68 hrs. Volume= 0.358 af = 0.358 af, Atten= 0%, Lag= 1.6 min Outflow 0.12 cfs @ 18.71 hrs, Volume= = Routing by Stor-Ind+Trans method, Time Span= 0.00-144.00 hrs, dt= 0.05 hrs Max. Velocity= 1.69 fps, Min. Travel Time= 1.0 min Avg. Velocity = 1.21 fps, Avg. Travel Time= 1.4 min Peak Storage= 7 cf @ 18.69 hrs Average Depth at Peak Storage= 0.03' Bank-Full Depth= 1.50', Capacity at Bank-Full= 111.53 cfs 2.00' x 1.50' deep channel, n= 0.030 Earth, grassed & winding Side Slope Z-value= 2.0 '/' Top Width= 8.00' Length= 100.0' Slope= 0.1100 '/' Inlet Invert= 1,675.00', Outlet Invert= 1,664.00' Summary for Reach R8.16: SWALE

Inflow Area	a =	23.740 ac, 2	3.90% Imper\	vious, Inflow D	$epth = 1.19^{\circ}$	for 1-Year event
Inflow	=	36.18 cfs @	12.00 hrs, V	olume=	2.357 af	
Outflow	=	35.41 cfs @	12.01 hrs, V	olume=	2.357 af, Atte	en= 2%, Lag= 0.7 min

Routing by Stor-Ind+Trans method, Time Span= 0.00-144.00 hrs, dt= 0.05 hrs Max. Velocity= 11.16 fps, Min. Travel Time= 0.5 min Avg. Velocity = 1.77 fps, Avg. Travel Time= 3.0 min

Peak Storage= 1,019 cf @ 12.01 hrs Average Depth at Peak Storage= 0.62' Bank-Full Depth= 1.50', Capacity at Bank-Full= 189.11 cfs

4.00' x 1.50' deep channel, n= 0.040 Earth, cobble bottom, clean sides Side Slope Z-value= 2.0 '/' Top Width= 10.00' Length= 315.0' Slope= 0.2413 '/' Inlet Invert= 1,818.00', Outlet Invert= 1,742.00'

Summary for Reach R8.17: SWALE

Inflow Area =24.885 ac, 23.58% Impervious, Inflow Depth =1.19" for 1-Year eventInflow =35.45 cfs @12.01 hrs, Volume=2.464 afOutflow =34.63 cfs @12.03 hrs, Volume=2.464 af, Atten= 2%, Lag= 0.8 min

Routing by Stor-Ind+Trans method, Time Span= 0.00-144.00 hrs, dt= 0.05 hrs Max. Velocity= 10.53 fps, Min. Travel Time= 0.4 min Avg. Velocity = 1.71 fps, Avg. Travel Time= 2.7 min

Peak Storage= 936 cf @ 12.02 hrs Average Depth at Peak Storage= 0.63' Bank-Full Depth= 1.50', Capacity at Bank-Full= 176.73 cfs

4.00' x 1.50' deep channel, n= 0.040 Earth, cobble bottom, clean sides Side Slope Z-value= 2.0 '/' Top Width= 10.00' Length= 280.0' Slope= 0.2107 '/' Inlet Invert= 1,741.00', Outlet Invert= 1,682.00'

Summary for Reach R8.18: Mountain stream

Inflow A	Area =	19.317 ac,	0.67% Impervious, Int	flow Depth = 0.81 "	for 1-Year event
Inflow	=	11.40 cfs @	12.30 hrs, Volume=	1.301 af	
Outflow	/ =	11.29 cfs @	12.36 hrs, Volume=	1.301 af, Att	ten= 1%, Lag= 3.4 min

Routing by Stor-Ind+Trans method, Time Span= 0.00-144.00 hrs, dt= 0.05 hrs Max. Velocity= 7.70 fps, Min. Travel Time= 1.9 min Avg. Velocity = 2.88 fps, Avg. Travel Time= 5.0 min

Peak Storage= 1,281 cf @ 12.32 hrs Average Depth at Peak Storage= 0.44' Bank-Full Depth= 1.50', Capacity at Bank-Full= 123.67 cfs

2.50' x 1.50' deep channel, n= 0.040 Mountain streams Side Slope Z-value= 2.0 '/' Top Width= 8.50' Length= 870.0' Slope= 0.1885 '/' Inlet Invert= 1,818.00', Outlet Invert= 1,654.00'

Summary for Reach R8.2: SWALE

Inflow Area =2.715 ac, 28.55% Impervious, Inflow Depth =1.25" for 1-Year eventInflow =2.68 cfs @12.19 hrs, Volume =0.283 afOutflow =2.58 cfs @12.26 hrs, Volume =0.283 af, Atten = 4%, Lag = 4.0 min

Routing by Stor-Ind+Trans method, Time Span= 0.00-144.00 hrs, dt= 0.05 hrs Max. Velocity= 3.85 fps, Min. Travel Time= 1.8 min Avg. Velocity = 0.91 fps, Avg. Travel Time= 7.4 min

Peak Storage= 287 cf @ 12.22 hrs Average Depth at Peak Storage= 0.31' Bank-Full Depth= 1.50', Capacity at Bank-Full= 46.39 cfs

2.00' x 1.50' deep channel, n= 0.040 Earth, cobble bottom, clean sides Side Slope Z-value= 1.0 '/' Top Width= 5.00' Length= 407.0' Slope= 0.0713 '/' Inlet Invert= 2,303.00', Outlet Invert= 2,274.00'

Summary for Reach R8.4: SWALE

Inflow Are	a =	6.659 ac, 3	1.16% Impervious,	Inflow Depth = 1.2	29" for 1-Year event
Inflow	=	8.07 cfs @	12.01 hrs, Volume)≕ 0.715 af	
Outflow	=	7.64 cfs @	12.06 hrs, Volume)≕ 0.715 af,	Atten= 5%, Lag= 2.7 min

Routing by Stor-Ind+Trans method, Time Span= 0.00-144.00 hrs, dt= 0.05 hrs Max. Velocity= 5.80 fps, Min. Travel Time= 1.5 min Avg. Velocity = 1.19 fps, Avg. Travel Time= 7.4 min

Peak Storage= 711 cf @ 12.03 hrs Average Depth at Peak Storage= 0.53' Bank-Full Depth= 1.50', Capacity at Bank-Full= 51.44 cfs

2.00' x 1.50' deep channel, n= 0.040 Earth, cobble bottom, clean sides Side Slope Z-value= 1.0 '/' Top Width= 5.00' Length= 525.0' Slope= 0.0876 '/' Inlet Invert= 2,270.00', Outlet Invert= 2,224.00'

Summary for Reach R8.6: SWALE

Inflow Area =8.599 ac, 26.37% Impervious, Inflow Depth =1.21" for 1-Year eventInflow =9.87 cfs @12.03 hrs, Volume=0.870 afOutflow =9.68 cfs @12.05 hrs, Volume=0.870 af, Atten= 2%, Lag= 1.6 min

Routing by Stor-Ind+Trans method, Time Span= 0.00-144.00 hrs, dt= 0.05 hrs Max. Velocity= 6.86 fps, Min. Travel Time= 0.8 min Avg. Velocity = 1.36 fps, Avg. Travel Time= 4.2 min

Peak Storage= 495 cf @ 12.04 hrs Average Depth at Peak Storage= 0.56' Bank-Full Depth= 1.50', Capacity at Bank-Full= 59.17 cfs

2.00' x 1.50' deep channel, n= 0.040 Earth, cobble bottom, clean sides Side Slope Z-value= 1.0 '/' Top Width= 5.00' Length= 345.0' Slope= 0.1159 '/' Inlet Invert= 2,220.00', Outlet Invert= 2,180.00'

Summary for Reach R9.10: Swale

Inflow A	rea =	19.480 ac, 2	1.84% Impervious,	Inflow Depth > 1	1.15" for 1-Year event
Inflow	=	0.58 cfs @	19.79 hrs, Volume	e= 1.867 a	f
Outflow	=	0.58 cfs @	19.83 hrs, Volume	e= 1.867 a	f, Atten= 0%, Lag= 2.0 min

Routing by Stor-Ind+Trans method, Time Span= 0.00-144.00 hrs, dt= 0.05 hrs / 2 Max. Velocity= 2.31 fps, Min. Travel Time= 1.2 min Avg. Velocity = 1.39 fps, Avg. Travel Time= 2.0 min

Peak Storage= 43 cf @ 19.81 hrs Average Depth at Peak Storage= 0.11' Bank-Full Depth= 2.00', Capacity at Bank-Full= 136.03 cfs

2.00' x 2.00' deep channel, n= 0.040 Earth, cobble bottom, clean sides Side Slope Z-value= 2.0 '/' Top Width= 10.00' Length= 170.0' Slope= 0.0824 '/' Inlet Invert= 1,672.00', Outlet Invert= 1,658.00'

Summary for Reach R9.2: Swale

4.151 ac, 21.51% Impervious, Inflow Depth = 1.13" for 1-Year event Inflow Area = Inflow 1.85 cfs @ 12.34 hrs. Volume= 0.391 af = Outflow 1.82 cfs @ 12.36 hrs, Volume= 0.391 af, Atten= 1%, Lag= 1.4 min = Routing by Stor-Ind+Trans method, Time Span= 0.00-144.00 hrs, dt= 0.05 hrs Max. Velocity= 3.49 fps, Min. Travel Time= 0.6 min Avg. Velocity = 1.09 fps, Avg. Travel Time= 1.8 min Peak Storage= 63 cf @ 12.30 hrs Average Depth at Peak Storage= 0.22' Bank-Full Depth= 1.50', Capacity at Bank-Full= 74.96 cfs 2.00' x 1.50' deep channel, n= 0.040 Earth, cobble bottom, clean sides Side Slope Z-value= 2.0 '/' Top Width= 8.00' Length= 120.0' Slope= 0.0883 '/' Inlet Invert= 1,815.50', Outlet Invert= 1,804.90' Summary for Reach R9.2A: Swale Inflow Area = 4.151 ac, 21.51% Impervious, Inflow Depth = 1.13" for 1-Year event Inflow 1.82 cfs @ 12.36 hrs, Volume= 0.392 af = Outflow 1.81 cfs @ 12.42 hrs, Volume= 0.392 af, Atten= 0%, Lag= 3.8 min =

Routing by Stor-Ind+Trans method, Time Span= 0.00-144.00 hrs, dt= 0.05 hrs Max. Velocity= 3.31 fps, Min. Travel Time= 2.0 min Avg. Velocity = 1.08 fps, Avg. Travel Time= 6.2 min

Peak Storage= 218 cf @ 12.38 hrs Average Depth at Peak Storage= 0.22' Bank-Full Depth= 2.00', Capacity at Bank-Full= 131.75 cfs

2.00' x 2.00' deep channel, n= 0.040 Earth, cobble bottom, clean sides Side Slope Z-value= 2.0 '/' Top Width= 10.00' Length= 400.0' Slope= 0.0773 '/' Inlet Invert= 1,804.90', Outlet Invert= 1,774.00'

Summary for Reach R9.4: Swale

Inflow Area = 11.891 ac, 25.97% Impervious, Inflow Depth = 1.21" for 1-Year event Inflow = 16.89 cfs @ 11.98 hrs, Volume= 1.198 af Outflow = 15.78 cfs @ 12.01 hrs, Volume= 1.198 af, Atten= 7%, Lag= 2.0 min Routing by Stor-Ind+Trans method, Time Span= 0.00-144.00 hrs, dt= 0.05 hrs

Max. Velocity= 6.97 fps, Min. Travel Time= 1.3 min Avg. Velocity = 1.43 fps, Avg. Travel Time= 6.3 min

Peak Storage= 1,286 cf @ 11.99 hrs Average Depth at Peak Storage= 0.70' Bank-Full Depth= 2.00', Capacity at Bank-Full= 148.51 cfs

2.00' x 2.00' deep channel, n= 0.040 Earth, cobble bottom, clean sides Side Slope Z-value= 2.0 '/' Top Width= 10.00' Length= 540.0' Slope= 0.0981 '/' Inlet Invert= 1,769.00', Outlet Invert= 1,716.00'

Summary for Reach R9.9: Pond Outlet

Inflow Area	a =	2.870 ac,	4.48% Impervious,	Inflow Depth = 0.4	4" for 1-Year event
Inflow	=	0.30 cfs @	13.00 hrs, Volume	= 0.105 af	
Outflow	=	0.30 cfs @	13.05 hrs, Volume	= 0.105 af,	Atten= 0%, Lag= 3.2 min

Routing by Stor-Ind+Trans method, Time Span= 0.00-144.00 hrs, dt= 0.05 hrs Max. Velocity= 1.26 fps, Min. Travel Time= 1.7 min Avg. Velocity = 0.81 fps, Avg. Travel Time= 2.6 min

Peak Storage= 30 cf @ 13.02 hrs Average Depth at Peak Storage= 0.07' Bank-Full Depth= 1.50', Capacity at Bank-Full= 94.04 cfs

‡

3.00' x 1.50' deep channel, n= 0.070 Sluggish weedy reaches w/pools Side Slope Z-value= 4.0 '/' Top Width= 15.00' Length= 125.0' Slope= 0.1280 '/' Inlet Invert= 1,672.00', Outlet Invert= 1,656.00'

Summary for Reach 11.10R: Mountain stream

Routing by Stor-Ind+Trans method, Time Span= 0.00-144.00 hrs, dt= 0.05 hrs / 2 Max. Velocity= 12.51 fps, Min. Travel Time= 0.5 min Avg. Velocity = 2.21 fps, Avg. Travel Time= 2.8 min

Peak Storage= 2,980 cf @ 12.31 hrs Average Depth at Peak Storage= 1.12' Bank-Full Depth= 4.00', Capacity at Bank-Full= 1,490.21 cfs

20.00' x 4.00' deep Parabolic Channel, n= 0.040 Mountain streams Length= 375.0' Slope= 0.1733 '/' Inlet Invert= 1,759.00', Outlet Invert= 1,694.00'

Summary for Reach 11.4R: Bouldery stream

Inflow /	Area	=	46.597 ac,	0.59% Impervious,	Inflow Depth = 2.4	40" for 10-Year event
Inflow	:	=	69.65 cfs @	12.22 hrs, Volume	= 9.308 af	
Outflov	N :	=	69.34 cfs @	12.26 hrs, Volume	= 9.308 af,	Atten= 0%, Lag= 2.1 min

Routing by Stor-Ind+Trans method, Time Span= 0.00-144.00 hrs, dt= 0.05 hrs Max. Velocity= 10.04 fps, Min. Travel Time= 1.1 min Avg. Velocity = 2.22 fps, Avg. Travel Time= 4.9 min

Peak Storage= 4,500 cf @ 12.23 hrs Average Depth at Peak Storage= 0.81' Bank-Full Depth= 2.00', Capacity at Bank-Full= 482.65 cfs

20.00' x 2.00' deep Parabolic Channel, n= 0.050 Mountain streams w/large boulders Length= 650.0' Slope= 0.2615 '/' Inlet Invert= 2,390.00', Outlet Invert= 2,220.00'

‡

Summary for Reach 11.5R: Mountain stream

Inflow Area =72.944 ac, 7.27% Impervious, Inflow Depth =2.38" for 10-Year eventInflow =90.15 cfs @12.27 hrs, Volume=14.497 afOutflow =89.71 cfs @12.32 hrs, Volume=14.497 af, Atten= 0%, Lag= 3.1 min

Routing by Stor-Ind+Trans method, Time Span= 0.00-144.00 hrs, dt= 0.05 hrs Max. Velocity= 11.67 fps, Min. Travel Time= 1.6 min Avg. Velocity = 1.95 fps, Avg. Travel Time= 9.6 min

Peak Storage= 8,656 cf @ 12.29 hrs Average Depth at Peak Storage= 0.87' Bank-Full Depth= 2.00', Capacity at Bank-Full= 535.72 cfs

20.00' x 2.00' deep Parabolic Channel, n= 0.040 Mountain streams Length= 1,125.0' Slope= 0.2062 '/' Inlet Invert= 2,220.00', Outlet Invert= 1,988.00'

‡

Summary for Reach 11.6R: Mountain stream

Inflow A	Area =	81.523 ac,	7.59% Impervious,	Inflow Depth = 2.4	10" for 10-Year event
Inflow	=	100.37 cfs @	12.28 hrs, Volume=	= 16.333 af	
Outflow	v =	100.19 cfs @	12.29 hrs, Volume=	= 16.333 af,	Atten= 0%, Lag= 1.0 min

Routing by Stor-Ind+Trans method, Time Span= 0.00-144.00 hrs, dt= 0.05 hrs Max. Velocity= 16.09 fps, Min. Travel Time= 0.4 min Avg. Velocity = 2.67 fps, Avg. Travel Time= 2.2 min

Peak Storage= 2,245 cf @ 12.28 hrs Average Depth at Peak Storage= 1.20' Bank-Full Depth= 2.00', Capacity at Bank-Full= 294.12 cfs

10.00' x 2.00' deep Parabolic Channel, n= 0.040 Mountain streams Length= 360.0' Slope= 0.2722 '/' Inlet Invert= 1,988.00', Outlet Invert= 1,890.00'

Summary for Reach 11.8R: Mountain stream

Routing by Stor-Ind+Trans method, Time Span= 0.00-144.00 hrs, dt= 0.05 hrs Max. Velocity= 17.03 fps, Min. Travel Time= 0.3 min Avg. Velocity = 3.16 fps, Avg. Travel Time= 1.8 min

Peak Storage= 2,060 cf @ 12.30 hrs Average Depth at Peak Storage= 0.79' Bank-Full Depth= 4.00', Capacity at Bank-Full= 3,230.06 cfs

25.00' x 4.00' deep Parabolic Channel, n= 0.040 Mountain streams Length= 350.0' Slope= 0.5000 '/' Inlet Invert= 1,882.00', Outlet Invert= 1,707.00'

Summary for Reach R1.1: Swale

Inflow .	Area	I =	12.296 ac,	0.00% Impervious,	Inflow Depth = 2.2	20" for 10-Year event
Inflow		=	35.98 cfs @	12.06 hrs, Volume	= 2.252 af	
Outflov	N	=	35.06 cfs @	12.09 hrs, Volume	= 2.252 af,	Atten= 3%, Lag= 1.5 min

Routing by Stor-Ind+Trans method, Time Span= 0.00-144.00 hrs, dt= 0.05 hrs Max. Velocity= 5.65 fps, Min. Travel Time= 0.8 min Avg. Velocity = 1.68 fps, Avg. Travel Time= 2.8 min

Peak Storage= 1,762 cf @ 12.07 hrs Average Depth at Peak Storage= 1.04' Bank-Full Depth= 2.00', Capacity at Bank-Full= 129.38 cfs

4.00' x 2.00' deep channel, n= 0.040 Mountain streams Side Slope Z-value= 2.0 '/' Top Width= 12.00' Length= 280.0' Slope= 0.0357 '/' Inlet Invert= 2,440.00', Outlet Invert= 2,430.00'

Summary for Reach R1.11: Stream

Inflow Area = 3.441 ac, 4.67% Impervious, Inflow Depth = 2.45" for 10-Year event Inflow = 14.52 cfs @ 11.97 hrs, Volume= 0.702 af Outflow = 14.38 cfs @ 11.98 hrs, Volume= 0.702 af, Atten= 1%, Lag= 0.7 min Routing by Stor-Ind+Trans method, Time Span= 0.00-144.00 hrs, dt= 0.05 hrs

Max. Velocity= 4.66 fps, Min. Travel Time= 0.4 min Avg. Velocity = 1.40 fps, Avg. Travel Time= 1.4 min

Peak Storage= 374 cf @ 11.98 hrs Average Depth at Peak Storage= 0.38' Bank-Full Depth= 1.00', Capacity at Bank-Full= 119.42 cfs

20.00' x 1.00' deep Parabolic Channel, n= 0.070 Sluggish weedy reaches w/pools Length= 120.0' Slope= 0.3083 '/' Inlet Invert= 2,205.00', Outlet Invert= 2,168.00'

‡

Summary for Reach R1.12: Stream

Inflow A	rea =	9.950 ac, <i>1</i>	14.75% Impervious,	Inflow Depth = 2.6	64" for 10-Year event
Inflow	=	6.18 cfs @	12.32 hrs, Volume	= 2.187 af	
Outflow	=	6.12 cfs @	12.41 hrs, Volume	= 2.187 af,	Atten= 1%, Lag= 5.2 min

Routing by Stor-Ind+Trans method, Time Span= 0.00-144.00 hrs, dt= 0.05 hrs Max. Velocity= 2.58 fps, Min. Travel Time= 2.6 min Avg. Velocity = 0.61 fps, Avg. Travel Time= 11.1 min

Peak Storage= 963 cf @ 12.36 hrs Average Depth at Peak Storage= 0.32' Bank-Full Depth= 1.00', Capacity at Bank-Full= 73.77 cfs

20.00' x 1.00' deep Parabolic Channel, n= 0.070 Sluggish weedy reaches w/pools Length= 405.0' Slope= 0.1177 '/' Inlet Invert= 2,157.65', Outlet Invert= 2,110.00'

‡

Summary for Reach R1.2: Mountain Stream

Inflow Area = 12.296 ac, 0.00% Impervious, Inflow Depth = 2.20" for 10-Year event Inflow 35.06 cfs @ 12.09 hrs. Volume= 2.252 af = Outflow 34.10 cfs @ 12.12 hrs, Volume= 2.252 af, Atten= 3%, Lag= 1.9 min = Routing by Stor-Ind+Trans method, Time Span= 0.00-144.00 hrs, dt= 0.05 hrs Max. Velocity= 8.26 fps, Min. Travel Time= 1.1 min Avg. Velocity = 2.57 fps, Avg. Travel Time= 3.6 min Peak Storage= 2,325 cf @ 12.10 hrs Average Depth at Peak Storage= 0.46' Bank-Full Depth= 1.00', Capacity at Bank-Full= 182.97 cfs 20.00' x 1.00' deep Parabolic Channel, n= 0.040 Mountain streams Length= 550.0' Slope= 0.2364 '/' Inlet Invert= 2,430.00', Outlet Invert= 2,300.00' ‡ Summary for Reach R1.3: Mountain Stream 52.901 ac, Inflow Area = 0.00% Impervious, Inflow Depth = 2.20" for 10-Year event 119.73 cfs @ 12.15 hrs, Volume= Inflow 9.706 af = 117.60 cfs @ 12.18 hrs, Volume= 9.706 af, Atten= 2%, Lag= 2.2 min Outflow =

Routing by Stor-Ind+Trans method, Time Span= 0.00-144.00 hrs, dt= 0.05 hrs Max. Velocity= 10.40 fps, Min. Travel Time= 1.2 min Avg. Velocity = 3.28 fps, Avg. Travel Time= 3.9 min

Peak Storage= 8,799 cf @ 12.16 hrs Average Depth at Peak Storage= 1.04' Bank-Full Depth= 1.50', Capacity at Bank-Full= 265.67 cfs

20.00' x 1.50' deep Parabolic Channel, n= 0.040 Mountain streams Length= 767.0' Slope= 0.1304 '/' Inlet Invert= 2,300.00', Outlet Invert= 2,200.00'

Summary for Reach R1.4: Mountain Stream

Inflow Area = 1.00% Impervious, Inflow Depth = 2.23" for 10-Year event 54.922 ac. Inflow 118.53 cfs @ 12.18 hrs. Volume= 10.203 af = Outflow 117.77 cfs @ 12.20 hrs, Volume= 10.203 af, Atten= 1%, Lag= 1.0 min = Routing by Stor-Ind+Trans method, Time Span= 0.00-144.00 hrs, dt= 0.05 hrs Max. Velocity= 11.25 fps, Min. Travel Time= 0.5 min Avg. Velocity = 2.08 fps, Avg. Travel Time= 2.9 min Peak Storage= 3,845 cf @ 12.19 hrs Average Depth at Peak Storage= 0.98' Bank-Full Depth= 1.50', Capacity at Bank-Full= 298.31 cfs 20.00' x 1.50' deep Parabolic Channel, n= 0.040 Mountain streams Length= 365.0' Slope= 0.1644 '/' Inlet Invert= 2,200.00', Outlet Invert= 2,140.00' ‡ Summary for Reach R1.5: Stream Inflow 0.00 cfs @ 0.00 hrs. Volume= 0.000 af = 0.00 hrs, Volume= Outflow 0.00 cfs @ 0.000 af, Atten= 0%, Lag= 0.0 min = Routing by Stor-Ind+Trans method, Time Span= 0.00-144.00 hrs, dt= 0.05 hrs Max. Velocity= 0.00 fps, Min. Travel Time= 0.0 min Avg. Velocity = 0.00 fps, Avg. Travel Time= 0.0 min Peak Storage= 0 cf @ 0.00 hrs Average Depth at Peak Storage= 0.00' Bank-Full Depth= 1.50', Capacity at Bank-Full= 438.14 cfs 35.00' x 1.50' deep Parabolic Channel, n= 0.040 Mountain streams Length= 175.0' Slope= 0.1143 '/' Inlet Invert= 2,160.00', Outlet Invert= 2,140.00'

±

Summary for Reach R1.6: Mountain Stream

 Inflow Area =
 54.922 ac,
 1.00% Impervious, Inflow Depth =
 2.23" for 10-Year event

 Inflow =
 117.77 cfs @
 12.20 hrs, Volume=
 10.203 af

 Outflow =
 117.05 cfs @
 12.21 hrs, Volume=
 10.203 af, Atten= 1%, Lag= 0.8 min

Routing by Stor-Ind+Trans method, Time Span= 0.00-144.00 hrs, dt= 0.05 hrs Max. Velocity= 7.37 fps, Min. Travel Time= 0.5 min Avg. Velocity = 1.35 fps, Avg. Travel Time= 2.5 min

Peak Storage= 3,193 cf @ 12.21 hrs Average Depth at Peak Storage= 1.29' Bank-Full Depth= 1.50', Capacity at Bank-Full= 162.83 cfs

20.00' x 1.50' deep Parabolic Channel, n= 0.070 Sluggish weedy reaches w/pools Length= 200.0' Slope= 0.1500 '/' Inlet Invert= 2,140.00', Outlet Invert= 2,110.00'

Summary for Reach R11.1: Mountain stream

Inflow /	Area	=	4.455 ac,	0.00% Impervious,	Inflow Depth = 2.2	28" for 10-Year event
Inflow		=	13.60 cfs @	12.06 hrs, Volume	= 0.847 af	
Outflov	N	=	13.43 cfs @	12.07 hrs, Volume	= 0.847 af,	Atten= 1%, Lag= 0.6 min

Routing by Stor-Ind+Trans method, Time Span= 0.00-144.00 hrs, dt= 0.05 hrs Max. Velocity= 9.48 fps, Min. Travel Time= 0.4 min Avg. Velocity = 3.19 fps, Avg. Travel Time= 1.0 min

Peak Storage= 286 cf @ 12.06 hrs Average Depth at Peak Storage= 0.63' Bank-Full Depth= 2.00', Capacity at Bank-Full= 149.17 cfs

6.00' x 2.00' deep Parabolic Channel, n= 0.040 Mountain streams Length= 200.0' Slope= 0.2300 '/' Inlet Invert= 2,274.00', Outlet Invert= 2,228.00'

Summary for Reach R11.12: Mountain stream

Inflow Area = 5.399 ac, 2.68% Impervious, Inflow Depth = 2.25" for 10-Year event Inflow 15.40 cfs @ 12.08 hrs. Volume= 1.011 af = Outflow 15.13 cfs @ 12.09 hrs, Volume= 1.011 af, Atten= 2%, Lag= 0.7 min = Routing by Stor-Ind+Trans method, Time Span= 0.00-144.00 hrs, dt= 0.05 hrs Max. Velocity= 8.77 fps, Min. Travel Time= 0.4 min Avg. Velocity = 1.96 fps, Avg. Travel Time= 1.7 min Peak Storage= 348 cf @ 12.08 hrs Average Depth at Peak Storage= 0.55' Bank-Full Depth= 1.00', Capacity at Bank-Full= 62.87 cfs 1.00' x 1.00' deep channel, n= 0.040 Mountain streams Side Slope Z-value= 4.0 '/' Top Width= 9.00' Length= 200.0' Slope= 0.2600 '/' Inlet Invert= 2,472.00', Outlet Invert= 2,420.00' ‡

Summary for Reach R11.13: Mountain stream

Inflow /	Area	=	28.547 ac,	0.11% Impervious,	Inflow Depth = 2.2	20" for 10-Year event
Inflow	=	=	43.24 cfs @	12.39 hrs, Volume	= 5.234 af	
Outflow	v =	=	43.19 cfs @	12.40 hrs, Volume	= 5.234 af,	Atten= 0%, Lag= 0.6 min

Routing by Stor-Ind+Trans method, Time Span= 0.00-144.00 hrs, dt= 0.05 hrs Max. Velocity= 10.02 fps, Min. Travel Time= 0.3 min Avg. Velocity = 2.53 fps, Avg. Travel Time= 1.3 min

Peak Storage= 864 cf @ 12.39 hrs Average Depth at Peak Storage= 0.86' Bank-Full Depth= 6.00', Capacity at Bank-Full= 2,646.35 cfs

20.00' x 6.00' deep Parabolic Channel, n= 0.050 Mountain streams w/large boulders Length= 200.0' Slope= 0.2500 '/' Inlet Invert= 2,470.00', Outlet Invert= 2,420.00'

Summary for Reach R11.14: Mountain stream

 Inflow Area =
 0.695 ac,
 5.23% Impervious, Inflow Depth =
 2.35" for 10-Year event

 Inflow =
 2.76 cfs @
 11.98 hrs, Volume=
 0.136 af

 Outflow =
 2.50 cfs @
 12.04 hrs, Volume=
 0.136 af, Atten= 9%, Lag= 3.2 min

Routing by Stor-Ind+Trans method, Time Span= 0.00-144.00 hrs, dt= 0.05 hrs Max. Velocity= 4.77 fps, Min. Travel Time= 1.7 min Avg. Velocity = 0.94 fps, Avg. Travel Time= 8.5 min

Peak Storage= 270 cf @ 12.01 hrs Average Depth at Peak Storage= 0.27' Bank-Full Depth= 1.00', Capacity at Bank-Full= 44.26 cfs

6.00' x 1.00' deep Parabolic Channel, n= 0.040 Mountain streams Length= 480.0' Slope= 0.1667 '/' Inlet Invert= 2,470.00', Outlet Invert= 2,390.00'

Summary for Reach R11.16: SWALE

Inflow .	Area	=	11.392 ac,	0.56% Impervious,	Inflow Depth = 2.2	20" for 10-Year event
Inflow		=	26.86 cfs @	12.14 hrs, Volume	= 2.087 af	
Outflov	N	=	26.46 cfs @	12.17 hrs, Volume	= 2.087 af,	Atten= 2%, Lag= 1.8 min

Routing by Stor-Ind+Trans method, Time Span= 0.00-144.00 hrs, dt= 0.05 hrs Max. Velocity= 8.99 fps, Min. Travel Time= 1.0 min Avg. Velocity = 2.95 fps, Avg. Travel Time= 3.1 min

Peak Storage= 1,640 cf @ 12.16 hrs Average Depth at Peak Storage= 1.00' Bank-Full Depth= 2.00', Capacity at Bank-Full= 101.91 cfs

2.00' x 2.00' deep channel, n= 0.040 Earth, cobble bottom, clean sides Side Slope Z-value= 1.0 '/' Top Width= 6.00' Length= 550.0' Slope= 0.1109 '/' Inlet Invert= 2,451.00', Outlet Invert= 2,390.00'
Summary for Reach R11.1A: Mountain stream

Routing by Stor-Ind+Trans method, Time Span= 0.00-144.00 hrs, dt= 0.05 hrs Max. Velocity= 8.08 fps, Min. Travel Time= 0.7 min Avg. Velocity = 1.96 fps, Avg. Travel Time= 2.8 min

Peak Storage= 539 cf @ 12.08 hrs Average Depth at Peak Storage= 0.70' Bank-Full Depth= 2.00', Capacity at Bank-Full= 119.72 cfs

6.00' x 2.00' deep Parabolic Channel, n= 0.040 Mountain streams Length= 324.0' Slope= 0.1481 '/' Inlet Invert= 2,228.00', Outlet Invert= 2,180.00'

Summary for Reach R11.1B: Mountain stream

Inflow .	Area	ι =	8.579 ac, 1	10.37% Impe	ervious,	Inflow Depth =	2.5	57" for 10-	Year event
Inflow		=	20.82 cfs @	12.08 hrs,	Volume	= 1.836	af		
Outflov	N	=	20.08 cfs @	12.13 hrs,	Volume	= 1.836	af,	Atten= 4%,	Lag= 3.1 min

Routing by Stor-Ind+Trans method, Time Span= 0.00-144.00 hrs, dt= 0.05 hrs Max. Velocity= 9.80 fps, Min. Travel Time= 1.8 min Avg. Velocity = 1.48 fps, Avg. Travel Time= 11.6 min

Peak Storage= 2,170 cf @ 12.10 hrs Average Depth at Peak Storage= 0.82' Bank-Full Depth= 2.00', Capacity at Bank-Full= 131.79 cfs

 $6.00' \times 2.00'$ deep Parabolic Channel, n= 0.040 Mountain streams Length= 1,036.0' Slope= 0.1795 '/' Inlet Invert= 2,174.00', Outlet Invert= 1,988.00'

Summary for Reach R11.2: Wetland stream

 Inflow Area =
 1.046 ac,
 0.00% Impervious, Inflow Depth =
 2.36" for 10-Year event

 Inflow =
 4.26 cfs @
 11.97 hrs, Volume=
 0.206 af

 Outflow =
 3.86 cfs @
 12.06 hrs, Volume=
 0.206 af, Atten= 10%, Lag= 5.2 min

Routing by Stor-Ind+Trans method, Time Span= 0.00-144.00 hrs, dt= 0.05 hrs Max. Velocity= 1.59 fps, Min. Travel Time= 3.3 min Avg. Velocity = 0.44 fps, Avg. Travel Time= 12.1 min

Peak Storage= 786 cf @ 12.01 hrs Average Depth at Peak Storage= 0.32' Bank-Full Depth= 1.00', Capacity at Bank-Full= 44.98 cfs

20.00' x 1.00' deep Parabolic Channel, n= 0.070 Sluggish weedy reaches w/pools Length= 320.0' Slope= 0.0437 '/' Inlet Invert= 2,302.00', Outlet Invert= 2,288.00'

‡

Summary for Reach R11.21: SWALE

Inflow /	Area	=	5.212 ac,	0.00% Impervious,	Inflow Depth = 2.2	20" for 10-Year event
Inflow	=	=	14.46 cfs @	12.08 hrs, Volume	= 0.955 af	
Outflov	v =	=	13.13 cfs @	12.20 hrs, Volume	= 0.955 af,	Atten= 9%, Lag= 7.4 min

Routing by Stor-Ind+Trans method, Time Span= 0.00-144.00 hrs, dt= 0.05 hrs Max. Velocity= 6.77 fps, Min. Travel Time= 4.3 min Avg. Velocity = 1.82 fps, Avg. Travel Time= 16.1 min

Peak Storage= 3,456 cf @ 12.13 hrs Average Depth at Peak Storage= 0.72' Bank-Full Depth= 1.50', Capacity at Bank-Full= 51.40 cfs

2.00' x 1.50' deep channel, n= 0.040 Earth, cobble bottom, clean sides Side Slope Z-value= 1.0 '/' Top Width= 5.00' Length= 1,760.0' Slope= 0.0875 '/' Inlet Invert= 2,458.00', Outlet Invert= 2,304.00'

Summary for Reach R11.24: Stream

Inflow Area =25.915 ac, 18.10% Impervious, Inflow Depth > 2.33" for 10-Year eventInflow =20.94 cfs @ 12.32 hrs, Volume=5.037 afOutflow =20.91 cfs @ 12.35 hrs, Volume=5.037 af, Atten= 0%, Lag= 2.0 min

Routing by Stor-Ind+Trans method, Time Span= 0.00-144.00 hrs, dt= 0.05 hrs Max. Velocity= 4.25 fps, Min. Travel Time= 1.2 min Avg. Velocity = 0.93 fps, Avg. Travel Time= 5.4 min

Peak Storage= 1,477 cf @ 12.33 hrs Average Depth at Peak Storage= 0.39' Bank-Full Depth= 1.00', Capacity at Bank-Full= 158.42 cfs

30.00' x 1.00' deep Parabolic Channel, n= 0.070 Sluggish weedy reaches w/pools Length= 300.0' Slope= 0.2400 '/' Inlet Invert= 2,292.00', Outlet Invert= 2,220.00'

‡

Summary for Reach R11.26: Wetland stream

Inflow Are	ea =	0.432 ac, 7	7.25% Impervious, I	nflow Depth = 4.2	20" for 10-Year event
Inflow	=	0.10 cfs @	13.58 hrs, Volume=	0.151 af	
Outflow	=	0.10 cfs @	13.65 hrs, Volume=	e 0.151 af,	Atten= 0%, Lag= 3.8 min

Routing by Stor-Ind+Trans method, Time Span= 0.00-144.00 hrs, dt= 0.05 hrs Max. Velocity= 1.19 fps, Min. Travel Time= 2.2 min Avg. Velocity = 0.80 fps, Avg. Travel Time= 3.2 min

Peak Storage= 13 cf @ 13.61 hrs Average Depth at Peak Storage= 0.05' Bank-Full Depth= 1.00', Capacity at Bank-Full= 53.93 cfs

10.00' x 1.00' deep Parabolic Channel, n= 0.070 Sluggish weedy reaches w/pools Length= 155.0' Slope= 0.2581 '/' Inlet Invert= 2,260.00', Outlet Invert= 2,220.00'

‡

Summary for Reach R11.29: SWALE

 Inflow Area =
 9.625 ac, 29.34% Impervious, Inflow Depth =
 2.03" for 10-Year event

 Inflow =
 43.33 cfs @
 11.99 hrs, Volume=
 1.625 af

 Outflow =
 42.43 cfs @
 12.00 hrs, Volume=
 1.627 af, Atten= 2%, Lag= 0.2 min

Routing by Stor-Ind+Trans method, Time Span= 0.00-144.00 hrs, dt= 0.05 hrs / 2 Max. Velocity= 15.90 fps, Min. Travel Time= 0.2 min Avg. Velocity = 4.11 fps, Avg. Travel Time= 0.7 min

Peak Storage= 445 cf @ 11.99 hrs Average Depth at Peak Storage= 0.92' Bank-Full Depth= 1.50', Capacity at Bank-Full= 106.52 cfs

2.00' x 1.50' deep channel, n= 0.040 Earth, cobble bottom, clean sides Side Slope Z-value= 1.0 '/' Top Width= 5.00' Length= 165.0' Slope= 0.3758 '/' Inlet Invert= 2,366.00', Outlet Invert= 2,304.00'

Summary for Reach R11.30: SWALE

Inflow A	rea =	0.575 ac, 22.45% Impervious, Infl	ow Depth = 3.69" for	10-Year event
Inflow	=	1.12 cfs @ 12.10 hrs, Volume=	0.177 af	
Outflow	=	1.09 cfs @ 12.11 hrs, Volume=	0.176 af, Atten=	3%, Lag= 0.4 min

Routing by Stor-Ind+Trans method, Time Span= 0.00-144.00 hrs, dt= 0.05 hrs Max. Velocity= 4.65 fps, Min. Travel Time= 0.3 min Avg. Velocity = 1.47 fps, Avg. Travel Time= 1.0 min

Peak Storage= 21 cf @ 12.11 hrs Average Depth at Peak Storage= 0.11' Bank-Full Depth= 1.50', Capacity at Bank-Full= 148.59 cfs

2.00' x 1.50' deep channel, n= 0.040 Earth, cobble bottom, clean sides Side Slope Z-value= 2.0 '/' Top Width= 8.00' Length= 85.0' Slope= 0.3471 '/' Inlet Invert= 2,213.50', Outlet Invert= 2,184.00'

Summary for Reach R11.31: SWALE

 Inflow Area =
 1.246 ac, 12.83% Impervious, Inflow Depth = 2.53" for 10-Year event

 Inflow =
 3.81 cfs @ 12.05 hrs, Volume=
 0.263 af

 Outflow =
 3.46 cfs @ 12.08 hrs, Volume=
 0.263 af, Atten= 9%, Lag= 2.0 min

Routing by Stor-Ind+Trans method, Time Span= 0.00-144.00 hrs, dt= 0.05 hrs Max. Velocity= 3.93 fps, Min. Travel Time= 1.0 min Avg. Velocity = 0.63 fps, Avg. Travel Time= 6.0 min

Peak Storage= 226 cf @ 12.06 hrs Average Depth at Peak Storage= 0.37' Bank-Full Depth= 1.50', Capacity at Bank-Full= 63.41 cfs

2.00' x 1.50' deep channel, n= 0.030 Earth, grassed & winding Side Slope Z-value= 2.0 '/' Top Width= 8.00' Length= 225.0' Slope= 0.0356 '/' Inlet Invert= 2,192.00', Outlet Invert= 2,184.00'

Summary for Reach R12.1: Mountain Stream/Wetland

Inflow /	Area	=	17.893 ac,	9.84% Impervious	, Inflow Depth =	2.43" for 10-Y	ear event
Inflow		=	20.17 cfs @	12.40 hrs, Volum	e= 3.628 a	af	
Outflov	N	=	20.10 cfs @	12.44 hrs, Volum	e= 3.628 a	af, Atten=0%, L	.ag= 2.5 min

Routing by Stor-Ind+Trans method, Time Span= 0.00-144.00 hrs, dt= 0.05 hrs Max. Velocity= 3.26 fps, Min. Travel Time= 1.3 min Avg. Velocity = 0.61 fps, Avg. Travel Time= 7.1 min

Peak Storage= 1,607 cf @ 12.42 hrs Average Depth at Peak Storage= 0.60' Bank-Full Depth= 1.00', Capacity at Bank-Full= 61.12 cfs

20.00' x 1.00' deep Parabolic Channel, n= 0.070 Sluggish weedy reaches w/pools Length= 260.0' Slope= 0.0808 '/' Inlet Invert= 2,290.00', Outlet Invert= 2,269.00'

‡

Summary for Reach R12.2: Mountain Stream/Wetland

Inflow Area = 18.269 ac, 10.19% Impervious, Inflow Depth = 2.44" for 10-Year event Inflow 20.31 cfs @ 12.44 hrs. Volume= 3.719 af = Outflow 20.28 cfs @ 12.46 hrs, Volume= 3.719 af, Atten= 0%, Lag= 1.2 min = Routing by Stor-Ind+Trans method, Time Span= 0.00-144.00 hrs, dt= 0.05 hrs Max. Velocity= 4.61 fps, Min. Travel Time= 0.6 min Avg. Velocity = 0.88 fps, Avg. Travel Time= 3.3 min Peak Storage= 771 cf @ 12.45 hrs Average Depth at Peak Storage= 0.48' Bank-Full Depth= 1.00', Capacity at Bank-Full= 100.21 cfs $20.00' \times 1.00'$ deep Parabolic Channel, n= 0.070 Sluggish weedy reaches w/pools Length= 175.0' Slope= 0.2171 '/' Inlet Invert= 2,268.00', Outlet Invert= 2,230.00' ‡ Summary for Reach R2.1: Roadside Swale 6.302 ac, Inflow Area = 9.60% Impervious, Inflow Depth = 2.45" for 10-Year event 18.63 cfs @ 12.11 hrs, Volume= Inflow 1.287 af = 18.31 cfs @ 12.13 hrs, Volume= 1.287 af, Atten= 2%, Lag= 1.0 min Outflow = Routing by Stor-Ind+Trans method, Time Span= 0.00-144.00 hrs, dt= 0.05 hrs Max. Velocity= 5.05 fps, Min. Travel Time= 0.5 min Avg. Velocity = 0.97 fps, Avg. Travel Time= 2.7 min

Peak Storage= 588 cf @ 12.12 hrs Average Depth at Peak Storage= 0.95' Bank-Full Depth= 2.00', Capacity at Bank-Full= 91.79 cfs

2.00' x 2.00' deep channel, n= 0.040 Earth, cobble bottom, clean sides Side Slope Z-value= 2.0 '/' Top Width= 10.00' Length= 160.0' Slope= 0.0375 '/' Inlet Invert= 2,300.00', Outlet Invert= 2,294.00'

Summary for Reach R2.11: Overland Flow

 Inflow Area =
 3.914 ac, 11.46% Impervious, Inflow Depth = 2.53" for 10-Year event

 Inflow =
 9.04 cfs @ 12.14 hrs, Volume=
 0.826 af

 Outflow =
 5.13 cfs @ 12.55 hrs, Volume=
 0.826 af, Atten= 43%, Lag= 24.7 min

Routing by Stor-Ind+Trans method, Time Span= 0.00-144.00 hrs, dt= 0.05 hrs Max. Velocity= 0.54 fps, Min. Travel Time= 14.5 min Avg. Velocity = 0.13 fps, Avg. Travel Time= 60.2 min

Peak Storage= 4,479 cf @ 12.31 hrs Average Depth at Peak Storage= 0.22' Bank-Full Depth= 0.50', Capacity at Bank-Full= 30.99 cfs

100.00' x 0.50' deep Parabolic Channel, n= 0.400 Sheet flow: Woods+light brush Length= 465.0' Slope= 0.2710 '/' Inlet Invert= 2,420.00', Outlet Invert= 2,294.00'

‡

Summary for Reach R2.12: Swale

Inflow A	Area =	3.322 ac, 22.38% Impervious, Infl	ow Depth = 2.80" for 10-Year event
Inflow	=	12.86 cfs @ 12.05 hrs, Volume=	0.776 af
Outflow	v =	12.73 cfs @ 12.06 hrs, Volume=	0.776 af, Atten= 1%, Lag= 0.6 min

Routing by Stor-Ind+Trans method, Time Span= 0.00-144.00 hrs, dt= 0.05 hrs Max. Velocity= 8.02 fps, Min. Travel Time= 0.4 min Avg. Velocity = 1.54 fps, Avg. Travel Time= 1.8 min

Peak Storage= 273 cf @ 12.06 hrs Average Depth at Peak Storage= 0.53' Bank-Full Depth= 2.00', Capacity at Bank-Full= 199.13 cfs

2.00' x 2.00' deep channel, n= 0.040 Earth, cobble bottom, clean sides Side Slope Z-value= 2.0 '/' Top Width= 10.00' Length= 170.0' Slope= 0.1765 '/' Inlet Invert= 2,260.00', Outlet Invert= 2,230.00'

Summary for Reach R2.13: Wetland Flow

Inflow Area =5.821 ac, 24.98% Impervious, Inflow Depth =2.83" for 10-Year eventInflow =3.02 cfs @12.53 hrs, Volume =1.372 afOutflow =2.99 cfs @12.58 hrs, Volume =1.372 af, Atten = 1%, Lag = 2.8 min

Routing by Stor-Ind+Trans method, Time Span= 0.00-144.00 hrs, dt= 0.05 hrs Max. Velocity= 2.02 fps, Min. Travel Time= 1.5 min Avg. Velocity = 0.86 fps, Avg. Travel Time= 3.5 min

Peak Storage= 271 cf @ 12.55 hrs Average Depth at Peak Storage= 0.23' Bank-Full Depth= 1.00', Capacity at Bank-Full= 71.29 cfs

20.00' x 1.00' deep Parabolic Channel, n= 0.070 Sluggish weedy reaches w/pools Length= 182.0' Slope= 0.1099 '/' Inlet Invert= 2,220.00', Outlet Invert= 2,200.00'

‡

Summary for Reach R2.14: Mountain Stream

Inflow A	Area =	5.821 ac, 24.98% Impervious,	Inflow Depth = 2.83" for 10-Year event
Inflow	=	2.99 cfs @ 12.58 hrs, Volume	= 1.372 af
Outflow	v =	2.96 cfs @ 12.65 hrs, Volume	= 1.372 af, Atten= 1%, Lag= 4.1 min

Routing by Stor-Ind+Trans method, Time Span= 0.00-144.00 hrs, dt= 0.05 hrs Max. Velocity= 2.38 fps, Min. Travel Time= 2.0 min Avg. Velocity = 1.01 fps, Avg. Travel Time= 4.7 min

Peak Storage= 357 cf @ 12.61 hrs Average Depth at Peak Storage= 0.21' Bank-Full Depth= 1.00', Capacity at Bank-Full= 90.24 cfs

20.00' x 1.00' deep Parabolic Channel, n= 0.070 Sluggish weedy reaches w/pools Length= 284.0' Slope= 0.1761 '/' Inlet Invert= 2,200.00', Outlet Invert= 2,150.00'

‡

Summary for Reach R2.2: Roadside Swale

Inflow Area = 10.216 ac, 10.32% Impervious, Inflow Depth = 2.48" for 10-Year event Inflow = 18.36 cfs @ 12.13 hrs, Volume= 2.113 af Outflow = 17.99 cfs @ 12.15 hrs, Volume= 2.113 af, Atten= 2%, Lag= 1.1 min Routing by Stor-Ind+Trans method, Time Span= 0.00-144.00 hrs, dt= 0.05 hrs / 2 Max. Velocity= 7.09 fps, Min. Travel Time= 0.6 min

Avg. Velocity = 1.55 fps, Avg. Travel Time= 2.7 min

Peak Storage= 641 cf @ 12.14 hrs Average Depth at Peak Storage= 0.74' Bank-Full Depth= 2.00', Capacity at Bank-Full= 146.87 cfs

2.00' x 2.00' deep channel, n= 0.040 Earth, cobble bottom, clean sides Side Slope Z-value= 2.0 '/' Top Width= 10.00' Length= 250.0' Slope= 0.0960 '/' Inlet Invert= 2,294.00', Outlet Invert= 2,270.00'

Summary for Reach R2.4: Roadside Swale

Inflow /	Area	=	19.135 ac,	12.06% Impe	ervious,	Inflow Depth =	2.5	51" for 10-	Year event
Inflow		=	45.77 cfs @	12.05 hrs,	Volume	= 3.998	af		
Outflov	V	=	43.64 cfs @	12.12 hrs,	Volume	= 3.998	af,	Atten= 5%,	Lag= 4.2 min

Routing by Stor-Ind+Trans method, Time Span= 0.00-144.00 hrs, dt= 0.05 hrs Max. Velocity= 6.64 fps, Min. Travel Time= 2.3 min Avg. Velocity = 1.33 fps, Avg. Travel Time= 11.4 min

Peak Storage= 6,065 cf @ 12.09 hrs Average Depth at Peak Storage= 1.39' Bank-Full Depth= 2.50', Capacity at Bank-Full= 162.14 cfs

2.00' x 2.50' deep channel, n= 0.040 Earth, cobble bottom, clean sides Side Slope Z-value= 2.0 '/' Top Width= 12.00' Length= 915.0' Slope= 0.0426 '/' Inlet Invert= 2,269.00', Outlet Invert= 2,230.00'

Summary for Reach R3.1: SWALE

Inflow Area = 10.077 ac, 13.20% Impervious, Inflow Depth = 2.52" for 10-Year event Inflow 35.98 cfs @ 12.04 hrs. Volume= 2.113 af = 2.113 af, Atten= 2%, Lag= 1.0 min Outflow 35.29 cfs @ 12.06 hrs, Volume= = Routing by Stor-Ind+Trans method, Time Span= 0.00-144.00 hrs, dt= 0.05 hrs Max. Velocity= 9.31 fps, Min. Travel Time= 0.6 min Avg. Velocity = 1.38 fps, Avg. Travel Time= 4.2 min Peak Storage= 1,357 cf @ 12.05 hrs Average Depth at Peak Storage= 0.55' Bank-Full Depth= 1.50', Capacity at Bank-Full= 219.76 cfs 6.00' x 1.50' deep channel, n= 0.040 Earth, cobble bottom, clean sides Side Slope Z-value= 2.0 '/' Top Width= 12.00' Length= 350.0' Slope= 0.1771 '/' Inlet Invert= 2,280.00', Outlet Invert= 2,218.00' ‡ Summary for Reach R3.4: SWALE

Inflow Area	a =	20.668 ac, 1	6.21% Impe	rvious, Inflo	ow Depth =	2.60"	for 10-`	Year event
Inflow	=	35.73 cfs @	12.18 hrs, \	√olume=	4.486	af		
Outflow	=	35.29 cfs @	12.20 hrs, \	√olume=	4.486	af, At	ten= 1%,	Lag= 1.6 min

Routing by Stor-Ind+Trans method, Time Span= 0.00-144.00 hrs, dt= 0.05 hrs Max. Velocity= 11.84 fps, Min. Travel Time= 0.6 min Avg. Velocity = 1.99 fps, Avg. Travel Time= 3.5 min

Peak Storage= 1,304 cf @ 12.17 hrs Average Depth at Peak Storage= 0.84' Bank-Full Depth= 1.50', Capacity at Bank-Full= 123.07 cfs

2.00' x 1.50' deep channel, n= 0.040 Earth, cobble bottom, clean sides Side Slope Z-value= 2.0 '/' Top Width= 8.00' Length= 420.0' Slope= 0.2381 '/' Inlet Invert= 2,180.00', Outlet Invert= 2,080.00'

Summary for Reach R5.2: SWALE

 Inflow Area =
 8.026 ac,
 0.00% Impervious, Inflow Depth =
 2.20" for 10-Year event

 Inflow =
 27.00 cfs @
 12.02 hrs, Volume=
 1.470 af

 Outflow =
 25.68 cfs @
 12.06 hrs, Volume=
 1.470 af, Atten= 5%, Lag= 2.4 min

Routing by Stor-Ind+Trans method, Time Span= 0.00-144.00 hrs, dt= 0.05 hrs Max. Velocity= 8.33 fps, Min. Travel Time= 1.4 min Avg. Velocity = 2.38 fps, Avg. Travel Time= 4.8 min

Peak Storage= 2,194 cf @ 12.04 hrs Average Depth at Peak Storage= 1.04' Bank-Full Depth= 1.50', Capacity at Bank-Full= 52.51 cfs

2.00' x 1.50' deep channel, n= 0.040 Earth, cobble bottom, clean sides Side Slope Z-value= 1.0 '/' Top Width= 5.00' Length= 690.0' Slope= 0.0913 '/' Inlet Invert= 1,901.00', Outlet Invert= 1,838.00'

Summary for Reach R5.4: SWALE

Inflow /	Area	=	8.026 ac,	0.00% Impervious,	Inflow Depth = 2.2	20" for 10-Year event
Inflow	:	=	25.68 cfs @	12.06 hrs, Volume	= 1.470 af	
Outflow	V :	=	24.67 cfs @	12.09 hrs, Volume	= 1.470 af,	Atten= 4%, Lag= 2.1 min

Routing by Stor-Ind+Trans method, Time Span= 0.00-144.00 hrs, dt= 0.05 hrs Max. Velocity= 9.02 fps, Min. Travel Time= 1.2 min Avg. Velocity = 2.61 fps, Avg. Travel Time= 4.1 min

Peak Storage= 1,785 cf @ 12.07 hrs Average Depth at Peak Storage= 0.95' Bank-Full Depth= 2.00', Capacity at Bank-Full= 105.45 cfs

2.00' x 2.00' deep channel, n= 0.040 Earth, cobble bottom, clean sides Side Slope Z-value= 1.0 '/' Top Width= 6.00' Length= 640.0' Slope= 0.1187 '/' Inlet Invert= 1,822.00', Outlet Invert= 1,746.00'

Summary for Reach R5.5: SWALE

 Inflow Area =
 0.684 ac, 16.21% Impervious, Inflow Depth =
 3.02" for 10-Year event

 Inflow =
 2.99 cfs @
 11.99 hrs, Volume=
 0.172 af

 Outflow =
 3.02 cfs @
 12.01 hrs, Volume=
 0.172 af, Atten= 0%, Lag= 1.1 min

Routing by Stor-Ind+Trans method, Time Span= 0.00-144.00 hrs, dt= 0.05 hrs Max. Velocity= 5.86 fps, Min. Travel Time= 0.5 min Avg. Velocity = 1.15 fps, Avg. Travel Time= 2.8 min

Peak Storage= 103 cf @ 12.00 hrs Average Depth at Peak Storage= 0.24' Bank-Full Depth= 1.50', Capacity at Bank-Full= 79.73 cfs

2.00' x 1.50' deep channel, n= 0.040 Earth, cobble bottom, clean sides Side Slope Z-value= 1.0 '/' Top Width= 5.00' Length= 190.0' Slope= 0.2105 '/' Inlet Invert= 1,780.00', Outlet Invert= 1,740.00'

Summary for Reach R5.6: SWALE

Inflow A	rea =	12.198 ac,	3.02% Impervious, I	nflow Depth = 2.3	34" for 10-Year event
Inflow	=	38.09 cfs @	12.06 hrs, Volume=	2.379 af	
Outflow	=	37.53 cfs @	12.07 hrs, Volume=	: 2.379 af,	Atten= 1%, Lag= 0.9 min

Routing by Stor-Ind+Trans method, Time Span= 0.00-144.00 hrs, dt= 0.05 hrs Max. Velocity= 6.09 fps, Min. Travel Time= 0.5 min Avg. Velocity = 1.10 fps, Avg. Travel Time= 2.8 min

Peak Storage= 1,166 cf @ 12.06 hrs Average Depth at Peak Storage= 1.34' Bank-Full Depth= 2.50', Capacity at Bank-Full= 151.95 cfs

2.00' x 2.50' deep channel, n= 0.040 Earth, cobble bottom, clean sides Side Slope Z-value= 2.0 '/' Top Width= 12.00' Length= 187.0' Slope= 0.0374 '/' Inlet Invert= 1,745.00', Outlet Invert= 1,738.00'

Summary for Reach R7.1: swale

Inflow Area = 2.973 ac, 39.49% Impervious, Inflow Depth = 3.17" for 10-Year event Inflow = 1.34 cfs @ 12.52 hrs, Volume= 0.786 af Outflow = 1.33 cfs @ 12.53 hrs, Volume= 0.786 af, Atten= 0%, Lag= 1.0 min Routing by Stor-Ind+Trans method, Time Span= 0.00-144.00 hrs, dt= 0.05 hrs Max. Velocity= 4.08 fps, Min. Travel Time= 0.4 min

Avg. Velocity = 1.33 fps, Avg. Travel Time= 1.2 min

Peak Storage= 33 cf @ 12.53 hrs Average Depth at Peak Storage= 0.14' Bank-Full Depth= 1.50', Capacity at Bank-Full= 111.53 cfs

2.00' x 1.50' deep channel, n= 0.030 Earth, grassed & winding Side Slope Z-value= 2.0 '/' Top Width= 8.00' Length= 100.0' Slope= 0.1100 '/' Inlet Invert= 1,675.00', Outlet Invert= 1,664.00'

Summary for Reach R8.16: SWALE

Inflow /	Area	=	23.740 ac,	23.90% Imp	ervious,	Inflow Depth	= 2.6	69" for 10-	Year event
Inflow		=	75.84 cfs @	12.00 hrs,	Volume	= 5.3	20 af		
Outflov	V :	=	74.89 cfs @	12.01 hrs,	Volume	= 5.3	20 af,	Atten= 1%,	Lag= 0.6 min

Routing by Stor-Ind+Trans method, Time Span= 0.00-144.00 hrs, dt= 0.05 hrs Max. Velocity= 13.93 fps, Min. Travel Time= 0.4 min Avg. Velocity = 2.12 fps, Avg. Travel Time= 2.5 min

Peak Storage= 1,713 cf @ 12.01 hrs Average Depth at Peak Storage= 0.93' Bank-Full Depth= 1.50', Capacity at Bank-Full= 189.11 cfs

4.00' x 1.50' deep channel, n= 0.040 Earth, cobble bottom, clean sides Side Slope Z-value= 2.0 '/' Top Width= 10.00' Length= 315.0' Slope= 0.2413 '/' Inlet Invert= 1,818.00', Outlet Invert= 1,742.00'

Summary for Reach R8.17: SWALE

 Inflow Area =
 24.885 ac, 23.58% Impervious, Inflow Depth =
 2.69" for 10-Year event

 Inflow =
 79.27 cfs @
 12.01 hrs, Volume=
 5.579 af

 Outflow =
 78.18 cfs @
 12.02 hrs, Volume=
 5.579 af, Atten= 1%, Lag= 0.6 min

Routing by Stor-Ind+Trans method, Time Span= 0.00-144.00 hrs, dt= 0.05 hrs Max. Velocity= 13.40 fps, Min. Travel Time= 0.3 min Avg. Velocity = 2.02 fps, Avg. Travel Time= 2.3 min

Peak Storage= 1,649 cf @ 12.02 hrs Average Depth at Peak Storage= 0.99' Bank-Full Depth= 1.50', Capacity at Bank-Full= 176.73 cfs

4.00' x 1.50' deep channel, n= 0.040 Earth, cobble bottom, clean sides Side Slope Z-value= 2.0 '/' Top Width= 10.00' Length= 280.0' Slope= 0.2107 '/' Inlet Invert= 1,741.00', Outlet Invert= 1,682.00'

Summary for Reach R8.18: Mountain stream

Inflow /	Area	=	19.317 ac,	0.67% Impervio	ous, Inflow Dep	th = 2.20)" for 10-`	Year event
Inflow		=	34.49 cfs @	12.28 hrs, Volu	ume= 3	3.538 af		
Outflov	N	=	34.21 cfs @	12.32 hrs, Volu	ume= 3	3.538 af, <i>1</i>	Atten= 1%,	Lag= 2.5 min

Routing by Stor-Ind+Trans method, Time Span= 0.00-144.00 hrs, dt= 0.05 hrs Max. Velocity= 10.64 fps, Min. Travel Time= 1.4 min Avg. Velocity = 3.69 fps, Avg. Travel Time= 3.9 min

Peak Storage= 2,815 cf @ 12.30 hrs Average Depth at Peak Storage= 0.79' Bank-Full Depth= 1.50', Capacity at Bank-Full= 123.67 cfs

2.50' x 1.50' deep channel, n= 0.040 Mountain streams Side Slope Z-value= 2.0 '/' Top Width= 8.50' Length= 870.0' Slope= 0.1885 '/' Inlet Invert= 1,818.00', Outlet Invert= 1,654.00'

Summary for Reach R8.2: SWALE

Inflow Area =2.715 ac, 28.55% Impervious, Inflow Depth =2.89" for 10-Year eventInflow =10.05 cfs @12.09 hrs, Volume =0.654 afOutflow =9.78 cfs @12.12 hrs, Volume =0.654 af, Atten = 3%, Lag = 2.0 min

Routing by Stor-Ind+Trans method, Time Span= 0.00-144.00 hrs, dt= 0.05 hrs Max. Velocity= 5.81 fps, Min. Travel Time= 1.2 min Avg. Velocity = 1.03 fps, Avg. Travel Time= 6.6 min

Peak Storage= 701 cf @ 12.10 hrs Average Depth at Peak Storage= 0.65' Bank-Full Depth= 1.50', Capacity at Bank-Full= 46.39 cfs

2.00' x 1.50' deep channel, n= 0.040 Earth, cobble bottom, clean sides Side Slope Z-value= 1.0 '/' Top Width= 5.00' Length= 407.0' Slope= 0.0713 '/' Inlet Invert= 2,303.00', Outlet Invert= 2,274.00'

Summary for Reach R8.4: SWALE

 Inflow Area =
 6.659 ac, 31.16% Impervious, Inflow Depth = 2.95" for 10-Year event

 Inflow =
 24.95 cfs @ 12.03 hrs, Volume=
 1.636 af

 Outflow =
 24.27 cfs @ 12.07 hrs, Volume=
 1.636 af, Atten= 3%, Lag= 2.0 min

Routing by Stor-Ind+Trans method, Time Span= 0.00-144.00 hrs, dt= 0.05 hrs Max. Velocity= 8.09 fps, Min. Travel Time= 1.1 min Avg. Velocity = 1.38 fps, Avg. Travel Time= 6.3 min

Peak Storage= 1,617 cf @ 12.05 hrs Average Depth at Peak Storage= 1.02' Bank-Full Depth= 1.50', Capacity at Bank-Full= 51.44 cfs

2.00' x 1.50' deep channel, n= 0.040 Earth, cobble bottom, clean sides Side Slope Z-value= 1.0 '/' Top Width= 5.00' Length= 525.0' Slope= 0.0876 '/' Inlet Invert= 2,270.00', Outlet Invert= 2,224.00'

Summary for Reach R8.6: SWALE

Inflow Area = 8.599 ac, 26.37% Impervious, Inflow Depth = 2.83" for 10-Year event Inflow = 29.19 cfs @ 12.04 hrs, Volume= 2.031 afOutflow = 28.85 cfs @ 12.06 hrs, Volume= 2.031 af, Atten= 1%, Lag= 1.1 min Routing by Stor-Ind+Trans method, Time Span= 0.00-144.00 hrs, dt= 0.05 hrs

Max. Velocity= 9.35 fps, Min. Travel Time= 0.6 min Avg. Velocity = 1.60 fps, Avg. Travel Time= 3.6 min

Peak Storage= 1,079 cf @ 12.05 hrs Average Depth at Peak Storage= 1.03' Bank-Full Depth= 1.50', Capacity at Bank-Full= 59.17 cfs

2.00' x 1.50' deep channel, n= 0.040 Earth, cobble bottom, clean sides Side Slope Z-value= 1.0 '/' Top Width= 5.00' Length= 345.0' Slope= 0.1159 '/' Inlet Invert= 2,220.00', Outlet Invert= 2,180.00'

Summary for Reach R9.10: Swale

Inflow A	Area =	19.480 ac,	, 21.84% Impervious	, Inflow Depth > 2	2.86" for 10-Year event
Inflow	=	3.29 cfs @	2 13.96 hrs, Volum	e= 4.643 a	f
Outflow	/ =	3.29 cfs @	13.98 hrs, Volum	e= 4.643 a	f, Atten= 0%, Lag= 1.2 min

Routing by Stor-Ind+Trans method, Time Span= 0.00-144.00 hrs, dt= 0.05 hrs / 2 Max. Velocity= 4.10 fps, Min. Travel Time= 0.7 min Avg. Velocity = 1.68 fps, Avg. Travel Time= 1.7 min

Peak Storage= 136 cf @ 13.97 hrs Average Depth at Peak Storage= 0.31' Bank-Full Depth= 2.00', Capacity at Bank-Full= 136.03 cfs

2.00' x 2.00' deep channel, n= 0.040 Earth, cobble bottom, clean sides Side Slope Z-value= 2.0 '/' Top Width= 10.00' Length= 170.0' Slope= 0.0824 '/' Inlet Invert= 1,672.00', Outlet Invert= 1,658.00'

Summary for Reach R9.2: Swale

Inflow Area =4.151 ac, 21.51% Impervious, Inflow Depth =2.71" for 10-Year eventInflow =13.49 cfs @12.12 hrs, Volume=0.938 afOutflow =13.28 cfs @12.13 hrs, Volume=0.938 af, Atten= 2%, Lag= 0.7 min

Routing by Stor-Ind+Trans method, Time Span= 0.00-144.00 hrs, dt= 0.05 hrs Max. Velocity= 6.30 fps, Min. Travel Time= 0.3 min Avg. Velocity = 1.21 fps, Avg. Travel Time= 1.6 min

Peak Storage= 255 cf @ 12.12 hrs Average Depth at Peak Storage= 0.65' Bank-Full Depth= 1.50', Capacity at Bank-Full= 74.96 cfs

2.00' x 1.50' deep channel, n= 0.040 Earth, cobble bottom, clean sides Side Slope Z-value= 2.0 '/' Top Width= 8.00' Length= 120.0' Slope= 0.0883 '/' Inlet Invert= 1,815.50', Outlet Invert= 1,804.90'

Summary for Reach R9.2A: Swale

Inflow A	rea =	4.151 ac, 2	21.51% Impervious,	Inflow Depth = 3	.29" for 10-Year event
Inflow	=	21.70 cfs @	12.03 hrs, Volume	= 1.137 af	
Outflow	=	21.18 cfs @	12.07 hrs, Volume	⊨ 1.137 af	, Atten= 2%, Lag= 2.0 min

Routing by Stor-Ind+Trans method, Time Span= 0.00-144.00 hrs, dt= 0.05 hrs Max. Velocity= 6.90 fps, Min. Travel Time= 1.0 min Avg. Velocity = 1.21 fps, Avg. Travel Time= 5.5 min

Peak Storage= 1,274 cf @ 12.05 hrs Average Depth at Peak Storage= 0.86' Bank-Full Depth= 2.00', Capacity at Bank-Full= 131.75 cfs

2.00' x 2.00' deep channel, n= 0.040 Earth, cobble bottom, clean sides Side Slope Z-value= 2.0 '/' Top Width= 10.00' Length= 400.0' Slope= 0.0773 '/' Inlet Invert= 1,804.90', Outlet Invert= 1,774.00'

Summary for Reach R9.4: Swale

Inflow Area = 11.891 ac, 25.97% Impervious, Inflow Depth = 3.03" for 10-Year event Inflow 51.81 cfs @ 12.00 hrs. Volume= 3.003 af = 3.003 af, Atten= 5%, Lag= 1.7 min Outflow 49.08 cfs @ 12.03 hrs, Volume= = Routing by Stor-Ind+Trans method, Time Span= 0.00-144.00 hrs, dt= 0.05 hrs Max. Velocity= 9.40 fps, Min. Travel Time= 1.0 min Avg. Velocity = 1.65 fps, Avg. Travel Time= 5.5 min Peak Storage= 2,934 cf @ 12.01 hrs Average Depth at Peak Storage= 1.22' Bank-Full Depth= 2.00', Capacity at Bank-Full= 148.51 cfs 2.00' x 2.00' deep channel, n= 0.040 Earth, cobble bottom, clean sides Side Slope Z-value= 2.0 '/' Top Width= 10.00' Length= 540.0' Slope= 0.0981 '/' Inlet Invert= 1,769.00', Outlet Invert= 1,716.00'

Summary for Reach R9.9: Pond Outlet

Inflow /	Area =	=	2.870 ac,	4.48% Impervious,	Inflow Depth = 1.9	90" for 10-Year event
Inflow	=	:	10.96 cfs @	12.01 hrs, Volume	= 0.454 af	
Outflov	v =		10.75 cfs @	12.02 hrs, Volume	= 0.454 af,	Atten= 2%, Lag= 0.7 min

Routing by Stor-Ind+Trans method, Time Span= 0.00-144.00 hrs, dt= 0.05 hrs Max. Velocity= 3.97 fps, Min. Travel Time= 0.5 min Avg. Velocity = 1.16 fps, Avg. Travel Time= 1.8 min

Peak Storage= 363 cf @ 12.01 hrs Average Depth at Peak Storage= 0.56' Bank-Full Depth= 1.50', Capacity at Bank-Full= 94.04 cfs

3.00' x 1.50' deep channel, n= 0.070 Sluggish weedy reaches w/pools Side Slope Z-value= 4.0 '/' Top Width= 15.00' Length= 125.0' Slope= 0.1280 '/' Inlet Invert= 1,672.00', Outlet Invert= 1,656.00'

‡

Summary for Pond 11.3R: 72" CMP (x2)

Inflow Area	a =	34.510 ac,	0.51% Impervious,	Inflow Depth = 0.8	81" for 1-Year event
Inflow	=	15.60 cfs @	12.43 hrs, Volume	= 2.341 af	
Outflow	=	15.60 cfs @	12.43 hrs, Volume	= 2.341 af,	Atten= 0%, Lag= 0.0 min
Primary	=	15.60 cfs @	12.43 hrs, Volume	= 2.341 af	

Routing by Stor-Ind method, Time Span= 0.00-144.00 hrs, dt= 0.05 hrs / 3 Peak Elev= 2,412.97' @ 12.43 hrs Surf.Area= 79 sf Storage= 67 cf

Plug-Flow detention time= (not calculated: outflow precedes inflow) Center-of-Mass det. time= 0.2 min (950.7 - 950.5)

Volume	Inve	ert Avail.Sto	orage	Storage D	escription			
#1	2,412.0	0' 2,1	20 cf	Custom S	tage Data (Pr	r ismatic) Lis	ted below (Red	calc)
Elevation (feet)		Surf.Area (sq-ft)	Inc. (cubic	Store -feet)	Cum.Store (cubic-feet)			
2,412.00		60		0	0			
2,414.00		100		160	160			
2,416.00		260		360	520			
2,418.00)	380		640	1,160			
2,420.00		580		960	2,120			
Device	Routing	Invert	Outle	t Devices				
#1	Primary	2,412.00'	72.0 " L= 12 Inlet / n= 0.	' Round C 20.0' CPP / Outlet Inv 025 Corru	ulvert X 2.00 , projecting, no ert= 2,412.00' gated metal	o headwall, ' / 2,394.00'	Ke= 0.900 S= 0.1500 '/'	Cc= 0.900

Primary OutFlow Max=15.54 cfs @ 12.43 hrs HW=2,412.97' (Free Discharge) -1=Culvert (Inlet Controls 15.54 cfs @ 2.64 fps)

Summary for Pond 11.7R: Culvert

Inflow Area	I =	81.523 ac,	7.59% Impervious,	Inflow Depth > 0.	.95" for 1-Year event
Inflow	=	24.28 cfs @	12.41 hrs, Volume	= 6.452 af	
Outflow	=	24.28 cfs @	12.41 hrs, Volume:	= 6.452 af	, Atten= 0%, Lag= 0.0 min
Primary	=	24.28 cfs @	12.41 hrs, Volume	= 6.452 af	

Routing by Stor-Ind method, Time Span= 0.00-144.00 hrs, dt= 0.05 hrs Peak Elev= 1,890.77' @ 12.41 hrs

Device	Routing	Invert	Outlet Devices
#1	Primary	1,889.00'	48.0" Round Culvert
	-		L= 46.0' CPP, end-section conforming to fill, Ke= 0.500
			Inlet / Outlet Invert= 1,889.00' / 1,882.00' S= 0.1522 '/' Cc= 0.900
			n= 0.025 Corrugated metal
#2	Primary	1,894.00'	15.0' long x 35.0' breadth Broad-Crested Rectangular Weir
			Head (feet) 0.20 0.40 0.60 0.80 1.00 1.20 1.40 1.60
			Coef. (English) 2.68 2.70 2.70 2.64 2.63 2.64 2.64 2.63

Primary OutFlow Max=24.26 cfs @ 12.41 hrs HW=1,890.77' (Free Discharge) -1=Culvert (Inlet Controls 24.26 cfs @ 4.53 fps) -2=Broad-Crested Rectangular Weir (Controls 0.00 cfs)

Summary for Pond R1.10: PIPE

Inflow Area	=	5.258 ac, 2	4.86% Impe	ervious, Inflov	v Depth = 1.21	for 1-Year event
Inflow	=	9.80 cfs @	12.01 hrs,	Volume=	0.529 af	
Outflow	=	9.80 cfs @	12.01 hrs,	Volume=	0.529 af, A	Atten= 0%, Lag= 0.0 min
Primary	=	9.80 cfs @	12.01 hrs,	Volume=	0.529 af	

Routing by Stor-Ind method, Time Span= 0.00-144.00 hrs, dt= 0.05 hrs Peak Elev= 2,205.43' @ 12.01 hrs

Device	Routing	Invert	Outlet Devices
#1	Primary	2,204.00'	24.0" Round Culvert L= 140.0' CMP, square edge headwall, Ke= 0.500 Inlet / Outlet Invert= 2,204.00' / 2,180.00' S= 0.1714 '/' Cc= 0.900 n= 0.020 Corrugated PE, corrugated interior
			n= 0.020 Corrugated PE, corrugated interior

Primary OutFlow Max=9.59 cfs @ 12.01 hrs HW=2,205.41' (Free Discharge)

Summary for Pond R1.7: Culvert

Inflow Area	=	4.963 ac, 2	3.85% Impervious,	Inflow Depth =	1.19" for	r 1-Year event
Inflow	=	9.10 cfs @	12.01 hrs, Volume	9= 0.492	af	
Outflow	=	9.10 cfs @	12.01 hrs, Volume)= 0.492	af, Atten=	0%, Lag= 0.0 min
Primary	=	9.10 cfs @	12.01 hrs, Volume	€= 0.492	af	

Routing by Stor-Ind method, Time Span= 0.00-144.00 hrs, dt= 0.05 hrs Peak Elev= 2,231.37' @ 12.01 hrs

#1 Primary 2,230.00' 24.0" Round Culvert L= 290.0' CMP, square edge headwall, Ke= 0.500	Device	Routing	Invert	Outlet Devices	
n= 0.020 Corrugated PE, corrugated interior	#1	Primary	2,230.00'	24.0" Round Culvert L= 290.0' CMP, square edge headwall, Ke= 0.500 Inlet / Outlet Invert= 2,230.00' / 2,205.00' S= 0.0862 '/' Cc= 0.900 n= 0.020 Corrugated PE, corrugated interior	

Primary OutFlow Max=8.86 cfs @ 12.01 hrs HW=2,231.34' (Free Discharge) -1=Culvert (Inlet Controls 8.86 cfs @ 3.95 fps)

Summary for Pond R1.8: PIPE

Inflow Area	ι =	0.295 ac, 4	1.89% Impervious,	Inflow Depth =	1.52" for 1-1	lear event
Inflow	=	0.77 cfs @	11.97 hrs, Volume	e 0.037	af	
Outflow	=	0.77 cfs @	11.97 hrs, Volume)= 0.037	af, Atten= 0%,	Lag= 0.0 min
Primary	=	0.77 cfs @	11.97 hrs, Volume	= 0.037	af	

Routing by Stor-Ind method, Time Span= 0.00-144.00 hrs, dt= 0.05 hrs

Peak Elev= 2,207.44' @ 11.97 hrs

Device	Routing	Invert	Outlet Devices
#1	Primary	2,207.00'	24.0" Round Culvert L= 250.0' CMP, square edge headwall, Ke= 0.500 Inlet / Outlet Invert= 2,207.00' / 2,205.00' S= 0.0080 '/' Cc= 0.900 n= 0.020 Corrugated PE corrugated interior
			n olozo contigator z, contigator interior

Primary OutFlow Max=0.74 cfs @ 11.97 hrs HW=2,207.43' (Free Discharge) 1=Culvert (Barrel Controls 0.74 cfs @ 2.26 fps)

Summary for Pond R1.9: Culvert

Inflow Area	I =	3.441 ac,	4.67% Impervious, I	Inflow Depth = 0	9.96" for 1-Year event
Inflow	=	5.69 cfs @	11.98 hrs, Volume=	: 0.276 at	f
Outflow	=	5.69 cfs @	11.98 hrs, Volume=	: 0.276 at	f, Atten= 0%, Lag= 0.0 min
Primary	=	5.69 cfs @	11.98 hrs, Volume=	: 0.276 af	-

Routing by Stor-Ind method, Time Span= 0.00-144.00 hrs, dt= 0.05 hrs Peak Elev= 2,207.05' @ 11.98 hrs

Device	Routing	Invert	Outlet Devices
#1	Primary	2,206.00'	24.0" Round Culvert L= 50.0' CMP, square edge headwall, Ke= 0.500 Inlet / Outlet Invert= 2,206.00' / 2,205.00' S= 0.0200 '/' Cc= 0.900 n= 0.020 Corrugated PE, corrugated interior

Primary OutFlow Max=5.44 cfs @ 11.98 hrs HW=2,207.03' (Free Discharge) ☐ 1=Culvert (Barrel Controls 5.44 cfs @ 4.89 fps)

Summary for Pond R11.11: CULVERT

Inflow Area	I =	5.399 ac,	2.68% Impervious,	Inflow Depth = ().84" for 1-Y	ear event
Inflow	=	2.19 cfs @	12.07 hrs, Volume	= 0.377 a	f	
Outflow	=	2.19 cfs @	12.07 hrs, Volume	= 0.377 a	f, Atten= 0%,	Lag= 0.0 min
Primary	=	2.19 cfs @	12.07 hrs, Volume	= 0.377 a	f	-

Routing by Stor-Ind method, Time Span= 0.00-144.00 hrs, dt= 0.05 hrs Peak Elev= 2,478.57' @ 12.07 hrs

Device	Routing	Invert	Outlet Devices
#1	Primary	2,478.00'	30.0" Round Culvert L= 35.0' Ke= 0.500 Inlet / Outlet Invert= 2,478.00' / 2,472.00' S= 0.1714 '/' Cc= 0.900 n= 0.020 Corrugated PE, corrugated interior

Primary OutFlow Max=2.14 cfs @ 12.07 hrs HW=2,478.57' (Free Discharge) -1=Culvert (Inlet Controls 2.14 cfs @ 2.56 fps)

Summary for Pond R11.15: CB

Inflow Area =11.392 ac,0.56% Impervious, Inflow Depth =0.81" for 1-Year eventInflow =9.05 cfs @12.16 hrs, Volume=0.767 afOutflow =9.05 cfs @12.16 hrs, Volume=0.767 af, Atten= 0%, Lag= 0.0 minPrimary =9.05 cfs @12.16 hrs, Volume=0.767 af

Routing by Stor-Ind method, Time Span= 0.00-144.00 hrs, dt= 0.05 hrs Peak Elev= 2,453.15' @ 12.16 hrs

Device	Routing	Invert	Outlet Devices
#1	Primary	2,452.00'	36.0" Round Culvert L= 110.0' CPP, square edge headwall, Ke= 0.500 Inlet / Outlet Invert= 2,452.00' / 2,450.00' S= 0.0182 '/' Cc= 0.900 n= 0.020 Corrugated PE, corrugated interior

Primary OutFlow Max=8.99 cfs @ 12.16 hrs HW=2,453.14' (Free Discharge)

Summary for Pond R11.17: CB

Inflow Area	=	0.170 ac, 7	2.76% Impe	ervious, Inflov	v Depth = 2.07	7" for 1-Y	ear event
Inflow	=	0.52 cfs @	12.01 hrs,	Volume=	0.029 af		
Outflow	=	0.52 cfs @	12.01 hrs,	Volume=	0.029 af, A	Atten= 0%,	Lag= 0.0 min
Primary	=	0.52 cfs @	12.01 hrs,	Volume=	0.029 af		-

Routing by Stor-Ind method, Time Span= 0.00-144.00 hrs, dt= 0.05 hrs Peak Elev= 2,453.36' @ 12.01 hrs

Device	Routing	Invert	Outlet Devices
#1	Primary	2,453.00'	12.0" Round Culvert
			L= 200.0' CPP, square edge headwall, Ke= 0.500
			Inlet / Outlet Invert= 2,453.00 / 2,449.00 S= 0.0200 / Cc= 0.900
			n= 0.020 Corrugated PE, corrugated interior

Primary OutFlow Max=0.52 cfs @ 12.01 hrs HW=2,453.36' (Free Discharge)

Summary for Pond R11.18: CB

Inflow Area	=	0.638 ac,	63.12% Impe	ervious,	Inflow Depth =	1.90"	for 1-Y	ear event
Inflow	=	2.05 cfs @	11.97 hrs,	Volume	= 0.101	af		
Outflow	=	2.05 cfs @	11.97 hrs,	Volume	= 0.101	af, At	tten= 0%,	Lag= 0.0 min
Primary	=	2.05 cfs @	11.97 hrs,	Volume	= 0.101	af		

Routing by Stor-Ind method, Time Span= 0.00-144.00 hrs, dt= 0.05 hrs Peak Elev= 2,455.71' @ 11.97 hrs

Device	Routing	Invert	Outlet Devices
#1	Primary	2,455.00'	15.0" Round Culvert
			L= 160.0' CPP, square edge headwall, Ke= 0.500

08077_Proposed Prepared by The LA Group P.C. HydroCAD® 9.10 s/n 00439 © 2010 HydroCAD Software Solutions LLC

Inlet / Outlet Invert= 2,455.00' / 2,452.00' = 0.0187'/ Cc= 0.900 n= 0.020 Corrugated PE, corrugated interior

Primary OutFlow Max=1.98 cfs @ 11.97 hrs HW=2,455.69' (Free Discharge) **1=Culvert** (Inlet Controls 1.98 cfs @ 2.84 fps)

Summary for Pond R11.19: CB

Inflow Area	ι =	5.124 ac,	7.86% Impervious, Inflow	Depth = 0.94"	for 1-Year event
Inflow	=	7.89 cfs @	11.99 hrs, Volume=	0.403 af	
Outflow	=	7.89 cfs @	11.99 hrs, Volume=	0.403 af, At	ten= 0%, Lag= 0.0 min
Primary	=	7.89 cfs @	11.99 hrs, Volume=	0.403 af	

Routing by Stor-Ind method, Time Span= 0.00-144.00 hrs, dt= 0.05 hrs Peak Elev= 2,452.26' @ 11.99 hrs

Device	Routing	Invert	Outlet Devices
#1	Primary	2,451.00'	30.0" Round Culvert
			L= 625.0' CPP, square edge headwall, Ke= 0.500 Inlet / Outlet Invert= 2,451.00' / 2,444.75' S= 0.0100 '/' Cc= 0.900 n= 0.020 Corrugated PE, corrugated interior

Primary OutFlow Max=7.65 cfs @ 11.99 hrs HW=2,452.23' (Free Discharge) 1=Culvert (Barrel Controls 7.65 cfs @ 4.63 fps)

Summary for Pond R11.20: CULVERT

Inflow Area	a =	5.212 ac,	0.00% Impervious,	Inflow Depth = 0.8	81" for 1-Year event
Inflow	=	4.95 cfs @	12.09 hrs, Volume	= 0.351 af	
Outflow	=	4.95 cfs @	12.09 hrs, Volume	= 0.351 af,	Atten= 0%, Lag= 0.0 min
Primary	=	4.95 cfs @	12.09 hrs, Volume	= 0.351 af	

Routing by Stor-Ind method, Time Span= 0.00-144.00 hrs, dt= 0.05 hrs Peak Elev= 2,459.88' @ 12.09 hrs

Device	Routing	Invert	Outlet Devices
#1	Primary	2,459.00'	30.0" Round Culvert L= 45.0' Ke= 0.500 Inlet / Outlet Invert= 2,459.00' / 2,458.00' S= 0.0222 '/' Cc= 0.900 n= 0.020 Corrugated PE, corrugated interior

Primary OutFlow Max=4.89 cfs @ 12.09 hrs HW=2,459.88' (Free Discharge) **1=Culvert** (Inlet Controls 4.89 cfs @ 3.19 fps)

Summary for Pond R11.22: CB

Inflow Area	ι =	1.435 ac, 5	7.38% Impervious,	Inflow Depth =	1.82" for 1-Y	ear event
Inflow	=	4.43 cfs @	11.97 hrs, Volume	e 0.217 a	af	
Outflow	=	4.43 cfs @	11.97 hrs, Volume	e 0.217 a	af, Atten= 0%,	Lag= 0.0 min
Primary	=	4.43 cfs @	11.97 hrs, Volume	e 0.217 a	af	

Routing by Stor-Ind method, Time Span= 0.00-144.00 hrs, dt= 0.05 hrs

Peak Elev= 2,412.95' @ 11.97 hrs

Device	Routing	Invert	Outlet Devices
#1	Primary	2,412.00'	21.0" Round CB L= 60.0' CPP, square edge headwall, Ke= 0.500 Inlet / Outlet Invert= $2,412.00' / 2,410.00'$ S= $0.0333'/$ Cc= 0.900 n= 0.020 Corrugated PE, corrugated interior

Primary OutFlow Max=4.29 cfs @ 11.97 hrs HW=2,412.93' (Free Discharge) ☐ 1=CB (Inlet Controls 4.29 cfs @ 3.29 fps)

Summary for Pond R11.23: CB

Inflow Area	1 =	1.435 ac, 5	7.38% Impervi	ious, Inflow De	pth = 1.82"	for 1-Y	ear event
Inflow	=	4.43 cfs @	11.97 hrs, Vo	olume=	0.217 af		
Outflow	=	4.43 cfs @	11.97 hrs, Vo	olume=	0.217 af, Att	en= 0%,	Lag= 0.0 min
Primary	=	4.43 cfs @	11.97 hrs, Vo	olume=	0.217 af		-

Routing by Stor-Ind method, Time Span= 0.00-144.00 hrs, dt= 0.05 hrs Peak Elev= 2,410.90' @ 11.97 hrs

#1 Primary 2,410.00' 24.0" Round CB L= 1,200.0' CPP, square edge headwall, Ke= 0.50 Inlet / Outlet Invert= 2,410.00' / 2,304.00' S= 0.0883 n= 0.020 Corrugated PE, corrugated interior	'/' Cc= 0.900

Primary OutFlow Max=4.29 cfs @ 11.97 hrs HW=2,410.88' (Free Discharge) ☐ 1=CB (Inlet Controls 4.29 cfs @ 3.20 fps)

Summary for Pond R11.25: CB

Inflow Area	a =	8.185 ac, 3	4.51% Impe	ervious, Inflow De	epth = 1.43	8" for 1-Y	ear event
Inflow	=	18.88 cfs @	11.98 hrs,	Volume=	0.976 af		
Outflow	=	18.88 cfs @	11.98 hrs,	Volume=	0.976 af, A	Atten= 0%,	Lag= 0.0 min
Primary	=	18.88 cfs @	11.98 hrs,	Volume=	0.976 af		

Routing by Stor-Ind method, Time Span= 0.00-144.00 hrs, dt= 0.05 hrs Peak Elev= 2,411.73' @ 11.98 hrs

Device	Routing	Invert	Outlet Devices
#1	Primary	2,410.00'	36.0" Round Culvert
			L= 300.0' CPP, square edge headwall, Ke= 0.500 Inlet / Outlet Invert= 2,410.00' / 2,380.00' S= 0.1000 '/' Cc= 0.900 n= 0.020 Corrugated PE, corrugated interior

Primary OutFlow Max=18.13 cfs @ 11.98 hrs HW=2,411.69' (Free Discharge) -1=Culvert (Inlet Controls 18.13 cfs @ 4.42 fps)

Summary for Pond R11.28: FLOW SPLITTER

Inflow Area = 8.185 ac, 34.51% Impervious, Inflow Depth = 1.43" for 1-Year event Inflow 18.88 cfs @ 11.98 hrs. Volume= 0.976 af = 18.88 cfs @ 11.98 hrs, Volume= Outflow 0.976 af, Atten= 0%, Lag= 0.0 min = 18.88 cfs @ 11.98 hrs, Volume= Primary = 0.976 af Secondary = 0.00 cfs @ 0.00 hrs, Volume= 0.000 af

Routing by Stor-Ind method, Time Span= 0.00-144.00 hrs, dt= 0.05 hrs Peak Elev= 2,376.80' @ 11.98 hrs Flood Elev= 2,384.00'

Device	Routing	Invert	Outlet Devices
#1	Primary	2,374.00'	24.0" Round Culvert
			Inlet / Outlet Invert= $2,374.00'$ / $2,373.70'$ S= 0.0200 '/' Cc= 0.900 n= 0.020 Corrugated PE, corrugated interior
#2	Secondary	2,376.85'	36.0" Round Culvert L= 114.0' CPP, square edge headwall, Ke= 0.500 Inlet / Outlet Invert= 2,376.85' / 2,370.00' S= 0.0601 '/' Cc= 0.900 n= 0.020 Corrugated PE, corrugated interior

Primary OutFlow Max=18.01 cfs @ 11.98 hrs HW=2,376.69' (Free Discharge) -1=Culvert (Barrel Controls 18.01 cfs @ 5.73 fps)

Secondary OutFlow Max=0.00 cfs @ 0.00 hrs HW=2,374.00' (Free Discharge) 2=Culvert (Controls 0.00 cfs)

Summary for Pond R12.3: CB

Inflow Area	=	0.546 ac,	95.42% Impe	ervious,	Inflow Depth =	2.66	" for 1-Y	ear event
Inflow	=	2.21 cfs @	11.96 hrs,	Volume	= 0.121	af		
Outflow	=	2.21 cfs @	11.96 hrs,	Volume	= 0.121	af, A	tten= 0%,	Lag= 0.0 min
Primary	=	2.21 cfs @	11.96 hrs,	Volume	= 0.121	af		-

Routing by Stor-Ind method, Time Span= 0.00-144.00 hrs, dt= 0.05 hrs Peak Elev= 2,307.70' @ 11.96 hrs

Device	Routing	Invert	Outlet Devices
#1	Primary	2,307.00'	24.0" Round Culvert L= 650.0' CMP, square edge headwall, Ke= 0.500 Inlet / Outlet Invert= 2,307.00' / 2,300.50' S= 0.0100 '/' Cc= 0.900 n= 0.020 Corrugated PE, corrugated interior

Primary OutFlow Max=2.16 cfs @ 11.96 hrs HW=2,307.69' (Free Discharge) -1=Culvert (Barrel Controls 2.16 cfs @ 3.33 fps)

Summary for Pond R2.10: Pipe

Inflow Area =35.108 ac, 17.64% Impervious, Inflow Depth =1.01" for 1-Year eventInflow =29.32 cfs @12.04 hrs, Volume=2.955 afOutflow =29.32 cfs @12.04 hrs, Volume=2.955 af, Atten= 0%, Lag= 0.0 minPrimary =29.32 cfs @12.04 hrs, Volume=2.955 af

Routing by Stor-Ind method, Time Span= 0.00-144.00 hrs, dt= 0.05 hrs / 2 Peak Elev= 2,186.47' @ 12.04 hrs

Device	Routing	Invert	Outlet Devices
#1	Primary	2,184.30'	48.0" Round Culvert L= 180.0' CPP, square edge headwall, Ke= 0.500 Inlet / Outlet Invert= 2,184.30' / 2,182.50' S= 0.0100 '/' Cc= 0.900 n= 0.020 Corrugated PE, corrugated interior

Primary OutFlow Max=28.88 cfs @ 12.04 hrs HW=2,186.45' (Free Discharge) -1=Culvert (Barrel Controls 28.88 cfs @ 6.08 fps)

Summary for Pond R2.15: Pipe

Inflow Area	=	0.367 ac,1	00.00% Imp	ervious,	Inflow Depth =	2.77"	for 1-Y	ear event
Inflow	=	1.51 cfs @	11.96 hrs,	Volume	= 0.085	af		
Outflow	=	1.51 cfs @	11.96 hrs,	Volume	= 0.085	af, Atte	en= 0%,	Lag= 0.0 min
Primary	=	1.51 cfs @	11.96 hrs,	Volume	= 0.085	af		-

Routing by Stor-Ind method, Time Span= 0.00-144.00 hrs, dt= 0.05 hrs / 2 Peak Elev= 2,195.66' @ 11.96 hrs

Device	Routing	Invert	Outlet Devices
#1	Primary	2,195.00'	12.0" Round Culvert L= 125.0' CPP, square edge headwall, Ke= 0.500 Inlet / Outlet Invert= 2,195.00' / 2,192.00' S= 0.0240 '/' Cc= 0.900 n= 0.020 Corrugated PE, corrugated interior

Primary OutFlow Max=1.47 cfs @ 11.96 hrs HW=2,195.65' (Free Discharge)

Summary for Pond R2.16: Pipe

Inflow Area	=	0.360 ac, 6	1.20% Impe	rvious, In	flow Depth =	1.90" f	or 1-Y	ear event	
Inflow	=	1.15 cfs @	11.97 hrs, 1	Volume=	0.057	af			
Outflow	=	1.15 cfs @	11.97 hrs, '	Volume=	0.057	af, Atten	= 0%,	Lag= 0.0 mi	n
Primary	=	1.15 cfs @	11.97 hrs, '	Volume=	0.057	af			

Routing by Stor-Ind method, Time Span= 0.00-144.00 hrs, dt= 0.05 hrs / 2 Peak Elev= 2,250.56' @ 11.97 hrs

Device	Routing	Invert	Outlet Devices
#1	Primary	2,250.00'	12.0" Round Culvert
			L= 325.0' CPP, square edge headwall, Ke= 0.500

08077_Proposed Prepared by The LA Group P.C. HydroCAD® 9.10 s/n 00439 © 2010 HydroCAD Software Solutions LLC

Inlet / Outlet Invert= 2,250.00' / 2,235.00' = 0.0462 '/ Cc= 0.900n= 0.020 Corrugated PE, corrugated interior

Primary OutFlow Max=1.12 cfs @ 11.97 hrs HW=2,250.55' (Free Discharge) -1=Culvert (Inlet Controls 1.12 cfs @ 2.53 fps)

Summary for Pond R2.3: Road culvert

Inflow Area	a =	19.135 ac,	12.06% Impervious,	Inflow Depth = 1.6	00" for 1-Year event
Inflow	=	13.17 cfs @	12.03 hrs, Volume	= 1.590 af	
Outflow	=	13.17 cfs @	12.03 hrs, Volume	= 1.590 af,	Atten= 0%, Lag= 0.0 min
Primary	=	13.17 cfs @	12.03 hrs, Volume	= 1.590 af	

Routing by Stor-Ind method, Time Span= 0.00-144.00 hrs, dt= 0.05 hrs / 2 Peak Elev= 2,271.51' @ 12.03 hrs

Device	Routing	Invert	Outlet Devices
#1	Primary	2,270.00'	36.0" Round Culvert L= 30.0' CPP, mitered to conform to fill, Ke= 0.700 Inlet / Outlet Invert= 2,270.00' / 2,269.00' S= 0.0333 '/' Cc= 0.900 n= 0.020 Corrugated PE, corrugated interior
#2	Primary	2,276.00'	20.0' long x 1.0' breadth Broad-Crested Rectangular Weir Head (feet) 0.20 0.40 0.60 0.80 1.00 1.20 1.40 1.60 1.80 2.00 2.50 3.00 Coef. (English) 2.69 2.72 2.75 2.85 2.98 3.08 3.20 3.28 3.31 3.30 3.31 3.32

Primary OutFlow Max=12.81 cfs @ 12.03 hrs HW=2,271.49' (Free Discharge)

1=Culvert (Inlet Controls 12.81 cfs @ 3.66 fps)

2=Broad-Crested Rectangular Weir (Controls 0.00 cfs)

Summary for Pond R2.5: Road culvert

Inflow Area	a =	22.456 ac,	13.59% Impervic	ous, Inflow Dep	oth = 1.03"	for 1-Year event
Inflow	=	14.07 cfs @	12.09 hrs, Volu	ume= 1	.919 af	
Outflow	=	14.07 cfs @	12.09 hrs, Volu	ume= 1	.919 af, Atte	en= 0%, Lag= 0.0 min
Primary	=	14.07 cfs @	12.09 hrs, Volu	ume= 1	.919 af	•

Routing by Stor-Ind method, Time Span= 0.00-144.00 hrs, dt= 0.05 hrs / 2 Peak Elev= 2,230.57' @ 12.09 hrs

Device	Routing	Invert	Outlet Devices
#1	Primary	2,229.00'	36.0" Round Culvert L= 175.0' CPP, mitered to conform to fill, Ke= 0.700 Inlet / Outlet Invert= 2,229.00' / 2,214.00' S= 0.0857 '/' Cc= 0.900 n= 0.020 Corrugated PE, corrugated interior

Primary OutFlow Max=13.97 cfs @ 12.09 hrs HW=2,230.56' (Free Discharge) -1=Culvert (Inlet Controls 13.97 cfs @ 3.75 fps)

Summary for Pond R2.6: Road Culvert

Inflow Area =0.725 ac,8.86% Impervious, Inflow Depth =0.96" for 1-Year eventInflow =1.20 cfs @11.98 hrs, Volume=0.058 afOutflow =1.20 cfs @11.98 hrs, Volume=0.058 afPrimary =1.20 cfs @11.98 hrs, Volume=0.058 af

Routing by Stor-Ind method, Time Span= 0.00-144.00 hrs, dt= 0.05 hrs / 2 Peak Elev= 2,216.53' @ 11.98 hrs

#1 Primary 2,216.00' 18.0" Round Culvert L= 30.0' CPP, mitered to conform to fill, Ke= 0.700 Inlet / Outlet Invert= 2,216.00' / 2,215.00' S= 0.0333 '/' Cc: n= 0.020 Corrugated PE, corrugated interior	= 0.900

Primary OutFlow Max=1.15 cfs @ 11.98 hrs HW=2,216.51' (Free Discharge)

Summary for Pond R2.7: Road culvert

Inflow Area	I =	22.456 ac,	13.59% Impe	ervious,	Inflow Depth =	1.03	for 1-Y	ear event
Inflow	=	14.07 cfs @	12.09 hrs,	Volume	= 1.919	9 af		
Outflow	=	14.07 cfs @	12.09 hrs,	Volume	= 1.919	9 af, A [.]	tten= 0%,	Lag= 0.0 min
Primary	=	14.07 cfs @	12.09 hrs,	Volume	= 1.919	9 af		-

Routing by Stor-Ind method, Time Span= 0.00-144.00 hrs, dt= 0.05 hrs / 2 Peak Elev= 2,215.57' @ 12.09 hrs

Device	Routing	Invert	Outlet Devices
#1	Primary	2,214.00'	36.0" Round Culvert
			L= 900.0' CPP, mitered to conform to fill, Ke= 0.700 Inlet / Outlet Invert= 2,214.00' / 2,189.00' S= 0.0278 '/' Cc= 0.900 n= 0.020 Corrugated PE, corrugated interior

Primary OutFlow Max=13.97 cfs @ 12.09 hrs HW=2,215.56' (Free Discharge) -1=Culvert (Inlet Controls 13.97 cfs @ 3.75 fps)

Summary for Pond R2.8: Road culvert

Inflow Area	a =	5.002 ac, 2	20.72% Impe	ervious,	Inflow Depth =	0.52"	for 1-Ye	ear event
Inflow	=	4.18 cfs @	12.09 hrs,	Volume	= 0.218	af		
Outflow	=	4.18 cfs @	12.09 hrs,	Volume	= 0.218	af, Atte	en= 0%,	Lag= 0.0 min
Primary	=	4.18 cfs @	12.09 hrs,	Volume	= 0.218	af		

Routing by Stor-Ind method, Time Span= 0.00-144.00 hrs, dt= 0.05 hrs / 2 Peak Elev= 2,191.86' @ 12.09 hrs

Device	Routing	Invert	Outlet Devices
#1	Primary	2,191.00'	36.0" Round Culvert L= 200.0' CPP, mitered to conform to fill, Ke= 0.700

08077_Proposed Prepared by The LA Group P.C. HydroCAD® 9.10 s/n 00439 © 2010 HydroCAD Software Solutions LLC

Inlet / Outlet Invert= 2,191.00' / 2,189.00' S= 0.0100 '/' Cc= 0.900 n= 0.020 Corrugated PE, corrugated interior

Primary OutFlow Max=4.07 cfs @ 12.09 hrs HW=2,191.85' (Free Discharge) **1=Culvert** (Barrel Controls 4.07 cfs @ 3.74 fps)

Summary for Pond R2.9: Pipe

Inflow Area	a =	30.020 ac, 1	16.29% Impervious,	Inflow Depth =	0.97" for	1-Year event
Inflow	=	20.96 cfs @	12.06 hrs, Volume	= 2.417	af	
Outflow	=	20.96 cfs @	12.06 hrs, Volume	= 2.417	af, Atten=	0%, Lag= 0.0 min
Primary	=	20.96 cfs @	12.06 hrs, Volume	= 2.417	af	

Routing by Stor-Ind method, Time Span= 0.00-144.00 hrs, dt= 0.05 hrs / 2 Peak Elev= 2,190.84' @ 12.06 hrs

Device	Routing	Invert	Outlet Devices
#1	Primary	2,189.00'	36.0" Round Culvert L= 460.0' CPP, square edge headwall, Ke= 0.500 Inlet / Outlet Invert= 2,189.00' / 2,184.40' S= 0.0100 '/' Cc= 0.900 n= 0.013 Corrugated PE, smooth interior

Primary OutFlow Max=20.65 cfs @ 12.06 hrs HW=2,190.82' (Free Discharge) **1=Culvert** (Inlet Controls 20.65 cfs @ 4.60 fps)

Summary for Pond R3.2: culvert

Inflow Area	I =	12.097 ac, 1	4.02% Impe	ervious,	Inflow Depth	= 1.	04" for 1-ነ	ear event
Inflow	=	8.83 cfs @	12.17 hrs,	Volume	= 1.0	47 af		
Outflow	=	8.83 cfs @	12.17 hrs,	Volume	= 1.0	47 af,	Atten= 0%,	Lag= 0.0 min
Primary	=	8.83 cfs @	12.17 hrs,	Volume	= 1.0	47 af		-

Routing by Stor-Ind method, Time Span= 0.00-144.00 hrs, dt= 0.05 hrs Peak Elev= 2,214.15' @ 12.17 hrs

Device	Routing	Invert	Outlet Devices
#1	Primary	2,213.00'	42.0" Round Culvert L= 220.0' CPP, mitered to conform to fill, Ke= 0.700 Inlet / Outlet Invert= 2,213.00' / 2,205.00' S= 0.0364 '/' Cc= 0.900 n= 0.020 Corrugated PE, corrugated interior
			5

Primary OutFlow Max=8.31 cfs @ 12.17 hrs HW=2,214.11' (Free Discharge)

Summary for Pond R3.5: CULVERT

Inflow Area	a =	20.668 ac,	16.21% Impervious	, Inflow Depth >	1.07" for	1-Year event
Inflow	=	1.21 cfs @	15.16 hrs, Volum	e= 1.840) af	
Outflow	=	1.21 cfs @	15.16 hrs, Volum	e= 1.840	af, Atten=	0%, Lag= 0.0 min
Primary	=	1.21 cfs @	15.16 hrs, Volum	e= 1.840) af	

08077_Proposed Prepared by The LA Group P.C. HydroCAD® 9.10 s/n 00439 © 2010 HydroCAD Software Solutions LLC

Type II 24-hr 1-Year Rainfall=3.00" Printed 12/9/2011 Page 12

Routing by Stor-Ind method, Time Span= 0.00-144.00 hrs, dt= 0.05 hrs Peak Elev= 2,080.49' @ 15.16 hrs Flood Elev= 2,085.00'

Device	Routing	Invert	Outlet Devices
#1	Primary	2,080.00'	48.0" Round Culvert L= 10.0' CPP, mitered to conform to fill, Ke= 0.700 Inlet / Outlet Invert= 2,080.00' / 2,079.95' S= 0.0050 '/' Cc= 0.900 n= 0.020 Corrugated PE, corrugated interior

Primary OutFlow Max=1.21 cfs @ 15.16 hrs HW=2,080.49' (Free Discharge) **1=Culvert** (Barrel Controls 1.21 cfs @ 2.10 fps)

Summary for Pond R3.6: FLOW SPLITTER

Inflow Area =	20.668 ac,	16.21% Impervious, I	Inflow Depth > 1.07	7" for 1-Year event
Inflow =	1.21 cfs @	15.16 hrs, Volume=	= 1.840 af	
Outflow =	1.21 cfs @	15.16 hrs, Volume=	= 1.840 af, <i>i</i>	Atten= 0%, Lag= 0.0 min
Primary =	1.21 cfs @	15.16 hrs, Volume=	= 1.840 af	
Secondary =	0.00 cfs @	0.00 hrs, Volume=	= 0.000 af	

Routing by Stor-Ind method, Time Span= 0.00-144.00 hrs, dt= 0.05 hrs Peak Elev= 2,071.48' @ 15.16 hrs Flood Elev= 2,085.00'

Device	Routing	Invert	Outlet Devices
#1	Primary	2,071.00'	24.0" Round PIPE
	-		L= 30.0' CPP, mitered to conform to fill, Ke= 0.700
			Inlet / Outlet Invert= 2,071.00' / 2,070.00' S= 0.0333 '/' Cc= 0.900
			n= 0.020 Corrugated PE, corrugated interior
#2	Secondary	2,072.00'	24.0" Round PIPE
			L= 108.0' CPP, square edge headwall, Ke= 0.500
			Inlet / Outlet Invert= 2,072.00' / 2,068.00' S= 0.0370 '/' Cc= 0.900
			n= 0.020 Corrugated PE, corrugated interior

Primary OutFlow Max=1.19 cfs @ 15.16 hrs HW=2,071.48' (Free Discharge) -1=PIPE (Inlet Controls 1.19 cfs @ 2.07 fps)

Secondary OutFlow Max=0.00 cfs @ 0.00 hrs HW=2,071.00' (Free Discharge) 2=PIPE (Controls 0.00 cfs)

Summary for Pond R4.1: CULVERT

Inflow Area =2.529 ac, 0.00% Impervious, Inflow Depth =0.81" for 1-Year eventInflow =3.19 cfs @12.01 hrs, Volume=0.170 afOutflow =3.19 cfs @12.01 hrs, Volume=0.170 af, Atten= 0%, Lag= 0.0 minPrimary =3.19 cfs @12.01 hrs, Volume=0.170 af

Routing by Stor-Ind method, Time Span= 0.00-144.00 hrs, dt= 0.05 hrs Peak Elev= 1,990.81' @ 12.01 hrs 08077_Proposed

Type II 24-hr 1-Year Rainfall=3.00" Printed 12/9/2011 Page 13

Prepared by The LA Group P.C.	
HydroCAD® 9.10 s/n 00439 © 2010 HydroCAD Software Solutions LLC	

Device	Routing	Invert	Outlet Devices
#1	Primary	1,990.00'	24.0" Round Culvert L= 50.0' CPP, mitered to conform to fill, Ke= 0.700 Inlet / Outlet Invert= 1,990.00' / 1,988.00' S= 0.0400 '/' Cc= 0.900 n= 0.020 Corrugated PE, corrugated interior

Primary OutFlow Max=3.13 cfs @ 12.01 hrs HW=1,990.80' (Free Discharge) **1=Culvert** (Inlet Controls 3.13 cfs @ 2.68 fps)

Summary for Pond R5.1: CULVERT

Inflow Area	ι =	8.026 ac,	0.00% Impervious,	Inflow Depth = 0).81" for 1-Ye	ar event
Inflow	=	9.40 cfs @	12.03 hrs, Volume	= 0.540 at	f	
Outflow	=	9.40 cfs @	12.03 hrs, Volume	= 0.540 at	f, Atten= 0%, L	.ag= 0.0 min
Primary	=	9.40 cfs @	12.03 hrs, Volume	= 0.540 at	f	

Routing by Stor-Ind method, Time Span= 0.00-144.00 hrs, dt= 0.05 hrs Peak Elev= 1,905.30' @ 12.03 hrs

Device	Routing	Invert	Outlet Devices
#1	Primary	1,904.00'	33.0" Round Culvert L= 50.0' CPP, mitered to conform to fill, Ke= 0.700 Inlet / Outlet Invert= 1,904.00' / 1,902.00' S= 0.0400 '/' Cc= 0.900 n= 0.020 Corrugated PE, corrugated interior

Primary OutFlow Max=9.10 cfs @ 12.03 hrs HW=1,905.27' (Free Discharge) ☐ 1=Culvert (Inlet Controls 9.10 cfs @ 3.39 fps)

Summary for Pond R5.3: CULVERT

Inflow Area	=	8.026 ac,	0.00% Impervious,	Inflow Depth = 0).81" for 1-Ye	ear event
Inflow	=	8.81 cfs @	12.08 hrs, Volume	= 0.540 af	f	
Outflow	=	8.81 cfs @	12.08 hrs, Volume	= 0.540 af	f, Atten= 0%,	Lag= 0.0 min
Primary	=	8.81 cfs @	12.08 hrs, Volume	= 0.540 af	f	

Routing by Stor-Ind method, Time Span= 0.00-144.00 hrs, dt= 0.05 hrs Peak Elev= 1,838.25' @ 12.08 hrs

Device	Routing	Invert	Outlet Devices
#1	Primary	1,837.00'	33.0" Round Culvert L= 120.0' CPP, mitered to conform to fill, Ke= 0.700 Inlet / Outlet Invert= 1,837.00' / 1,823.00' S= 0.1167 '/' Cc= 0.900 n= 0.020 Corrugated PE, corrugated interior

Primary OutFlow Max=8.58 cfs @ 12.08 hrs HW=1,838.23' (Free Discharge) ☐ 1=Culvert (Inlet Controls 8.58 cfs @ 3.33 fps)

Summary for Pond R8.1: CULVERT

 Inflow Area =
 2.715 ac, 28.55% Impervious, Inflow Depth =
 1.25" for 1-Year event

 Inflow =
 2.68 cfs @
 12.19 hrs, Volume=
 0.283 af

 Outflow =
 2.68 cfs @
 12.19 hrs, Volume=
 0.283 af, Atten= 0%, Lag= 0.0 min

 Primary =
 2.68 cfs @
 12.19 hrs, Volume=
 0.283 af

Routing by Stor-Ind method, Time Span= 0.00-144.00 hrs, dt= 0.05 hrs Peak Elev= 2,308.73' @ 12.19 hrs

Device	Routing	Invert	Outlet Devices
#1	Primary	2,308.00'	24.0" Round Culvert L= 275.0' CPP, mitered to conform to fill, Ke= 0.700 Inlet / Outlet Invert= 2,308.00' / 2,304.00' S= 0.0145 '/' Cc= 0.900 n= 0.020 Corrugated PE, corrugated interior

Primary OutFlow Max=2.64 cfs @ 12.19 hrs HW=2,308.73' (Free Discharge)

Summary for Pond R8.10: CB

Inflow Area	a =	16.055 ac, 2	7.79% Imperv	vious, Inflow De	epth = 1.26	" for 1-Y	ear event
Inflow	=	24.66 cfs @	12.00 hrs, Vo	olume=	1.689 af		
Outflow	=	24.66 cfs @	12.00 hrs, Vo	olume=	1.689 af, A	tten= 0%,	Lag= 0.0 min
Primary	=	24.66 cfs @	12.00 hrs, Vo	olume=	1.689 af		-

Routing by Stor-Ind method, Time Span= 0.00-144.00 hrs, dt= 0.05 hrs Peak Elev= 1,977.83' @ 12.00 hrs

Device	Routing	Invert	Outlet Devices
#1	Primary	1,976.00'	45.0" Round Culvert L= 765.0' CPP, square edge headwall, Ke= 0.500 Inlet / Outlet Invert= 1,976.00' / 1,899.00' S= 0.1007 '/' Cc= 0.900 n= 0.020. Corrugated PE, corrugated interior
			n= 0.020 Contigutou i 2, contigutou interior

Primary OutFlow Max=24.62 cfs @ 12.00 hrs HW=1,977.83' (Free Discharge)

Summary for Pond R8.12: CULVERT

Inflow Area	I =	5.444 ac,	7.52% Impervious,	Inflow Depth = 0 .	.91" for 1-Year event
Inflow	=	7.11 cfs @	12.03 hrs, Volume	= 0.412 af	
Outflow	=	7.11 cfs @	12.03 hrs, Volume	= 0.412 af	, Atten= 0%, Lag= 0.0 min
Primary	=	7.11 cfs @	12.03 hrs, Volume	= 0.412 af	

Routing by Stor-Ind method, Time Span= 0.00-144.00 hrs, dt= 0.05 hrs Peak Elev= 1,903.15' @ 12.03 hrs

Device	Routing	Invert	Outlet Devices		
#1	Primary	1,902.00'	30.0" Round Culvert		
			L= 40.0' CPP, mitered to conform to fill, Ke= 0.700		

08077_Proposed Prepared by The LA Group P.C. HydroCAD® 9.10 s/n 00439 © 2010 HydroCAD Software Solutions LLC

Inlet / Outlet Invert= 1,902.00' / 1,899.00' = 0.0750' / Cc = 0.900n= 0.020 Corrugated PE, corrugated interior

Primary OutFlow Max=6.91 cfs @ 12.03 hrs HW=1,903.13' (Free Discharge)

Summary for Pond R8.13: CB

Inflow Area	ι =	21.499 ac, 2	2.66% Impervious,	Inflow Depth = $$	1.17" for 1-Ye	ar event
Inflow	=	31.43 cfs @	12.01 hrs, Volume	= 2.101 a	ıf	
Outflow	=	31.43 cfs @	12.01 hrs, Volume	= 2.101 a	If, Atten= 0%, L	.ag= 0.0 min
Primary	=	31.43 cfs @	12.01 hrs, Volume	= 2.101 a	ıf	

Routing by Stor-Ind method, Time Span= 0.00-144.00 hrs, dt= 0.05 hrs Peak Elev= 1,898.04' @ 12.01 hrs

Device	Routing	Invert	Outlet Devices
#1	Primary	1,896.00'	48.0" Round Culvert L= 835.0' CPP, square edge headwall, Ke= 0.500 Inlet / Outlet Invert= 1,896.00' / 1,824.00' S= 0.0862 '/' Cc= 0.900 n= 0.020 Corrugated PE, corrugated interior

Primary OutFlow Max=30.99 cfs @ 12.01 hrs HW=1,898.03' (Free Discharge) -1=Culvert (Inlet Controls 30.99 cfs @ 4.85 fps)

Summary for Pond R8.15: CB

Inflow Area =	23.740 ac, 2	23.90% Impervious, I	nflow Depth = 1.19"	for 1-Year event
Inflow =	36.51 cfs @	12.00 hrs, Volume=	2.358 af	
Outflow =	36.51 cfs @	12.00 hrs, Volume=	2.358 af, At	ten= 0%, Lag= 0.0 min
Primary =	36.18 cfs @	12.00 hrs, Volume=	2.357 af	
Secondary =	0.33 cfs @	12.00 hrs, Volume=	0.001 af	

Routing by Stor-Ind method, Time Span= 0.00-144.00 hrs, dt= 0.05 hrs Peak Elev= 1,823.21' @ 12.00 hrs

Device	Routing	Invert	Outlet Devices
#1	Primary	1,821.00'	48.0" Round Culvert L= 65.0' CPP, square edge headwall, Ke= 0.500
#0	Casardan	4 000 001	Inlet / Outlet Invert= 1,821.00' / 1,818.00' S= 0.0462 '/' Cc= 0.900 n= 0.020 Corrugated PE, corrugated interior
#Z	Secondary	1,823.00	L= 50.0' CPP, square edge headwall, Ke= 0.500 Inlet / Outlet Invert= 1,823.00' / 1,822.00' S= 0.0200 '/' Cc= 0.900 n= 0.020 Corrugated PE, corrugated interior

Primary OutFlow Max=36.14 cfs @ 12.00 hrs HW=1,823.21' (Free Discharge) -1=Culvert (Inlet Controls 36.14 cfs @ 5.07 fps)

Secondary OutFlow Max=0.33 cfs @ 12.00 hrs HW=1,823.21' (Free Discharge) 2=Culvert (Barrel Controls 0.33 cfs @ 2.25 fps)

Summary for Pond R8.3: CULVERT

Inflow Area =6.659 ac, 31.16% Impervious, Inflow Depth =1.29" for 1-Year eventInflow =8.07 cfs @12.01 hrs, Volume=0.715 afOutflow =8.07 cfs @12.01 hrs, Volume=0.715 af, Atten= 0%, Lag= 0.0 minPrimary =8.07 cfs @12.01 hrs, Volume=0.715 af

Routing by Stor-Ind method, Time Span= 0.00-144.00 hrs, dt= 0.05 hrs Peak Elev= 2,273.15' @ 12.01 hrs

Cc= 0.900
r Weir
)
2.63
(r) 2.

Primary OutFlow Max=7.87 cfs @ 12.01 hrs HW=2,273.14' (Free Discharge) 1=Culvert (Inlet Controls 7.87 cfs @ 3.20 fps) 2=Broad-Crested Rectangular Weir (Controls 0.00 cfs)

Summary for Pond R8.5: CULVERT

Inflow Area	ι =	8.599 ac, 2	26.37% Impe	ervious,	Inflow Depth =	= 1.21	" for 1-Y	ear event
Inflow	=	9.87 cfs @	12.03 hrs,	Volume	= 0.87	0 af		
Outflow	=	9.87 cfs @	12.03 hrs,	Volume	= 0.87	0 af, A	tten= 0%,	Lag= 0.0 min
Primary	=	9.87 cfs @	12.03 hrs,	Volume	= 0.87	0 af		-

Routing by Stor-Ind method, Time Span= 0.00-144.00 hrs, dt= 0.05 hrs Peak Elev= 2,223.29' @ 12.03 hrs

Device	Routing	Invert	Outlet Devices
#1	Primary	2,222.00'	36.0" Round Culvert
	2		L= 50.0' CPP, mitered to conform to fill, Ke= 0.700
			Inlet / Outlet Invert= 2,222.00' / 2,220.00' S= 0.0400 '/' Cc= 0.900
			n= 0.020 Corrugated PE, corrugated interior
#2	Primary	2,224.00'	10.0' long x 30.0' breadth Broad-Crested Rectangular Weir
			Head (feet) 0.20 0.40 0.60 0.80 1.00 1.20 1.40 1.60
			Coef. (English) 2.68 2.70 2.70 2.64 2.63 2.64 2.64 2.63

Primary OutFlow Max=9.67 cfs @ 12.03 hrs HW=2,223.27' (Free Discharge)

1=Culvert (Inlet Controls 9.67 cfs @ 3.39 fps)

-2=Broad-Crested Rectangular Weir (Controls 0.00 cfs)

Summary for Pond R8.7: CULVERT

Inflow Area =14.109 ac, 22.15% Impervious, Inflow Depth =1.16" for 1-Year eventInflow =18.64 cfs @12.01 hrs, Volume=1.362 afOutflow =18.64 cfs @12.01 hrs, Volume=1.362 af, Atten= 0%, Lag= 0.0 minPrimary =18.64 cfs @12.01 hrs, Volume=1.362 af

Routing by Stor-Ind method, Time Span= 0.00-144.00 hrs, dt= 0.05 hrs Peak Elev= 2,179.73' @ 12.01 hrs

Device	Routing	Invert	Outlet Devices
#1	Primary	2,178.00'	42.0" Round Culvert L= 200.0' CPP, mitered to conform to fill, Ke= 0.700 Inlet / Outlet Invert= 2,178.00' / 2,163.00' S= 0.0750 '/' Cc= 0.900 n= 0.020 Corrugated PE, corrugated interior

Primary OutFlow Max=18.18 cfs @ 12.01 hrs HW=2,179.70' (Free Discharge) -1=Culvert (Inlet Controls 18.18 cfs @ 3.92 fps)

Summary for Pond R8.8: CB

Inflow Area	a =	14.831 ac, 2	4.61% Impervio	us, Inflow Dept	th = 1.20"	for 1-Year event
Inflow	=	20.87 cfs @	12.01 hrs, Volu	ime= 1	.486 af	
Outflow	=	20.87 cfs @	12.01 hrs, Volu	ime= 1	.486 af, Atte	n= 0%, Lag= 0.0 min
Primary	=	20.87 cfs @	12.01 hrs, Volu	ime= 1	.486 af	

Routing by Stor-Ind method, Time Span= 0.00-144.00 hrs, dt= 0.05 hrs Peak Elev= 2,161.71' @ 12.01 hrs

Device	Routing	Invert	Outlet Devices
#1	Primary	2,160.00'	42.0" Round Culvert L= 880.0' CPP, square edge headwall, Ke= 0.500 Inlet / Outlet Invert= 2,160.00' / 2,077.00' S= 0.0943 '/' Cc= 0.900
			n= 0.020 Corrugated PE, corrugated interior

Primary OutFlow Max=20.54 cfs @ 12.01 hrs HW=2,161.70' (Free Discharge)

Summary for Pond R8.9: CB

Inflow Area	a =	15.452 ac, 2	6.26% Impervio	ous, Inflow De	pth = 1.23"	for 1-Year event
Inflow	=	22.77 cfs @	12.00 hrs, Volu	ume=	1.589 af	
Outflow	=	22.77 cfs @	12.00 hrs, Volu	ume=	1.589 af, Atte	en= 0%, Lag= 0.0 min
Primary	=	22.77 cfs @	12.00 hrs, Volu	ume=	1.589 af	-

Routing by Stor-Ind method, Time Span= 0.00-144.00 hrs, dt= 0.05 hrs Peak Elev= 2,075.80' @ 12.00 hrs

Device	Routing	Invert	Outlet Devices
#1	Primary	2,074.00'	42.0" Round Culvert
			L= 900.0' CPP, square edge headwall, Ke= 0.500

Inlet / Outlet Invert= 2,074.00' / 1,979.00' = 0.1056' / Cc = 0.900n= 0.020 Corrugated PE, corrugated interior

Primary OutFlow Max=22.61 cfs @ 12.00 hrs HW=2,075.79' (Free Discharge) **1=Culvert** (Inlet Controls 22.61 cfs @ 4.56 fps)

Summary for Pond R9.1: Road Culvert

Inflow Area	a =	4.151 ac, 2	1.51% Impe	ervious, Inflow	Depth = 1.	.13" for 1-Year event
Inflow	=	1.85 cfs @	12.34 hrs,	Volume=	0.391 af	
Outflow	=	1.85 cfs @	12.34 hrs,	Volume=	0.391 af	, Atten= 0%, Lag= 0.0 min
Primary	=	1.85 cfs @	12.34 hrs,	Volume=	0.391 af	

Routing by Stor-Ind method, Time Span= 0.00-144.00 hrs, dt= 0.05 hrs Peak Elev= 1,817.56' @ 12.34 hrs

Device	Routing	Invert	Outlet Devices
#1	Primary	1,817.00'	30.0" Round Culvert L= 40.0' CPP, mitered to conform to fill, Ke= 0.700 Inlet / Outlet Invert= 1,817.00' / 1,816.00' S= 0.0250 '/' Cc= 0.900 n= 0.020 Corrugated PE, corrugated interior
#2	Primary	1,820.00'	40.0' long x 2.0' breadth Broad-Crested Rectangular Weir Head (feet) 0.20 0.40 0.60 0.80 1.00 1.20 1.40 1.60 1.80 2.00 2.50 3.00 3.50 Coef. (English) 2.54 2.61 2.61 2.60 2.66 2.70 2.77 2.89 2.88 2.85 3.07 3.20 3.32

Primary OutFlow Max=1.83 cfs @ 12.34 hrs HW=1,817.56' (Free Discharge)

1=Culvert (Inlet Controls 1.83 cfs @ 2.24 fps)

2=Broad-Crested Rectangular Weir (Controls 0.00 cfs)

Summary for Pond R9.11: Culvert

Inflow Are	a =	19.480 ac, 2	1.84% Imperv	vious, Inflow D	epth > 1.15	5" for 1-Y	ear event
Inflow	=	0.58 cfs @	19.83 hrs, V	olume=	1.867 af		
Outflow	=	0.58 cfs @	19.83 hrs, V	olume=	1.867 af, A	Atten= 0%,	Lag= 0.0 min
Primary	=	0.58 cfs @	19.83 hrs, V	olume=	1.867 af		C

Routing by Stor-Ind method, Time Span= 0.00-144.00 hrs, dt= 0.05 hrs Peak Elev= 1,658.28' @ 19.83 hrs

Device	Routing	Invert	Outlet Devices
#1	Primary	1,658.00'	36.0" Round Culvert L= $50.0'$ CPP, end-section conforming to fill, Ke= 0.500 Inlet / Outlet Invert= $1,658.00'$ / $1,656.00'$ S= 0.0400 // Cc= 0.900 n= 0.020 Corrugated PE, corrugated interior

Primary OutFlow Max=0.58 cfs @ 19.83 hrs HW=1,658.28' (Free Discharge) -1=Culvert (Inlet Controls 0.58 cfs @ 1.79 fps)
Summary for Pond R9.12: CB

Inflow	=	0.33 cfs @	12.00 hrs,	Volume=	0.001 af
Outflow	=	0.33 cfs @	12.00 hrs,	Volume=	0.001 af, Atten= 0%, Lag= 0.0 min
Primary	=	0.33 cfs @	12.00 hrs,	Volume=	0.001 af

Routing by Stor-Ind method, Time Span= 0.00-144.00 hrs, dt= 0.05 hrs Peak Elev= 1,815.24' @ 12.00 hrs

Device	Routing	Invert	Outlet Devices
#1	Primary	1,815.00'	42.0" Round Culvert L= 90.0' CPP, square edge headwall, Ke= 0.500 Inlet / Outlet Invert= 1,815.00' / 1,814.10' S= 0.0100 '/' Cc= 0.900 n= 0.020 Corrugated PE, corrugated interior

Primary OutFlow Max=0.33 cfs @ 12.00 hrs HW=1,815.24' (Free Discharge) -1=Culvert (Barrel Controls 0.33 cfs @ 1.77 fps)

Summary for Pond R9.13: PIPE

Inflow	=	0.33 cfs @	12.00 hrs, Volume=	0.001 af	
Outflow	=	0.33 cfs @	12.00 hrs, Volume=	0.001 af, Atten= 0%,	Lag= 0.0 min
Primary	=	0.33 cfs @	12.00 hrs, Volume=	0.001 af	•

Routing by Stor-Ind method, Time Span= 0.00-144.00 hrs, dt= 0.05 hrs / 2 Peak Elev= 1,814.24' @ 12.00 hrs

Device	Routing	Invert	Outlet Devices
#1	Primary	1,814.00'	42.0" Round PIPE L= 220.0' CPP, square edge headwall, Ke= 0.500 Inlet / Outlet Invert= 1,814.00' / 1,811.80' S= 0.0100 '/' Cc= 0.900
			n= 0.020 Confugated FL, confugated intenol

Primary OutFlow Max=0.33 cfs @ 12.00 hrs HW=1,814.24' (Free Discharge) 1=PIPE (Barrel Controls 0.33 cfs @ 1.77 fps)

Summary for Pond R9.14: PIPE

Inflow	=	0.33 cfs @	12.00 hrs,	Volume=	0.001 af		
Outflow	=	0.33 cfs @	12.00 hrs,	Volume=	0.001 af,	Atten= 0%,	Lag= 0.0 min
Primary	=	0.33 cfs @	12.00 hrs,	Volume=	0.001 af		

Routing by Stor-Ind method, Time Span= 0.00-144.00 hrs, dt= 0.05 hrs / 2 Peak Elev= 1,812.04' @ 12.00 hrs

Device	Routing	Invert	Outlet Devices
#1	Primary	1,811.80'	42.0" Round PIPE
			L= 250.0' CPP, square edge headwall, Ke= 0.500
			Inlet / Outlet Invert= 1,811.80' / 1,809.30' S= 0.0100 '/' Cc= 0.900
			n= 0.020 Corrugated PE, corrugated interior

Primary OutFlow Max=0.33 cfs @ 12.00 hrs HW=1,812.04' (Free Discharge) 1=PIPE (Barrel Controls 0.33 cfs @ 1.77 fps)

Summary for Pond R9.15: PIPE

Inflow	=	0.33 cfs @	12.00 hrs,	Volume=	0.001 af		
Outflow	=	0.33 cfs @	12.00 hrs,	Volume=	0.001 af,	Atten= 0%,	Lag= 0.0 min
Primary	=	0.33 cfs @	12.00 hrs,	Volume=	0.001 af		

Routing by Stor-Ind method, Time Span= 0.00-144.00 hrs, dt= 0.05 hrs / 2 Peak Elev= 1,809.54' @ 12.00 hrs

Device	Routing	Invert	Outlet Devices
#1	Primary	1,809.30'	42.0" Round PIPE L= 240.0' CPP, square edge headwall, Ke= 0.500 Inlet / Outlet Invert= 1,809.30' / 1,806.90' S= 0.0100 '/' Cc= 0.900 n= 0.020 Corrugated PE, corrugated interior

Primary OutFlow Max=0.33 cfs @ 12.00 hrs HW=1,809.54' (Free Discharge) T=PIPE (Barrel Controls 0.33 cfs @ 1.77 fps)

Summary for Pond R9.16: MH

Inflow	=	0.33 cfs @ 12	.00 hrs, Volume=	0.001 af	
Outflow	=	0.33 cfs @ 12	.00 hrs, Volume=	0.001 af, Atten= 0%,	Lag= 0.0 min
Primary	=	0.33 cfs @ 12	.00 hrs, Volume=	0.001 af	

Routing by Stor-Ind method, Time Span= 0.00-144.00 hrs, dt= 0.05 hrs Peak Elev= 1,807.11' @ 12.00 hrs

Device	Routing	Invert	Outlet Devices
#1	Primary	1,806.90'	36.0" Round Culvert
			L= 200.0' CPP, square edge headwall, Ke= 0.500
			Inlet / Outlet Invert= 1,806.90' / 1,804.90' S= 0.0100 '/' Cc= 0.900
			n= 0.013 Corrugated PE, smooth interior

Primary OutFlow Max=0.33 cfs @ 12.00 hrs HW=1,807.11' (Free Discharge) -1=Culvert (Inlet Controls 0.33 cfs @ 1.55 fps)

Summary for Pond R9.3: Culvert

Inflow Area	a =	11.891 ac, 2	25.97% Impervio	us, Inflow Dept	th = 1.21"	for 1-Year event
Inflow	=	16.89 cfs @	11.98 hrs, Volu	me= 1.	.198 af	
Outflow	=	16.89 cfs @	11.98 hrs, Volu	me= 1.	.198 af, Atte	en= 0%, Lag= 0.0 min
Primary	=	16.89 cfs @	11.98 hrs, Volu	me= 1.	.198 af	-

Routing by Stor-Ind method, Time Span= 0.00-144.00 hrs, dt= 0.05 hrs Peak Elev= 1,773.45' @ 11.98 hrs 08077_Proposed

Type II 24-hr 1-Year Rainfall=3.00" Printed 12/9/2011 Page 21

Prepared by The LA Group P.C.	
HydroCAD® 9.10 s/n 00439 © 2010 HydroCAD Software Solutions LLC	2

Device	Routing	Invert	Outlet Devices
#1	Primary	1,772.00'	48.0" Round Culvert L= 40.0' CPP, end-section conforming to fill, Ke= 0.500 Inlet / Outlet Invert= 1,772.00' / 1,770.00' S= 0.0500 '/' Cc= 0.900 n= 0.020 Corrugated PE, corrugated interior

Primary OutFlow Max=16.18 cfs @ 11.98 hrs HW=1,773.42' (Free Discharge) -1=Culvert (Inlet Controls 16.18 cfs @ 4.05 fps)

Summary for Pond R9.5: Culvert

Inflow Area	a =	16.238 ac, 2	4.71% Impe	ervious,	Inflow Depth =	1.19"	for 1-Y	ear event
Inflow	=	23.93 cfs @	12.00 hrs,	Volume=	= 1.607	af		
Outflow	=	23.93 cfs @	12.00 hrs,	Volume=	= 1.607	af, Att	en= 0%,	Lag= 0.0 min
Primary	=	23.93 cfs @	12.00 hrs,	Volume=	= 1.607	af		

Routing by Stor-Ind method, Time Span= 0.00-144.00 hrs, dt= 0.05 hrs Peak Elev= 1,715.68' @ 12.00 hrs

Device	Routing	Invert	Outlet Devices
#1	Primary	1,714.00'	54.0" Round Culvert L= $60.0'$ CPP, end-section conforming to fill, Ke= 0.500 Inlet / Outlet Invert= $1,714.00' / 1,710.00'$ S= $0.0667 '/'$ Cc= 0.900 n= 0.020 Corrugated PE, corrugated interior

Primary OutFlow Max=23.71 cfs @ 12.00 hrs HW=1,715.67' (Free Discharge) **1=Culvert** (Inlet Controls 23.71 cfs @ 4.40 fps)

Summary for Pond R9.6: Culvert

Inflow Area	I =	1.294 ac, 1	18.82% Impe	ervious, Inflow De	epth = 1.13	for 1-Ye	ar event
Inflow	=	2.15 cfs @	12.00 hrs,	Volume=	0.121 af		
Outflow	=	2.15 cfs @	12.00 hrs,	Volume=	0.121 af, A	tten= 0%, L	_ag= 0.0 min
Primary	=	2.15 cfs @	12.00 hrs,	Volume=	0.121 af		-

Routing by Stor-Ind method, Time Span= 0.00-144.00 hrs, dt= 0.05 hrs Peak Elev= 1,684.67' @ 12.00 hrs

Device	Routing	Invert	Outlet Devices
#1	Primary	1,684.00'	18.0" Round Culvert L= 100.0' CPP, end-section conforming to fill, Ke= 0.500 Inlet / Outlet Invert= $1,684.00' / 1,682.00' S = 0.0200 '/' Cc= 0.900$ n= 0.020 Corrugated PE, corrugated interior

Primary OutFlow Max=2.14 cfs @ 12.00 hrs HW=1,684.67' (Free Discharge)

Summary for Pond R9.8: culvert

Inflow Area =2.870 ac, 4.48% Impervious, Inflow Depth =0.91" for 1-Year eventInflow =4.37 cfs @11.99 hrs, Volume=0.217 afOutflow =4.37 cfs @11.99 hrs, Volume=0.217 af, Atten= 0%, Lag= 0.0 minPrimary =4.37 cfs @11.99 hrs, Volume=0.217 af

Routing by Stor-Ind method, Time Span= 0.00-144.00 hrs, dt= 0.05 hrs Peak Elev= 1,686.89' @ 11.99 hrs

Device	Routing	Invert	Outlet Devices
#1	Primary	1,686.00'	24.0" Round Culvert L= 40.0' CPP, end-section conforming to fill, Ke= 0.500 Inlet / Outlet Invert= 1,686.00' / 1,685.00' S= 0.0250 '/' Cc= 0.900 n= 0.020 Corrugated PE, corrugated interior

Primary OutFlow Max=4.23 cfs @ 11.99 hrs HW=1,686.88' (Free Discharge) **1=Culvert** (Inlet Controls 4.23 cfs @ 3.19 fps)

Summary for Pond 11.3R: 72" CMP (x2)

Inflow Area	ι =	34.510 ac,	0.51% Impervious,	Inflow Depth = 2	.21" for 10-`	Year event
Inflow	=	47.79 cfs @	12.36 hrs, Volume	= 6.348 af		
Outflow	=	47.78 cfs @	12.36 hrs, Volume	= 6.348 af	, Atten= 0%,	Lag= 0.0 min
Primary	=	47.78 cfs @	12.36 hrs, Volume	= 6.348 af		

Routing by Stor-Ind method, Time Span= 0.00-144.00 hrs, dt= 0.05 hrs / 3 Peak Elev= 2,413.73' @ 12.36 hrs Surf.Area= 95 sf Storage= 134 cf

Plug-Flow detention time= (not calculated: outflow precedes inflow) Center-of-Mass det. time= 0.1 min (888.3 - 888.2)

Volume	Inve	ert Avail.St	orage	Storage D	Description			
#1	2,412.0	00' 2,	120 cf	Custom \$	Stage Data (Pi	r ismatic) Lis	ted below (Red	calc)
Elevatior (feet	ו)	Surf.Area (sq-ft)	Inc (cubio	Store c-feet)	Cum.Store (cubic-feet)			
2,412.00)	60 100		0 160	0 160			
2,416.00 2,418.00 2,418.00 2,418.00)	260 380 580		360 640 960	520 1,160 2 120			
Device	Routing	Inver	t Outle	et Devices	2,120			
#1	Primary	2,412.00	' 72.0 L= 1 Inlet n= 0	" Round (20.0' CPF / Outlet Inv .025 Corru	Culvert X 2.00 P, projecting, n vert= 2,412.00' ugated metal	o headwall, ' / 2,394.00'	Ke= 0.900 S= 0.1500 '/'	Cc= 0.900

Primary OutFlow Max=47.65 cfs @ 12.36 hrs HW=2,413.73' (Free Discharge) -1=Culvert (Inlet Controls 47.65 cfs @ 3.53 fps)

Summary for Pond 11.7R: Culvert

Inflow Area	a =	81.523 ac,	7.59% Impervious, I	nflow Depth = 2.4	40" for 10-Year event
Inflow	=	100.19 cfs @	12.29 hrs, Volume=	16.333 af	
Outflow	=	100.19 cfs @	12.29 hrs, Volume=	= 16.333 af,	Atten= 0%, Lag= 0.0 min
Primary	=	100.19 cfs @	12.29 hrs, Volume=	: 16.333 af	

Routing by Stor-Ind method, Time Span= 0.00-144.00 hrs, dt= 0.05 hrs Peak Elev= 1,893.74' @ 12.29 hrs

Device	Routing	Invert	Outlet Devices
#1	Primary	1,889.00'	48.0" Round Culvert
	-		L= 46.0' CPP, end-section conforming to fill, Ke= 0.500
			Inlet / Outlet Invert= 1,889.00' / 1,882.00' S= 0.1522 '/' Cc= 0.900
			n= 0.025 Corrugated metal
#2	Primary	1,894.00'	15.0' long x 35.0' breadth Broad-Crested Rectangular Weir
			Head (feet) 0.20 0.40 0.60 0.80 1.00 1.20 1.40 1.60
			Coef. (English) 2.68 2.70 2.70 2.64 2.63 2.64 2.64 2.63

Primary OutFlow Max=99.97 cfs @ 12.29 hrs HW=1,893.73' (Free Discharge) -1=Culvert (Inlet Controls 99.97 cfs @ 7.96 fps) -2=Broad-Crested Rectangular Weir (Controls 0.00 cfs)

Summary for Pond R1.10: PIPE

Inflow A	rea =	5.258 ac, 2	4.86% Impervious	, Inflow Depth =	2.83" for	r 10-Year event
Inflow	=	22.97 cfs @	12.00 hrs, Volum	ie= 1.239) af	
Outflow	=	22.97 cfs @	12.00 hrs, Volum	ie= 1.239	af, Atten=	0%, Lag= 0.0 min
Primary	=	22.97 cfs @	12.00 hrs, Volum	ie= 1.239) af	-

Routing by Stor-Ind method, Time Span= 0.00-144.00 hrs, dt= 0.05 hrs Peak Elev= 2,207.31' @ 12.00 hrs

Device	Routing	Invert	Outlet Devices
#1	Primary	2,204.00'	24.0" Round Culvert L= 140.0' CMP, square edge headwall, Ke= 0.500 Inlet / Outlet Invert= 2,204.00' / 2,180.00' S= 0.1714 '/' Cc= 0.900 n= 0.020 Corrugated PE corrugated interior
			n= 0.020 Confugated FL, confugated interior

Primary OutFlow Max=22.73 cfs @ 12.00 hrs HW=2,207.26' (Free Discharge) -1=Culvert (Inlet Controls 22.73 cfs @ 7.23 fps)

Summary for Pond R1.7: Culvert

Inflow Area	a =	4.963 ac, 2	3.85% Impervious,	Inflow Depth =	2.80" fo	r 10-Year event
Inflow	=	21.49 cfs @	12.01 hrs, Volume	= 1.159	af	
Outflow	=	21.49 cfs @	12.01 hrs, Volume	= 1.159	af, Atten=	0%, Lag= 0.0 min
Primary	=	21.49 cfs @	12.01 hrs, Volume	= 1.159	af	

Routing by Stor-Ind method, Time Span= 0.00-144.00 hrs, dt= 0.05 hrs Peak Elev= 2,233.02' @ 12.01 hrs

Device	Routing	Invert	Outlet Devices
#1	Primary	2,230.00'	24.0" Round Culvert L= 290.0' CMP, square edge headwall, Ke= 0.500 Inlet / Outlet Invert= 2,230.00' / 2,205.00' S= 0.0862 '/' Cc= 0.900 n= 0.020 Corrugated PE, corrugated interior

Primary OutFlow Max=21.13 cfs @ 12.01 hrs HW=2,232.95' (Free Discharge) **1=Culvert** (Inlet Controls 21.13 cfs @ 6.73 fps)

Summary for Pond R1.8: PIPE

Inflow Area	=	0.295 ac, 4	1.89% Imper	vious, Inflow D	epth = 3.27'	' for 10-`	Year event
Inflow	=	1.62 cfs @	11.97 hrs, V	/olume=	0.080 af		
Outflow	=	1.62 cfs @	11.97 hrs, V	/olume=	0.080 af, A	tten= 0%,	Lag= 0.0 min
Primary	=	1.62 cfs @	11.97 hrs, V	/olume=	0.080 af		

Routing by Stor-Ind method, Time Span= 0.00-144.00 hrs, dt= 0.05 hrs

Peak Elev= 2,207.64' @ 11.97 hrs

Device Routing Invert Outlet Devices	
#1 Primary 2,207.00' 24.0" Round Culvert L= 250.0' CMP, square edge headwall, Ke= 0.500 Inlet / Outlet Invert= 2,207.00' / 2,205.00' S= 0.0080 '/' C n= 0.020 Corrugated PE, corrugated interior	Cc= 0.900

Primary OutFlow Max=1.57 cfs @ 11.97 hrs HW=2,207.62' (Free Discharge) -1=Culvert (Barrel Controls 1.57 cfs @ 2.80 fps)

Summary for Pond R1.9: Culvert

Inflow Area	a =	3.441 ac,	4.67% Impervious,	Inflow Depth = 2	2.45" for 10-Year ev	/ent
Inflow	=	14.52 cfs @	11.97 hrs, Volume	= 0.702 a	f	
Outflow	=	14.52 cfs @	11.97 hrs, Volume	= 0.702 a	f, Atten= 0%, Lag= 0	.0 min
Primary	=	14.52 cfs @	11.97 hrs, Volume	= 0.702 a	f	

Routing by Stor-Ind method, Time Span= 0.00-144.00 hrs, dt= 0.05 hrs Peak Elev= 2,207.92' @ 11.97 hrs

Device	Routing	Invert	Outlet Devices
#1	Primary	2,206.00'	24.0" Round Culvert L= 50.0' CMP, square edge headwall, Ke= 0.500 Inlet / Outlet Invert= 2,206.00' / 2,205.00' S= 0.0200 '/' Cc= 0.900 n= 0.020 Corrugated PE, corrugated interior

Primary OutFlow Max=14.04 cfs @ 11.97 hrs HW=2,207.88' (Free Discharge) ←1=Culvert (Barrel Controls 14.04 cfs @ 5.95 fps)

Summary for Pond R11.11: CULVERT

Inflow A	rea =	5.399 ac,	2.68% Impervious, In	nflow Depth = 2.25	5" for 10-Year event
Inflow	=	15.40 cfs @	12.08 hrs, Volume=	1.011 af	
Outflow	=	15.40 cfs @	12.08 hrs, Volume=	1.011 af, /	Atten= 0%, Lag= 0.0 min
Primary	=	15.40 cfs @	12.08 hrs, Volume=	1.011 af	

Routing by Stor-Ind method, Time Span= 0.00-144.00 hrs, dt= 0.05 hrs Peak Elev= 2,479.67' @ 12.08 hrs

Device	Routing	Invert	Outlet Devices
#1	Primary	2,478.00'	30.0" Round Culvert L= 35.0' Ke= 0.500 Inlet / Outlet Invert= 2,478.00' / 2,472.00' S= 0.1714 '/' Cc= 0.900 n= 0.020 Corrugated PE, corrugated interior

Primary OutFlow Max=15.10 cfs @ 12.08 hrs HW=2,479.65' (Free Discharge) -1=Culvert (Inlet Controls 15.10 cfs @ 4.38 fps)

Summary for Pond R11.15: CB

Inflow Area =11.392 ac,0.56% Impervious,Inflow Depth =2.20" for 10-Year eventInflow =26.86 cfs @12.14 hrs,Volume=2.087 afOutflow =26.86 cfs @12.14 hrs,Volume=2.087 af,Primary =26.86 cfs @12.14 hrs,Volume=2.087 af,Atten= 0%,Lag= 0.0 min2.087 af,

Routing by Stor-Ind method, Time Span= 0.00-144.00 hrs, dt= 0.05 hrs Peak Elev= 2,454.14' @ 12.14 hrs

Device	Routing	Invert	Outlet Devices
#1	Primary	2,452.00'	36.0" Round Culvert L= 110.0' CPP, square edge headwall, Ke= 0.500 Inlet / Outlet Invert= 2,452.00' / 2,450.00' S= 0.0182 '/' Cc= 0.900 n= 0.020 Corrugated PE, corrugated interior

Primary OutFlow Max=26.67 cfs @ 12.14 hrs HW=2,454.13' (Free Discharge) -1=Culvert (Inlet Controls 26.67 cfs @ 4.97 fps)

Summary for Pond R11.17: CB

Inflow Area	=	0.170 ac,	72.76% Imp	ervious,	Inflow Depth =	3.98"	for 10-`	Year event
Inflow	=	0.97 cfs @	12.01 hrs,	Volume	= 0.057	af		
Outflow	=	0.97 cfs @	12.01 hrs,	Volume	= 0.057	af, At	tten= 0%,	Lag= 0.0 min
Primary	=	0.97 cfs @	12.01 hrs,	Volume	= 0.057	af		-

Routing by Stor-Ind method, Time Span= 0.00-144.00 hrs, dt= 0.05 hrs Peak Elev= 2,453.51' @ 12.01 hrs

Device	Routing	Invert	Outlet Devices
#1	Primary	2,453.00'	12.0" Round Culvert
			L= 200.0' CPP, square edge headwall, Ke= 0.500
			Inlet / Outlet Invert= 2,453.00' / 2,449.00' S= 0.0200 '/' Cc= 0.900
			n= 0.020 Corrugated PE, corrugated interior

Primary OutFlow Max=0.96 cfs @ 12.01 hrs HW=2,453.50' (Free Discharge)

Summary for Pond R11.18: CB

Inflow Area	I =	0.638 ac, 6	63.12% Impe	ervious, l	Inflow Depth =	3.77"	for 10-`	Year event
Inflow	=	3.92 cfs @	11.96 hrs,	Volume=	.201	af		
Outflow	=	3.92 cfs @	11.96 hrs,	Volume=	. 0.201	af, At	ten= 0%,	Lag= 0.0 min
Primary	=	3.92 cfs @	11.96 hrs,	Volume=	.201	af		-

Routing by Stor-Ind method, Time Span= 0.00-144.00 hrs, dt= 0.05 hrs Peak Elev= 2,456.07' @ 11.96 hrs

Device	Routing	Invert	Outlet Devices
#1	Primary	2,455.00'	15.0" Round Culvert
			L= 160.0' CPP, square edge headwall, Ke= 0.500

08077_Proposed7Prepared by The LA Group P.C.7HydroCAD® 9.10 s/n 00439 © 2010 HydroCAD Software Solutions LLC

Inlet / Outlet Invert= 2,455.00' / 2,452.00' = 0.0187'' Cc= 0.900 n= 0.020 Corrugated PE, corrugated interior

Primary OutFlow Max=3.81 cfs @ 11.96 hrs HW=2,456.04' (Free Discharge) **1=Culvert** (Inlet Controls 3.81 cfs @ 3.48 fps)

Summary for Pond R11.19: CB

Inflow Area	a =	5.124 ac,	7.86% Impervious, Inflow	v Depth = 2.39"	for 10-Year event
Inflow	=	20.50 cfs @	11.98 hrs, Volume=	1.022 af	
Outflow	=	20.50 cfs @	11.98 hrs, Volume=	1.022 af, Atte	en= 0%, Lag= 0.0 min
Primary	=	20.50 cfs @	11.98 hrs, Volume=	1.022 af	

Routing by Stor-Ind method, Time Span= 0.00-144.00 hrs, dt= 0.05 hrs Peak Elev= 2,453.23' @ 11.98 hrs

Device	Routing	Invert	Outlet Devices
#1	Primary	2,451.00'	30.0" Round Culvert
			L= 625.0' CPP, square edge headwall, Ke= 0.500 Inlet / Outlet Invert= 2,451.00' / 2,444.75' S= 0.0100 '/' Cc= 0.900 n= 0.020 Corrugated PE, corrugated interior

Primary OutFlow Max=19.77 cfs @ 11.98 hrs HW=2,453.17' (Free Discharge) 1=Culvert (Barrel Controls 19.77 cfs @ 5.84 fps)

Summary for Pond R11.20: CULVERT

Inflow Area	a =	5.212 ac,	0.00% Impervious,	Inflow Depth = 2.2	20" for 10-Year event
Inflow	=	14.46 cfs @	12.08 hrs, Volume	= 0.955 af	
Outflow	=	14.46 cfs @	12.08 hrs, Volume:	= 0.955 af,	Atten= 0%, Lag= 0.0 min
Primary	=	14.46 cfs @	12.08 hrs, Volume:	= 0.955 af	-

Routing by Stor-Ind method, Time Span= 0.00-144.00 hrs, dt= 0.05 hrs Peak Elev= 2,460.64' @ 12.08 hrs

Device	Routing	Invert	Outlet Devices
#1	Primary	2,459.00'	30.0" Round Culvert L= 45.0' Ke= 0.500 Inlet / Outlet Invert= 2,459.00' / 2,458.00' S= 0.0222 '/' Cc= 0.900 n= 0.020 Corrugated PE, corrugated interior

Primary OutFlow Max=14.20 cfs @ 12.08 hrs HW=2,460.62' (Free Discharge) -1=Culvert (Barrel Controls 14.20 cfs @ 6.00 fps)

Summary for Pond R11.22: CB

Inflow Area	ι =	1.435 ac, 5	7.38% Impervious	, Inflow Depth =	3.67" for	10-Year event
Inflow	=	8.64 cfs @	11.97 hrs, Volum	e= 0.439	af	
Outflow	=	8.64 cfs @	11.97 hrs, Volum	e= 0.439	af, Atten= 0	%, Lag= 0.0 min
Primary	=	8.64 cfs @	11.97 hrs, Volum	e= 0.439	af	

Routing by Stor-Ind method, Time Span= 0.00-144.00 hrs, dt= 0.05 hrs

Peak Elev= 2,413.44' @ 11.97 hrs

Device	Routing	Invert	Outlet Devices
#1	Primary	2,412.00'	21.0" Round CB L= 60.0' CPP, square edge headwall, Ke= 0.500 Inlet / Outlet Invert= $2,412.00' / 2,410.00'$ S= $0.0333'/$ ' Cc= 0.900 n= 0.020 Corrugated PE, corrugated interior

Primary OutFlow Max=8.39 cfs @ 11.97 hrs HW=2,413.41' (Free Discharge) -1=CB (Inlet Controls 8.39 cfs @ 4.04 fps)

Summary for Pond R11.23: CB

Inflow Area	ι =	1.435 ac, 5	7.38% Imperviou	s, Inflow Depth =	3.67" for 10	-Year event
Inflow	=	8.64 cfs @	11.97 hrs, Volur	ne= 0.439) af	
Outflow	=	8.64 cfs @	11.97 hrs, Volur	ne= 0.439	af, Atten= 0%	, Lag= 0.0 min
Primary	=	8.64 cfs @	11.97 hrs, Volur	ne= 0.439) af	-

Routing by Stor-Ind method, Time Span= 0.00-144.00 hrs, dt= 0.05 hrs Peak Elev= 2,411.32' @ 11.97 hrs

Device	Routing	Invert	Outlet Devices
#1	Primary	2,410.00'	24.0" Round CB L= 1,200.0' CPP, square edge headwall, Ke= 0.500 Inlet / Outlet Invert= 2,410.00' / 2,304.00' S= 0.0883 '/' Cc= 0.900 n= 0.020 Corrugated PE, corrugated interior

Primary OutFlow Max=8.39 cfs @ 11.97 hrs HW=2,411.30' (Free Discharge) ←1=CB (Inlet Controls 8.39 cfs @ 3.88 fps)

Summary for Pond R11.25: CB

Inflow Area	a =	8.185 ac, 3	4.51% Imperv	vious, Inflow D	0epth = 3.06	6" for 10-`	Year event
Inflow	=	40.24 cfs @	11.98 hrs, V	olume=	2.090 af		
Outflow	=	40.24 cfs @	11.98 hrs, V	olume=	2.090 af, A	Atten= 0%,	Lag= 0.0 min
Primary	=	40.24 cfs @	11.98 hrs, V	olume=	2.090 af		

Routing by Stor-Ind method, Time Span= 0.00-144.00 hrs, dt= 0.05 hrs Peak Elev= 2,412.86' @ 11.98 hrs

Device	Routing	Invert	Outlet Devices
#1	Primary	2,410.00'	36.0" Round Culvert
			L= 300.0' CPP, square edge headwall, Ke= 0.500 Inlet / Outlet Invert= 2,410.00' / 2,380.00' S= 0.1000 '/' Cc= 0.900 n= 0.020 Corrugated PE, corrugated interior

Primary OutFlow Max=38.67 cfs @ 11.98 hrs HW=2,412.77' (Free Discharge) -1=Culvert (Inlet Controls 38.67 cfs @ 5.67 fps)

Summary for Pond R11.28: FLOW SPLITTER

Inflow Area = 8.185 ac, 34.51% Impervious, Inflow Depth = 3.06" for 10-Year event Inflow 40.24 cfs @ 11.98 hrs. Volume= 2.090 af = 40.24 cfs @ 11.98 hrs, Volume= Outflow 2.090 af, Atten= 0%, Lag= 0.0 min = 27.34 cfs @ 11.98 hrs, Volume= Primary = 1.962 af Secondary = 12.89 cfs @ 11.98 hrs, Volume= 0.128 af

Routing by Stor-Ind method, Time Span= 0.00-144.00 hrs, dt= 0.05 hrs Peak Elev= 2,378.26' @ 11.98 hrs Flood Elev= 2,384.00'

Device	Routing	Invert	Outlet Devices
#1	Primary	2,374.00'	24.0" Round Culvert L= 15.0' CPP, square edge headwall, Ke= 0.500 Inlet / Outlet Invert= 2,374.00' / 2,373.70' S= 0.0200 '/' Cc= 0.900 n= 0.020 Corrugated PE, corrugated interior
#2	Secondary	2,376.85'	36.0" Round Culvert L= 114.0' CPP, square edge headwall, Ke= 0.500 Inlet / Outlet Invert= 2,376.85' / 2,370.00' S= 0.0601 '/' Cc= 0.900 n= 0.020 Corrugated PE, corrugated interior

Primary OutFlow Max=26.94 cfs @ 11.98 hrs HW=2,378.17' (Free Discharge) -1=Culvert (Inlet Controls 26.94 cfs @ 8.57 fps)

Secondary OutFlow Max=11.73 cfs @ 11.98 hrs HW=2,378.17' (Free Discharge) 2=Culvert (Inlet Controls 11.73 cfs @ 3.91 fps)

Summary for Pond R12.3: CB

Inflow Area	I =	0.546 ac, 9	5.42% Impe	ervious, Int	flow Depth =	4.65"	for 10-`	Year event
Inflow	=	3.75 cfs @	11.96 hrs,	Volume=	0.211	af		
Outflow	=	3.75 cfs @	11.96 hrs,	Volume=	0.211	af, Atte	en= 0%,	Lag= 0.0 min
Primary	=	3.75 cfs @	11.96 hrs,	Volume=	0.211	af		

Routing by Stor-Ind method, Time Span= 0.00-144.00 hrs, dt= 0.05 hrs Peak Elev= 2,307.92' @ 11.96 hrs

Device	Routing	Invert	Outlet Devices
#1	Primary	2,307.00'	24.0" Round Culvert L= 650.0' CMP, square edge headwall, Ke= 0.500 Inlet / Outlet Invert= 2,307.00' / 2,300.50' S= 0.0100 '/' Cc= 0.900 n= 0.020 Corrugated PE, corrugated interior

Primary OutFlow Max=3.66 cfs @ 11.96 hrs HW=2,307.91' (Free Discharge) -1=Culvert (Barrel Controls 3.66 cfs @ 3.86 fps)

Summary for Pond R2.10: Pipe

 Inflow Area =
 35.108 ac, 17.64% Impervious, Inflow Depth = 2.56" for 10-Year event

 Inflow =
 97.19 cfs @ 12.01 hrs, Volume=
 7.500 af

 Outflow =
 97.19 cfs @ 12.01 hrs, Volume=
 7.500 af, Atten= 0%, Lag= 0.0 min

 Primary =
 97.19 cfs @ 12.01 hrs, Volume=
 7.500 af

Routing by Stor-Ind method, Time Span= 0.00-144.00 hrs, dt= 0.05 hrs / 2 Peak Elev= 2,189.84' @ 12.00 hrs

Device	Routing	Invert	Outlet Devices
#1	Primary	2,184.30'	48.0" Round Culvert L= 180.0' CPP, square edge headwall, Ke= 0.500 Inlet / Outlet Invert= 2,184.30' / 2,182.50' S= 0.0100 '/' Cc= 0.900 n= 0.020 Corrugated PE, corrugated interior

Primary OutFlow Max=95.01 cfs @ 12.01 hrs HW=2,189.70' (Free Discharge) **1=Culvert** (Barrel Controls 95.01 cfs @ 7.56 fps)

Summary for Pond R2.15: Pipe

Inflow Area	=	0.367 ac,10	0.00% Impe	ervious, Inflow D	epth = 4.7	6" for 10-	Year event
Inflow	=	2.54 cfs @	11.96 hrs,	Volume=	0.146 af		
Outflow	=	2.54 cfs @	11.96 hrs,	Volume=	0.146 af,	Atten= 0%,	Lag= 0.0 min
Primary	=	2.54 cfs @	11.96 hrs,	Volume=	0.146 af		-

Routing by Stor-Ind method, Time Span= 0.00-144.00 hrs, dt= 0.05 hrs / 2 Peak Elev= 2,195.94' @ 11.96 hrs

Device	Routing	Invert	Outlet Devices
#1	Primary	2,195.00'	12.0" Round Culvert L= 125.0' CPP, square edge headwall, Ke= 0.500 Inlet / Outlet Invert= 2,195.00' / 2,192.00' S= 0.0240 '/' Cc= 0.900 n= 0.020 Corrugated PE, corrugated interior

Primary OutFlow Max=2.48 cfs @ 11.96 hrs HW=2,195.92' (Free Discharge)

Summary for Pond R2.16: Pipe

Inflow Area	=	0.360 ac, 0	61.20% Impe	ervious,	Inflow Depth =	3.77"	for 10-`	lear event
Inflow	=	2.21 cfs @	11.96 hrs,	Volume	= 0.113	af		
Outflow	=	2.21 cfs @	11.96 hrs,	Volume	= 0.113	af, Atte	n= 0%,	Lag= 0.0 min
Primary	=	2.21 cfs @	11.96 hrs,	Volume	= 0.113	af		

Routing by Stor-Ind method, Time Span= 0.00-144.00 hrs, dt= 0.05 hrs / 2 Peak Elev= 2,250.84' @ 11.96 hrs

Device	Routing	Invert	Outlet Devices
#1	Primary	2,250.00'	12.0" Round Culvert
			L= 325.0' CPP, square edge headwall, Ke= 0.500

08077_Proposed 7 Prepared by The LA Group P.C. HydroCAD® 9.10 s/n 00439 © 2010 HydroCAD Software Solutions LLC

Inlet / Outlet Invert= 2,250.00' / 2,235.00' = 0.0462'/ Cc= 0.900 n= 0.020 Corrugated PE, corrugated interior

Primary OutFlow Max=2.15 cfs @ 11.96 hrs HW=2,250.83' (Free Discharge) **1=Culvert** (Inlet Controls 2.15 cfs @ 3.10 fps)

Summary for Pond R2.3: Road culvert

Inflow Area =	19.135 ac, 12.06% Impervious, Inflow	Depth = 2.51" for 10-Year event
Inflow =	45.77 cfs @ 12.05 hrs, Volume=	3.998 af
Outflow =	45.77 cfs @ 12.05 hrs, Volume=	3.998 af, Atten= 0%, Lag= 0.0 min
Primary =	45.77 cfs @ 12.05 hrs, Volume=	3.998 af

Routing by Stor-Ind method, Time Span= 0.00-144.00 hrs, dt= 0.05 hrs / 2 Peak Elev= 2,273.82' @ 12.05 hrs

Device	Routing	Invert	Outlet Devices
#1	Primary	2,270.00'	36.0" Round Culvert L= $30.0'$ CPP, mitered to conform to fill, Ke= 0.700 Inlet / Outlet Invert= $2,270.00'$ / $2,269.00'$ S= 0.0333 '/' Cc= 0.900 n= 0.020 Corrugated PE, corrugated interior
#2	Primary	2,276.00'	20.0' long x 1.0' breadth Broad-Crested Rectangular Weir Head (feet) 0.20 0.40 0.60 0.80 1.00 1.20 1.40 1.60 1.80 2.00 2.50 3.00 Coef. (English) 2.69 2.72 2.75 2.85 2.98 3.08 3.20 3.28 3.31 3.30 3.31 3.32

Primary OutFlow Max=45.47 cfs @ 12.05 hrs HW=2,273.79' (Free Discharge)

1=Culvert (Inlet Controls 45.47 cfs @ 6.43 fps)

2=Broad-Crested Rectangular Weir (Controls 0.00 cfs)

Summary for Pond R2.5: Road culvert

Inflow A	rea =	22.456 ac,	13.59% Impervious,	Inflow Depth = 2	2.55" for 10-	Year event
Inflow	=	47.71 cfs @	12.10 hrs, Volume	e 4.773 a	af	
Outflow	=	47.71 cfs @	12.10 hrs, Volume	e 4.773 a	af, Atten= 0% ,	Lag= 0.0 min
Primary	=	47.71 cfs @	12.10 hrs, Volume	e 4.773 a	af	

Routing by Stor-Ind method, Time Span= 0.00-144.00 hrs, dt= 0.05 hrs / 2 Peak Elev= 2,233.02' @ 12.10 hrs

Device	Routing	Invert	Outlet Devices
#1	Primary	2,229.00'	36.0" Round Culvert L= 175.0' CPP, mitered to conform to fill, Ke= 0.700 Inlet / Outlet Invert= 2,229.00' / 2,214.00' S= 0.0857 '/' Cc= 0.900 n= 0.020 Corrugated PE, corrugated interior

Primary OutFlow Max=47.57 cfs @ 12.10 hrs HW=2,233.01' (Free Discharge) -1=Culvert (Inlet Controls 47.57 cfs @ 6.73 fps)

Summary for Pond R2.6: Road Culvert

Inflow Area =0.725 ac,8.86% Impervious, Inflow Depth =2.45" for 10-Year eventInflow =3.06 cfs @11.97 hrs, Volume=0.148 afOutflow =3.06 cfs @11.97 hrs, Volume=0.148 af, Atten= 0%, Lag= 0.0 minPrimary =3.06 cfs @11.97 hrs, Volume=0.148 af

Routing by Stor-Ind method, Time Span= 0.00-144.00 hrs, dt= 0.05 hrs / 2 Peak Elev= 2,216.88' @ 11.97 hrs

Device	Routing	Invert	Outlet Devices
#1	Primary	2,216.00'	18.0" Round Culvert L= 30.0' CPP, mitered to conform to fill, Ke= 0.700 Inlet / Outlet Invert= 2,216.00' / 2,215.00' S= 0.0333 '/' Cc= 0.900 n= 0.020 Corrugated PE, corrugated interior

Primary OutFlow Max=2.96 cfs @ 11.97 hrs HW=2,216.87' (Free Discharge)

Summary for Pond R2.7: Road culvert

Inflow Area	a =	22.456 ac,	13.59% Imper	vious, Inflow	Depth = 2.5	5" for 10-`	Year event
Inflow	=	47.71 cfs @	12.10 hrs, V	/olume=	4.773 af		
Outflow	=	47.71 cfs @	12.10 hrs, ∖	/olume=	4.773 af, <i>1</i>	Atten= 0%,	Lag= 0.0 min
Primary	=	47.71 cfs @	12.10 hrs, ∖	/olume=	4.773 af		-

Routing by Stor-Ind method, Time Span= 0.00-144.00 hrs, dt= 0.05 hrs / 2 Peak Elev= 2,218.02' @ 12.10 hrs

Device	Routing	Invert	Outlet Devices
#1	Primary	2,214.00'	36.0" Round Culvert
			L= 900.0' CPP, mitered to conform to fill, Ke= 0.700 Inlet / Outlet Invert= 2,214.00' / 2,189.00' S= 0.0278 '/' Cc= 0.900 n= 0.020 Corrugated PE, corrugated interior

Primary OutFlow Max=47.57 cfs @ 12.10 hrs HW=2,218.01' (Free Discharge) -1=Culvert (Inlet Controls 47.57 cfs @ 6.73 fps)

Summary for Pond R2.8: Road culvert

Inflow Area	a =	5.002 ac, 2	0.72% Imperviou	s, Inflow Depth =	2.09" for 10	-Year event
Inflow	=	22.37 cfs @	11.99 hrs, Volur	ne= 0.870) af	
Outflow	=	22.37 cfs @	11.99 hrs, Volur	ne= 0.870) af, Atten= 0%,	Lag= 0.0 min
Primary	=	22.37 cfs @	11.99 hrs, Volur	ne= 0.870) af	

Routing by Stor-Ind method, Time Span= 0.00-144.00 hrs, dt= 0.05 hrs / 2 Peak Elev= 2,193.16' @ 11.99 hrs

Device	Routing	Invert	Outlet Devices
#1	Primary	2,191.00'	36.0" Round Culvert
			L= 200.0' CPP, mitered to conform to fill, Ke= 0.700

08077_Proposed Prepared by The LA Group P.C. HydroCAD® 9.10 s/n 00439 © 2010 HydroCAD Software Solutions LLC

Inlet / Outlet Invert= 2,191.00' / 2,189.00' = 0.0100 '/ Cc= 0.900n= 0.020 Corrugated PE, corrugated interior

Primary OutFlow Max=21.92 cfs @ 11.99 hrs HW=2,193.13' (Free Discharge) **1=Culvert** (Barrel Controls 21.92 cfs @ 5.73 fps)

Summary for Pond R2.9: Pipe

Inflow Area	a =	30.020 ac,	16.29% Impervious,	Inflow Depth = 2	2.51" for 10-Year event
Inflow	=	75.07 cfs @	12.01 hrs, Volume	e 6.280 a	f
Outflow	=	75.07 cfs @	12.01 hrs, Volume	e 6.280 a	f, Atten= 0%, Lag= 0.0 min
Primary	=	75.07 cfs @	12.01 hrs, Volume)≕ 6.280 a	f

Routing by Stor-Ind method, Time Span= 0.00-144.00 hrs, dt= 0.05 hrs / 2 Peak Elev= 2,195.82' @ 12.01 hrs

Device	Routing	Invert	Outlet Devices
#1	Primary	2,189.00'	36.0" Round Culvert L= 460.0' CPP, square edge headwall, Ke= 0.500 Inlet / Outlet Invert= 2,189.00' / 2,184.40' S= 0.0100 '/' Cc= 0.900 n= 0.013 Corrugated PE, smooth interior

Primary OutFlow Max=73.78 cfs @ 12.01 hrs HW=2,195.59' (Free Discharge) -1=Culvert (Barrel Controls 73.78 cfs @ 10.44 fps)

Summary for Pond R3.2: culvert

Inflow Area	ι =	12.097 ac, 1	4.02% Imperv	vious, Inflow D	epth = 2.55	5" for 10-`	Year event
Inflow	=	41.93 cfs @	12.04 hrs, Vo	olume=	2.570 af		
Outflow	=	41.93 cfs @	12.04 hrs, Vo	olume=	2.570 af, A	Atten= 0%,	Lag= 0.0 min
Primary	=	41.93 cfs @	12.04 hrs, Vo	olume=	2.570 af		-

Routing by Stor-Ind method, Time Span= 0.00-144.00 hrs, dt= 0.05 hrs Peak Elev= 2,215.82' @ 12.04 hrs

Device	Routing	Invert	Outlet Devices
#1	Primary	2,213.00'	42.0" Round Culvert L= 220.0' CPP, mitered to conform to fill, Ke= 0.700 Inlet / Outlet Invert= 2,213.00' / 2,205.00' S= 0.0364 '/' Cc= 0.900 n= 0.020 Corrugated PE, corrugated interior

Primary OutFlow Max=41.25 cfs @ 12.04 hrs HW=2,215.79' (Free Discharge)

Summary for Pond R3.5: CULVERT

Inflow Area	a =	20.668 ac,	16.21% Impervious	s, Inflow Depth =	2.60" for	10-Year event
Inflow	=	35.29 cfs @	12.20 hrs, Volun	ie= 4.486	af	
Outflow	=	35.29 cfs @	12.20 hrs, Volum	1e= 4.486	af, Atten= 0	0%, Lag= 0.0 min
Primary	=	35.29 cfs @	12.20 hrs, Volum	1e= 4.486	af	

08077_Proposed Prepared by The LA Group P.C. HydroCAD® 9.10 s/n 00439 © 2010 HydroCAD Software Solutions LLC

Type II 24-hr 10-Year Rainfall=5.00" Printed 12/9/2011 Page 34

Routing by Stor-Ind method, Time Span= 0.00-144.00 hrs, dt= 0.05 hrs Peak Elev= 2,082.84' @ 12.20 hrs Flood Elev= 2,085.00'

Device	Routing	Invert	Outlet Devices
#1	Primary	2,080.00'	48.0" Round Culvert L= 10.0' CPP, mitered to conform to fill, Ke= 0.700 Inlet / Outlet Invert= 2,080.00' / 2,079.95' S= 0.0050 '/' Cc= 0.900 n= 0.020 Corrugated PE, corrugated interior

Primary OutFlow Max=35.13 cfs @ 12.20 hrs HW=2,082.83' (Free Discharge) -1=Culvert (Barrel Controls 35.13 cfs @ 5.19 fps)

Summary for Pond R3.6: FLOW SPLITTER

Inflow Area	=	20.668 ac, 1	16.21% Impe	ervious, Inflo	ow Depth = 2.	60" for 10-	Year event
Inflow =	=	35.29 cfs @	12.20 hrs,	Volume=	4.486 af		
Outflow =	=	35.29 cfs @	12.20 hrs,	Volume=	4.486 af,	Atten= 0%,	Lag= 0.0 min
Primary =	=	19.37 cfs @	12.20 hrs,	Volume=	4.082 af		
Secondary =	=	15.92 cfs @	12.20 hrs,	Volume=	0.404 af		

Routing by Stor-Ind method, Time Span= 0.00-144.00 hrs, dt= 0.05 hrs Peak Elev= 2,074.11' @ 12.20 hrs Flood Elev= 2,085.00'

Device	Routing	Invert	Outlet Devices
#1	Primary	2,071.00'	24.0" Round PIPE
	-		L= 30.0' CPP, mitered to conform to fill, Ke= 0.700
			Inlet / Outlet Invert= 2,071.00' / 2,070.00' S= 0.0333 '/' Cc= 0.900
			n= 0.020 Corrugated PE, corrugated interior
#2	Secondary	2,072.00'	24.0" Round PIPE
			L= 108.0' CPP, square edge headwall, Ke= 0.500
			Inlet / Outlet Invert= 2,072.00' / 2,068.00' S= 0.0370 '/' Cc= 0.900
			n= 0.020 Corrugated PE, corrugated interior

Primary OutFlow Max=19.32 cfs @ 12.20 hrs HW=2,074.09' (Free Discharge) -1=PIPE (Inlet Controls 19.32 cfs @ 6.15 fps)

Secondary OutFlow Max=15.82 cfs @ 12.20 hrs HW=2,074.09' (Free Discharge) 2=PIPE (Inlet Controls 15.82 cfs @ 5.03 fps)

Summary for Pond R4.1: CULVERT

Inflow Area =2.529 ac, 0.00% Impervious, Inflow Depth =2.20" for 10-Year eventInflow =9.07 cfs @12.00 hrs, Volume=0.463 afOutflow =9.07 cfs @12.00 hrs, Volume=0.463 af, Atten= 0%, Lag= 0.0 minPrimary =9.07 cfs @12.00 hrs, Volume=0.463 af

Routing by Stor-Ind method, Time Span= 0.00-144.00 hrs, dt= 0.05 hrs Peak Elev= 1,991.48' @ 12.00 hrs 08077 Proposed

Prepared by The LA Group P.C.

 Type II 24-hr 10-Year Rainfall=5.00"

 Printed 12/9/2011

 C
 Page 35

Device	Routing	Invert	Outlet Devices
#1	Primary	1,990.00'	24.0" Round Culvert L= 50.0' CPP, mitered to conform to fill, Ke= 0.700 Inlet / Outlet Invert= 1,990.00' / 1,988.00' S= 0.0400 '/' Cc= 0.900 n= 0.020 Corrugated PE, corrugated interior

Primary OutFlow Max=9.02 cfs @ 12.00 hrs HW=1,991.47' (Free Discharge) **1=Culvert** (Inlet Controls 9.02 cfs @ 3.64 fps)

HydroCAD® 9.10 s/n 00439 © 2010 HydroCAD Software Solutions LLC

Summary for Pond R5.1: CULVERT

Inflow A	Area =	8.026 ac,	0.00% Impervious,	Inflow Depth = 2.	20" for 10-Year event
Inflow	=	27.00 cfs @	12.02 hrs, Volume	= 1.470 af	
Outflow	/ =	27.00 cfs @	12.02 hrs, Volume:	= 1.470 af,	Atten= 0%, Lag= 0.0 min
Primary	/ =	27.00 cfs @	12.02 hrs, Volume:	= 1.470 af	

Routing by Stor-Ind method, Time Span= 0.00-144.00 hrs, dt= 0.05 hrs Peak Elev= 1,906.50' @ 12.02 hrs

Device	Routing	Invert	Outlet Devices
#1	Primary	1,904.00'	33.0" Round Culvert L= 50.0' CPP, mitered to conform to fill, Ke= 0.700 Inlet / Outlet Invert= 1,904.00' / 1,902.00' S= 0.0400 '/' Cc= 0.900 n= 0.020 Corrugated PE, corrugated interior

Primary OutFlow Max=26.29 cfs @ 12.02 hrs HW=1,906.45' (Free Discharge) ☐ 1=Culvert (Inlet Controls 26.29 cfs @ 4.70 fps)

Summary for Pond R5.3: CULVERT

Inflow Area	a =	8.026 ac,	0.00% Impervious,	Inflow Depth = 2.	20" for 10-Year event
Inflow	=	25.68 cfs @	12.06 hrs, Volume	= 1.470 af	
Outflow	=	25.68 cfs @	12.06 hrs, Volume	= 1.470 af,	Atten= 0%, Lag= 0.0 min
Primary	=	25.68 cfs @	12.06 hrs, Volume	= 1.470 af	

Routing by Stor-Ind method, Time Span= 0.00-144.00 hrs, dt= 0.05 hrs Peak Elev= 1,839.41' @ 12.06 hrs

Device	Routing	Invert	Outlet Devices
#1	Primary	1,837.00'	33.0" Round Culvert L= 120.0' CPP, mitered to conform to fill, Ke= 0.700 Inlet / Outlet Invert= 1,837.00' / 1,823.00' S= 0.1167 '/' Cc= 0.900 n= 0.020 Corrugated PE, corrugated interior

Primary OutFlow Max=25.37 cfs @ 12.06 hrs HW=1,839.38' (Free Discharge) -1=Culvert (Inlet Controls 25.37 cfs @ 4.64 fps)

Summary for Pond R8.1: CULVERT

Inflow Area =2.715 ac, 28.55% Impervious, Inflow Depth =2.89" for 10-Year eventInflow =10.05 cfs @12.09 hrs, Volume=0.654 afOutflow =10.05 cfs @12.09 hrs, Volume=0.654 af, Atten=0%, Lag=0.0 minPrimary =10.05 cfs @12.09 hrs, Volume=0.654 af

Routing by Stor-Ind method, Time Span= 0.00-144.00 hrs, dt= 0.05 hrs Peak Elev= 2,309.58' @ 12.09 hrs

Device	Routing	Invert	Outlet Devices
#1	Primary	2,308.00'	24.0" Round Culvert L= 275.0' CPP, mitered to conform to fill, Ke= 0.700 Inlet / Outlet Invert= 2,308.00' / 2,304.00' S= 0.0145 '/' Cc= 0.900 n= 0.020 Corrugated PE, corrugated interior
			n= 0.020 Corrugated PE, corrugated interior

Primary OutFlow Max=9.89 cfs @ 12.09 hrs HW=2,309.56' (Free Discharge) -1=Culvert (Inlet Controls 9.89 cfs @ 3.76 fps)

Summary for Pond R8.10: CB

Inflow Area	a =	16.055 ac, 2	7.79% Impervio	us, Inflow Depth	= 2.89"	for 10-Year event
Inflow	=	61.13 cfs @	12.00 hrs, Volu	ime= 3.8	71 af	
Outflow	=	61.13 cfs @	12.00 hrs, Volu	ime= 3.8 ⁻	71 af, Atter	n= 0%, Lag= 0.0 min
Primary	=	61.13 cfs @	12.00 hrs, Volu	ime= 3.8 ⁻	71 af	-

Routing by Stor-Ind method, Time Span= 0.00-144.00 hrs, dt= 0.05 hrs Peak Elev= 1,979.20' @ 12.00 hrs

Device	Routing	Invert	Outlet Devices
#1	Primary	1,976.00'	45.0" Round Culvert L= 765.0' CPP, square edge headwall, Ke= 0.500 Inlet / Outlet Invert= 1,976.00' / 1,899.00' S= 0.1007 '/' Cc= 0.900 n= 0.020 Corrugated PE, corrugated interior

Primary OutFlow Max=60.88 cfs @ 12.00 hrs HW=1,979.19' (Free Discharge) -1=Culvert (Inlet Controls 60.88 cfs @ 6.08 fps)

Summary for Pond R8.12: CULVERT

Inflow Area	a =	5.444 ac,	7.52% Impervious,	Inflow Depth = 2.	36" for 10-Year event
Inflow	=	19.13 cfs @	12.02 hrs, Volume	= 1.073 af	
Outflow	=	19.13 cfs @	12.02 hrs, Volume	= 1.073 af,	Atten= 0%, Lag= 0.0 min
Primary	=	19.13 cfs @	12.02 hrs, Volume	= 1.073 af	

Routing by Stor-Ind method, Time Span= 0.00-144.00 hrs, dt= 0.05 hrs Peak Elev= 1,904.10' @ 12.02 hrs

Device	Routing	Invert	Outlet Devices
#1	Primary	1,902.00'	30.0" Round Culvert
			L= 40.0' CPP, mitered to conform to fill, Ke= 0.700

08077_Proposed7Prepared by The LA Group P.C.7HydroCAD® 9.10 s/n 00439 © 2010 HydroCAD Software Solutions LLC

Inlet / Outlet Invert= 1,902.00' / 1,899.00' = 0.0750' / Cc = 0.900n= 0.020 Corrugated PE, corrugated interior

Primary OutFlow Max=18.62 cfs @ 12.02 hrs HW=1,904.06' (Free Discharge) **1=Culvert** (Inlet Controls 18.62 cfs @ 4.31 fps)

Summary for Pond R8.13: CB

Inflow Area	I =	21.499 ac, 2	2.66% Impervious	, Inflow Depth =	2.76" for	10-Year event
Inflow	=	79.93 cfs @	12.01 hrs, Volum	e= 4.943 a	af	
Outflow	=	79.93 cfs @	12.01 hrs, Volum	e= 4.943 a	af, Atten= (0%, Lag= 0.0 min
Primary	=	79.93 cfs @	12.01 hrs, Volum	e= 4.943 a	af	

Routing by Stor-Ind method, Time Span= 0.00-144.00 hrs, dt= 0.05 hrs Peak Elev= 1,899.72' @ 12.01 hrs

Device	Routing	Invert	Outlet Devices
#1	Primary	1,896.00'	48.0" Round Culvert L= 835.0' CPP, square edge headwall, Ke= 0.500 Inlet / Outlet Invert= 1,896.00' / 1,824.00' S= 0.0862 '/' Cc= 0.900 n= 0.020 Corrugated PE, corrugated interior

Primary OutFlow Max=78.90 cfs @ 12.01 hrs HW=1,899.68' (Free Discharge) -1=Culvert (Inlet Controls 78.90 cfs @ 6.53 fps)

Summary for Pond R8.15: CB

Inflow Area	=	23.740 ac, 2	3.90% Impe	rvious, Inflow De	epth = 2.79	" for 10-ነ	lear event
Inflow	=	90.84 cfs @	12.00 hrs, \	√olume=	5.518 af		
Outflow	=	90.84 cfs @	12.00 hrs, \	√olume=	5.518 af, A	tten= 0%,	Lag= 0.0 min
Primary	=	75.84 cfs @	12.00 hrs, \	√olume=	5.320 af		
Secondary	=	15.00 cfs @	12.00 hrs, \	√olume=	0.199 af		

Routing by Stor-Ind method, Time Span= 0.00-144.00 hrs, dt= 0.05 hrs Peak Elev= 1,824.56' @ 12.00 hrs

Device	Routing	Invert	Outlet Devices
#1	Primary	1,821.00'	48.0" Round Culvert
			L= 65.0° CPP, square edge headwall, Ke= 0.500
			Inlet / Outlet Invert= 1,821.00 / 1,818.00 S= 0.0462 / CC= 0.900
			n= 0.020 Corrugated PE, corrugated interior
#2	Secondary	1,823.00'	36.0" Round Culvert
			L= 50.0' CPP, square edge headwall, Ke= 0.500
			Inlet / Outlet Invert= 1,823.00' / 1,822.00' S= 0.0200 '/' Cc= 0.900 n= 0.020 Corrugated PE, corrugated interior

Primary OutFlow Max=75.75 cfs @ 12.00 hrs HW=1,824.55' (Free Discharge) -1=Culvert (Inlet Controls 75.75 cfs @ 6.42 fps)

Secondary OutFlow Max=14.95 cfs @ 12.00 hrs HW=1,824.55' (Free Discharge) 2=Culvert (Barrel Controls 14.95 cfs @ 5.88 fps)

Summary for Pond R8.3: CULVERT

Inflow Area = 6.659 ac, 31.16% Impervious, Inflow Depth = 2.95" for 10-Year event Inflow 24.95 cfs @ 12.03 hrs. Volume= 1.636 af = 24.95 cfs @ 12.03 hrs, Volume= Outflow 1.636 af, Atten= 0%, Lag= 0.0 min = 24.95 cfs @ 12.03 hrs, Volume= 1.636 af Primary =

Routing by Stor-Ind method, Time Span= 0.00-144.00 hrs, dt= 0.05 hrs Peak Elev= 2,274.14' @ 12.03 hrs

Device	Routing	Invert	Outlet Devices
#1	Primary	2,272.00'	36.0" Round Culvert
	-		L= 50.0' CPP, mitered to conform to fill, Ke= 0.700
			Inlet / Outlet Invert= 2,272.00' / 2,271.00' S= 0.0200 '/' Cc= 0.900
			n= 0.020 Corrugated PE, corrugated interior
#2	Primary	2,274.00'	10.0' long x 30.0' breadth Broad-Crested Rectangular Weir
			Head (feet) 0.20 0.40 0.60 0.80 1.00 1.20 1.40 1.60
			Coef. (English) 2.68 2.70 2.70 2.64 2.63 2.64 2.64 2.63

Primary OutFlow Max=24.45 cfs @ 12.03 hrs HW=2,274.12' (Free Discharge) -1=Culvert (Inlet Controls 23.35 cfs @ 4.37 fps)

-2=Broad-Crested Rectangular Weir (Weir Controls 1.10 cfs @ 0.93 fps)

Summary for Pond R8.5: CULVERT

Inflow Area	a =	8.599 ac, 2	6.37% Impe	ervious,	Inflow Depth =	2.83	" for 10-`	Year event
Inflow	=	29.19 cfs @	12.04 hrs,	Volume	= 2.031	af		
Outflow	=	29.19 cfs @	12.04 hrs,	Volume	= 2.031	af, A	tten= 0%,	Lag= 0.0 min
Primary	=	29.19 cfs @	12.04 hrs,	Volume	= 2.031	af		

Routing by Stor-Ind method, Time Span= 0.00-144.00 hrs, dt= 0.05 hrs Peak Elev= 2,224.26' @ 12.04 hrs

Device	Routing	Invert	Outlet Devices
#1	Primary	2,222.00'	36.0" Round Culvert
	-		L= 50.0' CPP, mitered to conform to fill, Ke= 0.700
			Inlet / Outlet Invert= 2,222.00' / 2,220.00' S= 0.0400 '/' Cc= 0.900
			n= 0.020 Corrugated PE, corrugated interior
#2	Primary	2,224.00'	10.0' long x 30.0' breadth Broad-Crested Rectangular Weir
			Head (feet) 0.20 0.40 0.60 0.80 1.00 1.20 1.40 1.60
			Coef. (English) 2.68 2.70 2.70 2.64 2.63 2.64 2.64 2.63

Primary OutFlow Max=28.78 cfs @ 12.04 hrs HW=2,224.24' (Free Discharge)

-1=Culvert (Inlet Controls 25.53 cfs @ 4.50 fps)

-2=Broad-Crested Rectangular Weir (Weir Controls 3.25 cfs @ 1.33 fps)

Summary for Pond R8.7: CULVERT

Inflow Area =14.109 ac, 22.15% Impervious, Inflow Depth =2.75" for 10-Year eventInflow =50.10 cfs @12.01 hrs, Volume=3.236 afOutflow =50.10 cfs @12.01 hrs, Volume=3.236 afPrimary =50.10 cfs @12.01 hrs, Volume=3.236 af

Routing by Stor-Ind method, Time Span= 0.00-144.00 hrs, dt= 0.05 hrs Peak Elev= 2,181.23' @ 12.01 hrs

Device	Routing	Invert	Outlet Devices
#1	Primary	2,178.00'	42.0" Round Culvert L= 200.0' CPP, mitered to conform to fill, Ke= 0.700 Inlet / Outlet Invert= 2,178.00' / 2,163.00' S= 0.0750 '/' Cc= 0.900 n= 0.020 Corrugated PE, corrugated interior

Primary OutFlow Max=49.01 cfs @ 12.01 hrs HW=2,181.17' (Free Discharge) -1=Culvert (Inlet Controls 49.01 cfs @ 5.35 fps)

Summary for Pond R8.8: CB

Inflow Area	1 =	14.831 ac, 2	4.61% Imperv	vious, Inflow De	$pth = 2.8^{\circ}$	1" for 10-`	Year event
Inflow	=	54.15 cfs @	12.01 hrs, Vo	olume=	3.475 af		
Outflow	=	54.15 cfs @	12.01 hrs, Vo	olume=	3.475 af, /	Atten= 0%,	Lag= 0.0 min
Primary	=	54.15 cfs @	12.01 hrs, Vo	olume=	3.475 af		-

Routing by Stor-Ind method, Time Span= 0.00-144.00 hrs, dt= 0.05 hrs Peak Elev= 2,163.10' @ 12.01 hrs

Device	Routing	Invert	Outlet Devices
#1	Primary	2,160.00'	42.0" Round Culvert L= 880.0' CPP, square edge headwall, Ke= 0.500 Inlet / Outlet Invert= 2,160.00' / 2,077.00' S= 0.0943 '/' Cc= 0.900 n= 0.020 Corrugated PE, corrugated interior

Primary OutFlow Max=53.30 cfs @ 12.01 hrs HW=2,163.07' (Free Discharge) -1=Culvert (Inlet Controls 53.30 cfs @ 5.96 fps)

Summary for Pond R8.9: CB

Inflow Area	a =	15.452 ac, 2	6.26% Imperviou	us, Inflow Dep	oth = 2.85"	for 10-1	ear event
Inflow	=	57.66 cfs @	12.00 hrs, Volu	me= 3	3.676 af		
Outflow	=	57.66 cfs @	12.00 hrs, Volu	me= 3	3.676 af, Atte	en= 0%,	Lag= 0.0 min
Primary	=	57.66 cfs @	12.00 hrs, Volu	me= 3	3.676 af		

Routing by Stor-Ind method, Time Span= 0.00-144.00 hrs, dt= 0.05 hrs Peak Elev= 2,077.27' @ 12.00 hrs

Device	Routing	Invert	Outlet Devices
#1	Primary	2,074.00'	42.0" Round Culvert
			L= 900.0' CPP, square edge headwall, Ke= 0.500

Inlet / Outlet Invert= 2,074.00' / 1,979.00' = 0.1056' / Cc = 0.900n= 0.020 Corrugated PE, corrugated interior

Primary OutFlow Max=57.12 cfs @ 12.00 hrs HW=2,077.25' (Free Discharge) **1=Culvert** (Inlet Controls 57.12 cfs @ 6.13 fps)

Summary for Pond R9.1: Road Culvert

Inflow Area	a =	4.151 ac, 2	1.51% Impervious,	Inflow Depth = 2.	.71" for 10-Year event
Inflow	=	13.49 cfs @	12.12 hrs, Volume	e 0.938 af	
Outflow	=	13.49 cfs @	12.12 hrs, Volume	e 0.938 af	, Atten= 0%, Lag= 0.0 min
Primary	=	13.49 cfs @	12.12 hrs, Volume)⇒ 0.938 af	

Routing by Stor-Ind method, Time Span= 0.00-144.00 hrs, dt= 0.05 hrs Peak Elev= 1,818.67' @ 12.12 hrs

Device	Routing	Invert	Outlet Devices
#1	Primary	1,817.00'	30.0" Round Culvert L= 40.0' CPP, mitered to conform to fill, Ke= 0.700 Inlet / Outlet Invert= 1,817.00' / 1,816.00' S= 0.0250 '/' Cc= 0.900 n= 0.020 Corrugated PE, corrugated interior
#2	Primary	1,820.00'	40.0' long x 2.0' breadth Broad-Crested Rectangular Weir Head (feet) 0.20 0.40 0.60 0.80 1.00 1.20 1.40 1.60 1.80 2.00 2.50 3.00 3.50 Coef. (English) 2.54 2.61 2.61 2.60 2.66 2.70 2.77 2.89 2.88 2.85 3.07 3.20 3.32

Primary OutFlow Max=13.19 cfs @ 12.12 hrs HW=1,818.64' (Free Discharge)

1=Culvert (Inlet Controls 13.19 cfs @ 3.85 fps)

2=Broad-Crested Rectangular Weir (Controls 0.00 cfs)

Summary for Pond R9.11: Culvert

Inflow Area	a =	19.480 ac, 2	21.84% Impe	ervious,	Inflow Depth >	2.86"	for 10-	Year event	
Inflow	=	3.29 cfs @	13.98 hrs,	Volume:	= 4.643	af			
Outflow	=	3.29 cfs @	13.98 hrs,	Volume:	= 4.643	af, Att	en= 0%,	Lag= 0.0 r	nin
Primary	=	3.29 cfs @	13.98 hrs,	Volume	= 4.643	af		•	

Routing by Stor-Ind method, Time Span= 0.00-144.00 hrs, dt= 0.05 hrs Peak Elev= 1,658.67' @ 13.98 hrs

Device	Routing	Invert	Outlet Devices
#1	Primary	1,658.00'	36.0" Round Culvert L= 50.0' CPP, end-section conforming to fill, Ke= 0.500 Inlet / Outlet Invert= $1,658.00' / 1,656.00' S= 0.0400 '/' Cc= 0.900$ n= 0.020 Corrugated PE, corrugated interior

Primary OutFlow Max=3.29 cfs @ 13.98 hrs HW=1,658.67' (Free Discharge) -1=Culvert (Inlet Controls 3.29 cfs @ 2.79 fps)

Summary for Pond R9.12: CB

Inflow	=	15.00 cfs @	12.00 hrs,	Volume=	0.199 af		
Outflow	=	15.00 cfs @	12.00 hrs,	Volume=	0.199 af,	Atten= 0%, I	Lag= 0.0 min
Primary	=	15.00 cfs @	12.00 hrs,	Volume=	0.199 af		

Routing by Stor-Ind method, Time Span= 0.00-144.00 hrs, dt= 0.05 hrs Peak Elev= 1,816.62' @ 12.00 hrs

Device	Routing	Invert	Outlet Devices
#1	Primary	1,815.00'	42.0" Round Culvert L= 90.0' CPP, square edge headwall, Ke= 0.500 Inlet / Outlet Invert= 1,815.00' / 1,814.10' S= 0.0100 '/' Cc= 0.900 n= 0.020 Corrugated PE, corrugated interior

Primary OutFlow Max=14.94 cfs @ 12.00 hrs HW=1,816.62' (Free Discharge) **1=Culvert** (Barrel Controls 14.94 cfs @ 5.05 fps)

Summary for Pond R9.13: PIPE

Inflow	=	15.00 cfs @	12.00 hrs,	Volume=	0.199 af
Outflow	=	15.00 cfs @	12.00 hrs,	Volume=	0.199 af, Atten= 0%, Lag= 0.0 min
Primary	=	15.00 cfs @	12.00 hrs,	Volume=	0.199 af

Routing by Stor-Ind method, Time Span= 0.00-144.00 hrs, dt= 0.05 hrs / 2 Peak Elev= 1,815.57' @ 12.00 hrs

Device	Routing	Invert	Outlet Devices
#1	Primary	1,814.00'	42.0" Round PIPE L= 220.0' CPP, square edge headwall, Ke= 0.500 Inlet / Outlet Invert= 1,814.00' / 1,811.80' S= 0.0100 '/' Cc= 0.900 n= 0.020 Corrugated PE, corrugated interior

Primary OutFlow Max=14.95 cfs @ 12.00 hrs HW=1,815.57' (Free Discharge) 1=PIPE (Barrel Controls 14.95 cfs @ 5.27 fps)

Summary for Pond R9.14: PIPE

Inflow	=	15.00 cfs @	12.00 hrs,	Volume=	0.199 af		
Outflow	=	15.00 cfs @	12.00 hrs,	Volume=	0.199 af,	Atten= 0%,	Lag= 0.0 min
Primary	=	15.00 cfs @	12.00 hrs,	Volume=	0.199 af		

Routing by Stor-Ind method, Time Span= 0.00-144.00 hrs, dt= 0.05 hrs / 2 Peak Elev= 1,813.37' @ 12.00 hrs

Device	Routing	Invert	Outlet Devices
#1	Primary	1,811.80'	42.0" Round PIPE
			L= 250.0' CPP, square edge headwall, Ke= 0.500
			Inlet / Outlet Invert= 1,811.80' / 1,809.30' S= 0.0100 '/' Cc= 0.900
			n= 0.020 Corrugated PE, corrugated interior

Primary OutFlow Max=14.94 cfs @ 12.00 hrs HW=1,813.36' (Free Discharge) **1=PIPE** (Barrel Controls 14.94 cfs @ 5.29 fps)

Summary for Pond R9.15: PIPE

Inflow	=	15.00 cfs @	12.00 hrs,	Volume=	0.199 af		
Outflow	=	15.00 cfs @	12.00 hrs,	Volume=	0.199 af,	Atten= 0%,	Lag= 0.0 min
Primary	=	15.00 cfs @	12.00 hrs,	Volume=	0.199 af		

Routing by Stor-Ind method, Time Span= 0.00-144.00 hrs, dt= 0.05 hrs / 2 Peak Elev= 1,810.87' @ 12.00 hrs

Device	Routing	Invert	Outlet Devices
#1	Primary	1,809.30'	42.0" Round PIPE L= 240.0' CPP, square edge headwall, Ke= 0.500 Inlet / Outlet Invert= 1,809.30' / 1,806.90' S= 0.0100 '/' Cc= 0.900 n= 0.020 Corrugated PE, corrugated interior

Primary OutFlow Max=14.94 cfs @ 12.00 hrs HW=1,810.86' (Free Discharge) T=PIPE (Barrel Controls 14.94 cfs @ 5.28 fps)

Summary for Pond R9.16: MH

Inflow	=	15.00 cfs @	12.00 hrs, Volume=	0.199 af	
Outflow	=	15.00 cfs @	12.00 hrs, Volume=	0.199 af, Atten= 0%, Lag= 0.0 n	nin
Primary	=	15.00 cfs @	12.00 hrs, Volume=	0.199 af	

Routing by Stor-Ind method, Time Span= 0.00-144.00 hrs, dt= 0.05 hrs Peak Elev= 1,808.41' @ 12.00 hrs

Device	Routing	Invert	Outlet Devices
#1	Primary	1,806.90'	36.0" Round Culvert
	-		L= 200.0' CPP, square edge headwall, Ke= 0.500 Inlet / Outlet Invert= 1,806.90' / 1,804.90' S= 0.0100 '/' Cc= 0.900
			n= 0.013 Corrugated PE, smooth interior

Primary OutFlow Max=14.95 cfs @ 12.00 hrs HW=1,808.41' (Free Discharge) -1=Culvert (Inlet Controls 14.95 cfs @ 4.19 fps)

Summary for Pond R9.3: Culvert

Inflow Are	a =	11.891 ac, 2	25.97% Impervious,	Inflow Depth =	3.03" for 10-	-Year event
Inflow	=	51.81 cfs @	12.00 hrs, Volume	e 3.003 a	af	
Outflow	=	51.81 cfs @	12.00 hrs, Volume	e= 3.003 a	af, Atten= 0%,	Lag= 0.0 min
Primary	=	51.81 cfs @	12.00 hrs, Volume	e= 3.003 a	af	-

Routing by Stor-Ind method, Time Span= 0.00-144.00 hrs, dt= 0.05 hrs Peak Elev= 1,774.74' @ 12.00 hrs 08077 Proposed

Prepared by The LA Group P.C.

 Type II 24-hr 10-Year Rainfall=5.00"

 Printed 12/9/2011

 C
 Page 43

TYUIUCAD® 9.10 S	5/11 00439	© 201	<u>10 H</u>	iyai	rou/	AD.	Software Solutions LL	C

Device	Routing	Invert	Outlet Devices
#1	Primary	1,772.00'	48.0" Round Culvert
			L= 40.0' CPP, end-section conforming to fill, Ke= 0.500
			Inlet / Outlet Invert= 1,772.00' / 1,770.00' S= 0.0500 '/' Cc= 0.900
			n= 0.020 Corrugated PE, corrugated interior

Primary OutFlow Max=51.64 cfs @ 12.00 hrs HW=1,774.74' (Free Discharge) -1=Culvert (Inlet Controls 51.64 cfs @ 5.63 fps)

Summary for Pond R9.5: Culvert

Inflow Area	a =	16.238 ac, 2	4.71% Impe	ervious,	Inflow Depth =	2.94	4" for 10-`	Year event
Inflow	=	66.99 cfs @	12.01 hrs,	Volume	= 3.985	af		
Outflow	=	66.99 cfs @	12.01 hrs,	Volume	= 3.985	af, A	Atten= 0%,	Lag= 0.0 min
Primary	=	66.99 cfs @	12.01 hrs,	Volume	= 3.985	af		

Routing by Stor-Ind method, Time Span= 0.00-144.00 hrs, dt= 0.05 hrs Peak Elev= 1,717.02' @ 12.01 hrs

Device	Routing	Invert	Outlet Devices
#1	Primary	1,714.00'	54.0" Round Culvert L= $60.0'$ CPP, end-section conforming to fill, Ke= 0.500 Inlet / Outlet Invert= $1,714.00' / 1,710.00'$ S= $0.0667 '/'$ Cc= 0.900 n= 0.020 Corrugated PE, corrugated interior

Primary OutFlow Max=66.03 cfs @ 12.01 hrs HW=1,716.99' (Free Discharge) **1=Culvert** (Inlet Controls 66.03 cfs @ 5.89 fps)

Summary for Pond R9.6: Culvert

Inflow Area	I =	1.294 ac,	18.82% Imper	rvious, Inflow De	pth = 2.69"	for 10-`	Year event
Inflow	=	5.21 cfs @	12.00 hrs, \	/olume=	0.290 af		
Outflow	=	5.21 cfs @	12.00 hrs, \	/olume=	0.290 af, Att	en= 0%,	Lag= 0.0 min
Primary	=	5.21 cfs @	12.00 hrs, \	/olume=	0.290 af		

Routing by Stor-Ind method, Time Span= 0.00-144.00 hrs, dt= 0.05 hrs Peak Elev= 1,685.14' @ 12.00 hrs

Device	Routing	Invert	Outlet Devices
#1	Primary	1,684.00'	18.0" Round Culvert L= 100.0' CPP, end-section conforming to fill, Ke= 0.500 Inlet / Outlet Invert= $1,684.00' / 1,682.00' S = 0.0200 '/' Cc= 0.900$ n= 0.020 Corrugated PE, corrugated interior

Primary OutFlow Max=5.20 cfs @ 12.00 hrs HW=1,685.13' (Free Discharge)

Summary for Pond R9.8: culvert

 Inflow Area =
 2.870 ac,
 4.48% Impervious, Inflow Depth =
 2.36" for 10-Year event

 Inflow =
 11.59 cfs @
 11.98 hrs, Volume=
 0.565 af

 Outflow =
 11.59 cfs @
 11.98 hrs, Volume=
 0.565 af, Atten= 0%, Lag= 0.0 min

 Primary =
 11.59 cfs @
 11.98 hrs, Volume=
 0.565 af

Routing by Stor-Ind method, Time Span= 0.00-144.00 hrs, dt= 0.05 hrs Peak Elev= 1,687.60' @ 11.98 hrs

Device	Routing	Invert	Outlet Devices
#1	Primary	1,686.00'	24.0" Round Culvert L= 40.0' CPP, end-section conforming to fill, Ke= 0.500 Inlet / Outlet Invert= 1,686.00' / 1,685.00' S= 0.0250 '/' Cc= 0.900 n= 0.020 Corrugated PE, corrugated interior

Primary OutFlow Max=11.15 cfs @ 11.98 hrs HW=1,687.56' (Free Discharge) -1=Culvert (Inlet Controls 11.15 cfs @ 4.25 fps)

Pond Summaries 1, 10 & 100-yr Storm Events

Summary for Pond 1.1P: Pond 1.1

Inflow /	Area =	9.950 ac, 1	4.75% Impervious,	Inflow Depth = $^{\prime}$	1.08" for 1-Yea	r event
Inflow	=	17.16 cfs @	12.00 hrs, Volume	e 0.899 a	ıf	
Outflov	v =	0.52 cfs @	15.61 hrs, Volume	e 0.899 a	If, Atten= 97%, I	_ag= 216.4 min
Primar	y =	0.52 cfs @	15.61 hrs, Volume	e= 0.899 a	ıf	-

Routing by Stor-Ind method, Time Span= 0.00-144.00 hrs, dt= 0.05 hrs Starting Elev= 2,158.50' Surf.Area= 4,792 sf Storage= 6,889 cf Peak Elev= 2,161.63' @ 15.61 hrs Surf.Area= 11,184 sf Storage= 31,603 cf (24,714 cf above start)

Plug-Flow detention time= 1,518.4 min calculated for 0.740 af (82% of inflow) Center-of-Mass det. time= 1,192.6 min (2,046.2 - 853.6)

Volume	Invert	Avail.Sto	rage Storage	Description			
#1	2,156.00'	125,35	59 cf Custon	n Stage Data (Pi	rismatic)Listed below (Recalc)		
Elevation	Su	urf.Area	Inc.Store	Cum.Store			
2 156 00							
2,150.00		90Z	4 722	0 4 722			
2,150.00		7 673	4,733	4,733			
2,100.00		11 082	19 655	35 802			
2,102.00		16 663	28 645	64 537			
2,104.00		21 746	38 409	102 946			
2.167.00		23.079	22,413	125.359			
Device I	Routing	Invert	Outlet Device	es .			
#1 I	Primary	2,158.50'	24.0" Round L= 50.0' CP Inlet / Outlet n= 0.020 Co	f Culvert P, square edge I Invert= 2,158.50 ¹ rrugated PE, cor	neadwall, Ke= 0.500 ' / 2,157.65' S= 0.0170 '/' Cc= 0.900 rugated interior		
#2 I	Device 1	2,158.50'	2.0" Vert. Or	ifice/Grate C=	0.600		
#3 I	Device 1	2,161.25'	6.0" Vert. Or	ifice/Grate C=	0.600		
#4 I	Device 1	2,163.00'	24.0" x 24.0" Limited to we	Horiz. Orifice/C	Grate C= 0.600 ads		
#5 I	Primary	2,164.75'	25.0' long x Head (feet) (2.50 3.00 Coef. (Englis) 3.30 3.31 3.	1.0' breadth Br 0.20 0.40 0.60 h) 2.69 2.72 2. 32	oad-Crested Rectangular Weir 0.80 1.00 1.20 1.40 1.60 1.80 2.00 75 2.85 2.98 3.08 3.20 3.28 3.31		
Primary C 1=Culv 1=2=C -3=C -3=C -5=Broa	Primary OutFlow Max=0.52 cfs @ 15.61 hrs HW=2,161.63' (Free Discharge) 1=Culvert (Passes 0.52 cfs of 20.57 cfs potential flow) 2=Orifice/Grate (Orifice Controls 0.18 cfs @ 8.40 fps) 3=Orifice/Grate (Orifice Controls 0.34 cfs @ 2.10 fps) 4=Orifice/Grate (Controls 0.00 cfs) 5=Broad-Crested Rectangular Weir (Controls 0.00 cfs)						

Summary for Pond 2.1P: Dry Swale

Inflow Area	=	6.302 ac,	9.60% Impervious,	Inflow Depth =	0.96" fo	r 1-Year event
Inflow	=	7.42 cfs @	12.08 hrs, Volume	= 0.505	af	
Outflow	=	4.18 cfs @	12.24 hrs, Volume	= 0.505	af, Atten=	44%, Lag= 9.1 min
Primary	=	4.18 cfs @	12.24 hrs, Volume	= 0.505	af	

Routing by Stor-Ind method, Time Span= 0.00-144.00 hrs, dt= 0.05 hrs / 2 Peak Elev= 2,302.09' @ 12.24 hrs Surf.Area= 8,031 sf Storage= 6,373 cf

Plug-Flow detention time= 324.4 min calculated for 0.504 af (100% of inflow) Center-of-Mass det. time= 325.0 min (1,193.0 - 867.9)

Volume	Inv	ert Avai	I.Storage	Storag	e Description	
#1	2,297.0	00'	460 cf	grave	l underdrain (Pris	smatic)Listed below (Recalc)
				1,150	cf Overall x 40.09	% Voids
#2	2,298.0	00'	431 cf	Filter	Media (Prismatic	;) Listed below (Recalc)
				2,875	cf Overall x 15.09	% Voids
#3	2,300.5	50'	8,050 cf	Surfac	ce Storage (Prisr	natic)Listed below (Recalc)
			8,941 cf	Total A	Available Storage	
Elevatior	n	Surf.Area	In	c.Store	Cum.Store	
(feet))	(sq-ft)	(cub	oic-feet)	(cubic-feet)	
2.297.00)	1.150		0		
2,298.00)	1,150		1,150	1,150	
,				,		
Elevatior	n	Surf.Area	In	c.Store	Cum.Store	
(feet))	(sq-ft)	(cub	oic-feet)	(cubic-feet)	
2,298.00)	1,150		0	0	
2,300.50)	1,150		2,875	2,875	
				.		
Elevation	1	Surf.Area	In	c.Store	Cum.Store	
(feet		(sq-ft)	(CUL	pic-feet)	(cubic-feet)	
2,300.50)	1,150		0	0	
2,302.50)	6,900		8,050	8,050	
Device	Routing	Inv	vert Ou	tlet Devic	ces	
#1	Primary	2,301	.85' 12.	0' long	x 0.5' breadth Br	oad-Crested Rectangular Weir
	-		He	ad (feet)	0.20 0.40 0.60	0.80 1.00
			Co	ef. (Engli	sh) 2.80 2.92 3.	.08 3.30 3.32
#2	Primary	2,297	.00' 0.5	00 in/hr	Exfiltration over	Surface area
Duine		Max 440	-t- @ 10			

Primary OutFlow Max=4.10 cfs @ 12.24 hrs HW=2,302.09' (Free Discharge) 1=Broad-Crested Rectangular Weir (Weir Controls 4.01 cfs @ 1.39 fps) 2=Exfiltration (Exfiltration Controls 0.09 cfs)

Summary for Pond 2.4P: Dry Swale

Inflow Area	=	5.002 ac, 2	0.72% Impervious,	Inflow Depth =	1.16" for	1-Year event
Inflow	=	10.05 cfs @	11.98 hrs, Volume)= 0.482	af	
Outflow	=	4.29 cfs @	12.09 hrs, Volume)= 0.482	af, Atten=	57%, Lag= 7.0 min
Primary	=	4.18 cfs @	12.09 hrs, Volume)= 0.218	af	
Secondary	=	0.11 cfs @	12.09 hrs, Volume	∋= 0.265	af	

Routing by Stor-Ind method, Time Span= 0.00-144.00 hrs, dt= 0.05 hrs / 2 Peak Elev= 2,191.65' @ 12.09 hrs Surf.Area= 9,353 sf Storage= 7,615 cf

Plug-Flow detention time= 456.0 min calculated for 0.482 af (100% of inflow) Center-of-Mass det. time= 459.4 min (1,307.1 - 847.7)

Volume	Inve	rt Avail.Sto	orage	Storage D	escription	
#1	2,186.50)' 7	20 cf	Stone Un	derdrain (Pris	smatic)Listed below (Recalc)
	0 407 54		(1,800 cf C	overall x 40.09	% Voids
#2	2,187.50)' 6	75 cf	Filter Me	dia (Prismatic	Listed below (Recalc)
#2	2 100 00	יר 9.4	00 cf	4,500 CI C	Storage (Prise	% VOIDS natic) istad balaw (Pacala)
#3	2,190.00	0.7	00 Cl	Total Ava	ilabla Storago	
		5,7	90 01	TUIAI AVA	liable Stolage	
Elevation	S	Surf.Area	Inc.	Store	Cum.Store	
(feet)		(sq-ft)	(cubic	-feet)	(cubic-feet)	
2,186.50		1,800		0	0	
2,187.50		1,800		1,800	1,800	
Elevation	c	Surf Aroo	Inc	Store	Cum Store	
	,	Sun Area	(cubic	Slure	(cubic-feet)	
2 1 97 50		1 900		0		
2,107.50		1,800		4 500	4 500	
2,100.00		1,000		1,000	4,000	
Elevation	e e	Surf.Area	Inc.	Store	Cum.Store	
(feet)		(sq-ft)	(cubic	-feet)	(cubic-feet)	
2,190.00		1,800		0	0	
2,192.00		6,600	4	8,400	8,400	
Device F	Routing	Invert	Outle	t Devices		
#1 F	Primary	2,191.50'	18.0"	' Horiz. Or	ifice/Grate X	3.00 C= 0.600
			Limite	ed to weir	flow at low hea	ads
#2 F	Primary	2,191.50'	10.0'	long x 1.	0' breadth Br	oad-Crested Rectangular Weir
			Head	I (teet) 0.2	20 0.40 0.60	0.80 1.00 1.20 1.40 1.60 1.80 2.00
			2.50 Coof	3.00 (English)	260 272 2	75 2 85 2 08 3 08 3 20 3 28 3 31
			3.30	3.31 3.32	∠.UJ ∠.IZ Z.)	10 2.00 2.90 3.00 3.20 3.20 3.31
#3 \$	Secondar	v 2.186.50'	0.500) in/hr Exf	iltration over	Surface area
		, _,				

Primary OutFlow Max=4.02 cfs @ 12.09 hrs HW=2,191.64' (Free Discharge) -1=Orifice/Grate (Weir Controls 2.54 cfs @ 1.24 fps) -2=Broad-Crested Rectangular Weir (Weir Controls 1.48 cfs @ 1.02 fps)

Secondary OutFlow Max=0.11 cfs @ 12.09 hrs HW=2,191.64' (Free Discharge) **3=Exfiltration** (Exfiltration Controls 0.11 cfs)

Summary for Pond 2.6P: Dry Swale

Inflow Area	a =	3.914 ac, 1	1.46% Impervious,	Inflow Depth =	1.02" for	1-Year event
Inflow	=	5.70 cfs @	12.04 hrs, Volume	⊭ 0.331 a	af	
Outflow	=	0.24 cfs @	14.79 hrs, Volume	e 0.331 a	af, Atten= 9	96%, Lag= 165.3 min
Primary	=	0.24 cfs @	14.79 hrs, Volume	⊭ 0.331 a	af	-

Routing by Stor-Ind method, Time Span= 0.00-144.00 hrs, dt= 0.05 hrs / 2 Peak Elev= 2,422.02' @ 14.79 hrs Surf.Area= 11,216 sf Storage= 8,550 cf

Plug-Flow detention time= 771.6 min calculated for 0.331 af (100% of inflow) Center-of-Mass det. time= 771.4 min (1,632.1 - 860.7)

Volume	Inve	ert Ava	il.Storage	e Storag	ge Des	scription	
#1	2,417.0)0'	850 c	f Stone	Unde	erdrain (Pri	smatic)Listed below (Recalc)
#2	2 / 18 (יחו	707 c	2,125 f filtor i	ct Ov modia	erall x 40.0 ^o	% Voids N isted below (Recalc)
#2	2,410.0	0	1910	5,313	cf Ov	erall x 15.0°	% Voids
#3	2,420.5	50'	10,625 c	f surfa	ce sto	rage (Prisn	natic)Listed below (Recalc)
			12,272 c	f Total	Availa	ble Storage	
Elevation		Surf.Area	I	nc.Store		Cum.Store	
(feet)		(sq-ft)	(cu	bic-feet)		(cubic-feet)	
2,417.00		2,125		0		0	
2,418.00		2,125		2,125		2,125	
Elevation		Surf.Area	I	nc.Store		Cum.Store	
(feet)		(sq-ft)	(cu	bic-feet)		(cubic-feet)	
2,418.00		2,125		0		0	
2,420.50		2,125		5,313		5,313	
Elevation		Surf.Area	I	nc.Store		Cum.Store	
(feet)		(sq-ft)	(cu	bic-feet)		(cubic-feet)	
2,420.50		2,125		0		0	
2,422.50		8,500		10,625		10,625	
Device I	Routing	Ir	nvert Ou	utlet Devi	ces		
#1 F	Primary	2,422	2.00' 10	.0' long	x 1.0'	breadth Br	oad-Crested Rectangular Weir
			He	ead (feet)	0.20	0.40 0.60	0.80 1.00 1.20 1.40 1.60 1.80 2.00
			2.	50 3.00			
			Co	pet. (Engl	ish) 2	.69 2.72 2.	75 2.85 2.98 3.08 3.20 3.28 3.31
# 2 I	Drimory	0 44-	3. 7 00' 0	5U 3.31 500 in/h-≖	3.3Z	nation aver	Surface area
#∠ I	-mary	∠,41	U .:	buu in/nr		ration over	Surrace area

Primary OutFlow Max=0.20 cfs @ 14.79 hrs HW=2,422.02' (Free Discharge) 1=Broad-Crested Rectangular Weir (Weir Controls 0.07 cfs @ 0.37 fps) 2=Exfiltration (Exfiltration Controls 0.13 cfs)

Summary for Pond P1.2: BIORETENTION

Inflow Area	ι =	2.022 ac, 2	7.06% Impervic	ous, Inflow De	pth = 1.37"	for 1-Year e	event
Inflow	=	3.92 cfs @	11.99 hrs, Vol	ume=	0.232 af		
Outflow	=	0.15 cfs @	14.06 hrs, Vol	ume=	0.232 af, Atte	en= 96%, Lag	g= 124.4 min
Primary	=	0.15 cfs @	14.06 hrs, Vol	ume=	0.232 af		-

Routing by Stor-Ind method, Time Span= 0.00-144.00 hrs, dt= 0.05 hrs / 2 Peak Elev= 2,214.20' @ 14.06 hrs Surf.Area= 13,312 sf Storage= 5,266 cf

Plug-Flow detention time= 454.1 min calculated for 0.231 af (100% of inflow) Center-of-Mass det. time= 454.3 min (1,261.0 - 806.6)

Volume	Inve	ert Ava	ail.Storag	e Stora	ge Description			
#1	2,209.0)0'	1,758	cf stone 4,394	cf Overall x 40.09	matic)Listed below (Recal % Voids	c)	
#2	2,210.0	00'	2,636	cf filter 17,57	media (Prismatic) 6 cf Overall x 15.0)Listed below (Recalc) 0% Voids		
#3	2,214.0	00'	10,119	cf surfa	ce storage (Prism	natic)Listed below (Recalc))	
			14,513	cf Total	Available Storage			
Elevation	ņ	Surf.Area		Inc.Store	Cum.Store			
(feet)	(sq-ft)	(CI	ubic-feet)	(cubic-feet)			
2,209.00)	4,394		0	0			
2,210.00	0	4,394		4,394	4,394			
Elevatior	า	Surf.Area		Inc.Store	Cum.Store			
(feet)	(sq-ft)	(Cl	ubic-feet)	(cubic-feet)			
2,210.00)	4,394		0	0			
2,214.00)	4,394		17,576	17,576			
Elevatior	า	Surf.Area		Inc.Store	Cum.Store			
(feet)	(sq-ft)	(CI	ubic-feet)	(cubic-feet)			
2,214.00)	4,394		0	0			
2,216.00)	5,725		10,119	10,119			
Device	Routing	Ir	nvert O	utlet Devi	ces			
#1	Primary	2,209	9.00' 1 8	8.0" Rou	nd Culvert			
			Ŀ	= 100.0'	CPP, square edge	headwall, Ke= 0.500	_	
			In	let / Outle	t Invert= 2,209.00	'/2,208.50' S= 0.0050 '/'	Cc = 0.900	
<i>#</i> 0		0.00	n: • • • •	= 0.020 C	orrugated PE, cor	rugated interior		
#Z #2	Dovice 1	2,20	9.00 0 . 4.50' 6 .	.500 IN/N		Surface area		
#3	Device I	۷,۷۱۷	+.50 6 . Li	imited to v	veir flow at low hea	= 0.000 ads		
#4	Primary	2,21	5.50' 2 9 H	5.0' long ead (feet)	' long x 1.0' breadth Broad-Crested Rectangular Weir d (feet) 0.20 0.40 0.60 0.80 1.00 1.20 1.40 1.60 1.80 2.00			

08077_Proposed Prepared by The LA Group P.C. HydroCAD® 9.10 s/n 00439 © 2010 HydroCAD Software Solutions LLC

Type II 24-hr 1-Year Rainfall=3.00" Printed 12/9/2011 Page 6

2.50 3.00 Coef. (English) 2.69 2.72 2.75 2.85 2.98 3.08 3.20 3.28 3.31 3.30 3.31 3.32

Primary OutFlow Max=0.15 cfs @ 14.06 hrs HW=2,214.20' (Free Discharge)

1=Culvert (Passes 0.00 cfs of 12.03 cfs potential flow)

1-3=Orifice/Grate (Controls 0.00 cfs)

-2=Exfiltration (Exfiltration Controls 0.15 cfs)

-4=Broad-Crested Rectangular Weir (Controls 0.00 cfs)

Summary for Pond P11.1: P-1

Inflow A	Area =	24.870 ac, 1	8.86% Impervious,	Inflow Depth =	0.82" for	1-Year event
Inflow	=	19.96 cfs @	11.98 hrs, Volume	= 1.708 a	af	
Outflov	v =	0.91 cfs @	16.11 hrs, Volume	e 1.703 a	af, Atten=	95%, Lag= 247.3 min
Primar	y =	0.91 cfs @	16.11 hrs, Volume	e 1.703 a	af	

Routing by Stor-Ind method, Time Span= 0.00-144.00 hrs, dt= 0.05 hrs Starting Elev= 2,296.75' Surf.Area= 6,846 sf Storage= 11,991 cf Peak Elev= 2,301.04' @ 16.11 hrs Surf.Area= 16,962 sf Storage= 62,205 cf (50,214 cf above start)

Plug-Flow detention time= 2,031.6 min calculated for 1.428 af (84% of inflow) Center-of-Mass det. time= 1,652.2 min (2,500.2 - 848.0)

Volume	Invert	Avail.Sto	rage	Storage	Description	
#1	2,294.00'	126,45	54 cf	Custom	Stage Data (Pr	ismatic) Listed below (Recalc)
Elevatio	n S	urf Area	Inc	Store	Cum Store	
(fee	t)	(sa-ft)	(cubic	c-feet)	(cubic-feet)	
2 294 0	0	2 612	(00010	0	0	
2.296.0	0	4.954		7.566	7.566	
2,298.0	0	10,000	1	4,954	22,520	
2,300.0	0	13,679	2	3,679	46,199	
2,302.0	0	19,963	3	3,642	79,841	
2,304.0	0	26,650	4	6,613	126,454	
Device	Routing	Invert	Outle	et Devices	5	
#1	Primary	2,293.00'	24.0'	" Round	Culvert	
	ŗ		L= 60 Inlet n= 0.	0.0' CPP / Outlet Ir .020 Corr	, square edge h wert= 2,293.00 ugated PE, cor	neadwall, Ke= 0.500 / 2,292.50' S= 0.0083 '/' Cc= 0.900 rugated interior
#2	Device 1	2,296.75'	2.0"	Vert. Orif	ice/Grate C=	0.600
#3	Device 1	2,300.25'	6.0"	Vert. Orif	ice/Grate C=	0.600
#4	Device 1	2,302.00'	24.0	" x 24.0"	Horiz. Orifice/C	Grate C= 0.600
#5	Primary	2,303.00'	Limit 50.0' Head 2.50 Coef 2.85	ed to well long x 2 d (feet) 0. 3.00 3.5 . (English 3.07 3.2	10w at low hea 2.0' breadth Bro 20 0.40 0.60 0) 2.54 2.61 2.0 0 3.32	ads Dad-Crested Rectangular Weir 0.80 1.00 1.20 1.40 1.60 1.80 2.00 61 2.60 2.66 2.70 2.77 2.89 2.88

Primary OutFlow Max=0.91 cfs @ 16.11 hrs HW=2,301.04' (Free Discharge) 1=Culvert (Passes 0.91 cfs of 35.67 cfs potential flow) 2=Orifice/Grate (Orifice Controls 0.22 cfs @ 9.88 fps)

-3=Orifice/Grate (Orifice Controls 0.70 cfs @ 3.55 fps)

4=Orifice/Grate (Controls 0.00 cfs)

-5=Broad-Crested Rectangular Weir (Controls 0.00 cfs)

Summary for Pond P11.10: DRY SWALE

Inflow Area	a =	1.246 ac, 1	2.83% Impervious	, Inflow Depth	= 1.02"	for 1-Year even	t
Inflow	=	2.19 cfs @	11.98 hrs, Volum	e= 0.10)5 af		
Outflow	=	0.05 cfs @	16.27 hrs, Volum	e= 0.10	05 af, Atte	n= 98%, Lag= 2	57.3 min
Primary	=	0.05 cfs @	16.27 hrs, Volum	e= 0.10)5 af		

Routing by Stor-Ind method, Time Span= 0.00-144.00 hrs, dt= 0.05 hrs Starting Elev= 2,192.00' Surf.Area= 3,150 sf Storage= 814 cf Peak Elev= 2,193.51' @ 16.27 hrs Surf.Area= 5,261 sf Storage= 3,989 cf (3,175 cf above start)

Plug-Flow detention time= 2,046.6 min calculated for 0.086 af (82% of inflow) Center-of-Mass det. time= 1,634.0 min (2,490.1 - 856.1)

Volume	Inve	ert Avail.	Storage	Storag	e Description	
#1	2,188.5	50'	420 cf	grave 1,050	underdrain (Pris	smatic) Listed below (Recalc) % Voids
#2	2,189.5	50'	394 cf	filter n 2,625	nedia (Prismatic) cf Overall x 15.0)Listed below (Recalc) % Voids
#3	2,192.0)0' 4	4,900 cf	surfac	e storage (Prisn	natic)Listed below (Recalc)
		!	5,714 cf	Total A	Available Storage	
Elevation	Ì	Surf.Area	Inc	.Store	Cum.Store	
(feet)		(sq-ft)	(cubio	c-feet)	(cubic-feet)	
2,188.50)	1,050		0	0	
2,189.50		1,050		1,050	1,050	
				_		
Elevation	1	Surf.Area	Inc	.Store	Cum.Store	
(feet)		(sq-ft)	(cubio	c-feet)	(cubic-feet)	
2,189.50)	1,050		0	0	
2,192.00		1,050		2,625	2,625	
				_		
Elevation)	Surf.Area	Inc	.Store	Cum.Store	
(feet)		(sq-ft)	(cubio	c-feet)	(cubic-feet)	
2,192.00		1,050		0	0	
2,194.00		3,850		4,900	4,900	
Device I	Routing	Inve	ert Outle	et Devic	ces	
#1 I	Primary	2,192.0	0' 0.50 Exclu	<mark>0 in/hr</mark> ມded Sເ	Exfiltration over urface area = 3,15	Surface area above 2,192.00' 50 sf
#2 I	Primary	2,193.5	50' 10.0' Head 2.50	long 2 d (feet) 3.00 3	x 2.0' breadth Br 0.20 0.40 0.60 3.50	oad-Crested Rectangular Weir 0.80 1.00 1.20 1.40 1.60 1.80 2.00

08077_Proposed Prepared by The LA Group P.C. HydroCAD® 9.10 s/n 00439 © 2010 HydroCAD Software Solutions LLC

Coef. (English) 2.54 2.61 2.61 2.60 2.66 2.70 2.77 2.89 2.88 2.85 3.07 3.20 3.32

Primary OutFlow Max=0.04 cfs @ 16.27 hrs HW=2,193.51' (Free Discharge) 1=Exfiltration (Exfiltration Controls 0.02 cfs) 2=Broad-Crested Rectangular Weir (Weir Controls 0.02 cfs @ 0.23 fps)

Summary for Pond P11.11: DRY SWALE

Inflow Are	a =	3.383 ac, 14.24% Impervious, Inflo	w Depth = 1.19" for 1-Year event
Inflow	=	2.79 cfs @ 11.98 hrs, Volume=	0.336 af
Outflow	=	0.38 cfs @ 12.43 hrs, Volume=	0.336 af, Atten= 86%, Lag= 27.2 min
Primary	=	0.38 cfs @ 12.43 hrs, Volume=	0.336 af

Routing by Stor-Ind method, Time Span= 0.00-144.00 hrs, dt= 0.05 hrs Peak Elev= 2,179.45' @ 12.43 hrs Surf.Area= 4,445 sf Storage= 3,275 cf

Plug-Flow detention time= 524.0 min calculated for 0.336 af (100% of inflow) Center-of-Mass det. time= 523.6 min (1,925.3 - 1,401.7)

Volume	Inve	ert Avail.	Storage	Storage	Description	
#1	2,174.5	50'	360 cf	gravel u	nderdrain (Pris	smatic)Listed below (Recalc)
#2	2,175.5	50'	338 cf	filter me	dia (Prismatic)	Listed below (Recalc)
#3	2.178.0)()'	4.200 cf	2,250 ct	Overall x 15.0% storage (Prism	% Voids natic)Listed below (Recalc)
			4,898 cf	Total Ava	ailable Storage	
Elevation		Surf Area	Inc	Store	Cum Store	
(feet)		(sa-ft)	(cubic	c-feet)	(cubic-feet)	
2.174.50		900	(0	0	
2,175.50		900		900	900	
Elevation		Surf.Area	Inc	Store	Cum.Store	
(feet)		(sq-ft)	(cubio	:-feet)	(cubic-feet)	
2,175.50		900		0	0	
2,178.00		900		2,250	2,250	
Elevation		Surf.Area	Inc	Store	Cum.Store	
(feet)		(sq-ft)	(cubic	:-feet)	(cubic-feet)	
2,178.00		900		0	0	
2,180.00		3,300		4,200	4,200	
Device F	Routing	Inv	ert Outle	et Devices	6	
#1 F	Primary	2,174.	50' 0.50) in/hr Ex	filtration over	Surface area
#2 F	Primary	2,179.4	40' 10.0' Head 2.50 Coef	long x 2 (feet) 0. 3.00 3.5 . (English	2.0' breadth Bro 20 0.40 0.60 0) 2.54 2.61 2.1	Dad-Crested Rectangular Weir 0.80 1.00 1.20 1.40 1.60 1.80 2.00 61 2.60 2.66 2.70 2.77 2.89 2.88
			2.85	3.07 3.2	0 3.32	

Primary OutFlow Max=0.37 cfs @ 12.43 hrs HW=2,179.45' (Free Discharge) 1=Exfiltration (Exfiltration Controls 0.05 cfs) 2=Broad-Crested Rectangular Weir (Weir Controls 0.32 cfs @ 0.59 fps)

Summary for Pond P11.2: BIORETENTION

Inflow Area	=	9.625 ac, 2	29.34% Imp	ervious,	Inflow Depth =	1.34"	for 1-Ye	ar event
Inflow	=	20.98 cfs @	11.98 hrs,	Volume	= 1.078	af		
Outflow	=	3.31 cfs @	12.23 hrs,	Volume	= 1.078	af, Atte	en= 84%,	Lag= 15.4 min
Primary	=	2.97 cfs @	12.23 hrs,	Volume	= 0.412	af		
Secondary	=	0.34 cfs @	12.23 hrs,	Volume	= 0.666	af		

Routing by Stor-Ind method, Time Span= 0.00-144.00 hrs, dt= 0.05 hrs / 2 Peak Elev= 2,373.12' @ 12.23 hrs Surf.Area= 28,996 sf Storage= 20,227 cf

Plug-Flow detention time= 360.0 min calculated for 1.078 af (100% of inflow) Center-of-Mass det. time= 360.2 min (1,183.5 - 823.3)

Volume	Inve	ert Ava	il.Storag	je Stora	ge Description					
#1	2,367.0	0'	3,652	cf stone 9.131	stone underdrain (Prismatic)Listed below (Recalc) 9.131 cf Overall x 40.0% Voids					
#2	2,368.0	0'	5,479	cf filter	filter media (Prismatic)Listed below (Recalc) 36.524 cf Overall x 15.0% Voids					
#3	2,372.0	00'	21,131	cf surfa	surface storage (Prismatic)Listed below (Recalc)					
			30,262	cf Total	Available Storage					
Elevation		Surf.Area		Inc.Store	Cum.Store					
(feet)		(sq-ft)	(CI	ubic-feet)	(cubic-feet)					
2,367.00		9,131		0	0					
2,368.00		9,131		9,131	9,131					
Elevation		Surf.Area		Inc.Store	Cum.Store					
(feet)		(sq-ft)	(CI	ubic-feet)	(cubic-feet)					
2,368.00		9,131		0	0					
2,372.00		9,131		36,524	36,524					
Elevation		Surf.Area		Inc.Store	Cum.Store					
(feet)		(sq-ft)	(CI	ubic-feet)	(cubic-feet)					
2,372.00		9,131		0	0					
2,374.00		12,000		21,131	21,131					
Device F	Routing	Ir	vert O	utlet Devi	ces					
#1 F	Primary	2,367	7.00' 1 2	2.0" Rou	nd Culvert					
			Ŀ	= 50.0' C	PP, square edge	headwall, Ke= 0.500				
			In	liet / Outle	t Invert= 2,367.00	7 / 2,366.00' S= 0.0200 7' CC= 0.900				
n= 0.020 Corrugated PE, corrugated Interior #2 Device 1 2 372 50' 12 0" Horiz Orifice/Grate C= 0.600										
<i>π</i> ∠ L	Limited to weir flow at low heads									
#3 F	Primary	2,373	3.25' 5 0 H	D.0' long x 2.0' breadth Broad-Crested Rectangular Weir ead (feet) 0.20 0.40 0.60 0.80 1.00 1.20 1.40 1.60 1.80 2.00						
2.50 3.00 3.50 Coef. (English) 2.54 2.61 2.61 2.60 2.66 2.70 2.77 2.89 2.88 2.85 3.07 3.20 3.32

#4 Secondary 2,367.00' **0.500 in/hr Exfiltration over Surface area**

Primary OutFlow Max=2.97 cfs @ 12.23 hrs HW=2,373.12' (Free Discharge) 1=Culvert (Passes 2.97 cfs of 6.83 cfs potential flow) 2=Orifice/Grate (Orifice Controls 2.97 cfs @ 3.78 fps) -3=Broad-Crested Rectangular Weir (Controls 0.00 cfs)

Secondary OutFlow Max=0.34 cfs @ 12.23 hrs HW=2,373.12' (Free Discharge) 4=Exfiltration (Exfiltration Controls 0.34 cfs)

Summary for Pond P11.4: DRY SWALE

Inflow Area	ι =	0.233 ac, 1	0.77% Impervious,	Inflow Depth =	0.96" for	1-Year event
Inflow	=	0.39 cfs @	11.98 hrs, Volume	e 0.019	af	
Outflow	=	0.01 cfs @	14.25 hrs, Volume	€= 0.019	af, Atten= 9	96%, Lag= 136.1 min
Primary	=	0.01 cfs @	14.25 hrs, Volume	e 0.019	af	

Routing by Stor-Ind method, Time Span= 0.00-144.00 hrs, dt= 0.05 hrs / 2 Peak Elev= 2,475.51' @ 14.25 hrs Surf.Area= 623 sf Storage= 472 cf

Plug-Flow detention time= 753.0 min calculated for 0.019 af (100% of inflow) Center-of-Mass det. time= 752.8 min (1,612.3 - 859.5)

Volume	Invert	Avail.Stor	age	Storag	e Description			
#1	2,470.50'	6	0 cf	stone	underdrain (Pris	matic)Listed below (Recalc)		
#2	2,471.50'	5	6 cf	150 cf Overall x 40.0% Voids filter media (Prismatic) Listed below (Recalc)				
#3	2,474.00'	53	0 cf	surfac	ce storage (Prisn	natic)Listed below (Recalc)		
		64	6 cf	Total A	Available Storage	· · · ·		
Elevation (feet)	Surf	.Area (sq-ft)	Inc. (cubic	Store (Store)	Cum.Store (cubic-feet)			
2,470.50		150		Ó				
2,471.50		150		150	150			
Elevation (feet)	Surf	.Area (sq-ft)	Inc. (cubic	Store ().	Cum.Store (cubic-feet)			
2,471.50		150		0	0			
2,474.00		150		375	375			
Elevation (feet)	Surf	.Area (sq-ft)	Inc. (cubic	.Store :-feet)	Cum.Store (cubic-feet)			
2,474.00		150		0	0			
2,476.00		380		530	530			

Type II 24-hr 1-Year Rainfall=3.00" Printed 12/9/2011 Page 11

Prepared by The L	A Group P.C.	
HydroCAD® 9.10 s/n	00439 © 2010 HydroCA	D Software Solutions LLC

Device	Routing	Invert	Outlet Devices
#1	Primary	2,470.50'	0.500 in/hr Exfiltration over Surface area
#2	Primary	2,475.50'	5.0' long x 1.0' breadth Broad-Crested Rectangular Weir Head (feet) 0.20 0.40 0.60 0.80 1.00 1.20 1.40 1.60 1.80 2.00 2.50 3.00 Coef. (English) 2.69 2.72 2.75 2.85 2.98 3.08 3.20 3.28 3.31 3.30 3.31 3.32

Primary OutFlow Max=0.01 cfs @ 14.25 hrs HW=2,475.51' (Free Discharge) 1=Exfiltration (Exfiltration Controls 0.01 cfs)

2=Broad-Crested Rectangular Weir (Weir Controls 0.01 cfs @ 0.20 fps)

Summary for Pond P11.5: DRY SWALE

Inflow Area	=	0.116 ac, 2	27.15% Impe	ervious,	Inflow Depth :	= 1.1	9" for	1-Yea	ar event	
Inflow	=	0.24 cfs @	11.98 hrs,	Volume	= 0.01	1 af				
Outflow	=	0.01 cfs @	15.83 hrs,	Volume	= 0.01	1 af,	Atten= 9	98%,	Lag= 231.3	min
Primary	=	0.01 cfs @	15.83 hrs,	Volume	= 0.01	1 af			-	

Routing by Stor-Ind method, Time Span= 0.00-144.00 hrs, dt= 0.05 hrs / 2 Peak Elev= 2,479.03' @ 15.83 hrs Surf.Area= 517 sf Storage= 299 cf

Plug-Flow detention time= 625.6 min calculated for 0.011 af (100% of inflow) Center-of-Mass det. time= 626.1 min (1,472.2 - 846.1)

Volume	Inv	ert Avail.S	Storage	Storage D	Description				
#1	2,474.5	50'	50 cf	stone un	stone underdrain (Prismatic)Listed below (Recalc)				
#0			47	125 cf Ov	verall x 40.0%	Voids			
#2	2,475.3	50	47 CI	313 cf Ov	verall x 15.0%	Voids			
#3	2,478.0	00'	525 cf	surface s	storage (Prism	natic)Listed below (Recalc)			
			622 cf	Total Ava	ilable Storage				
Elevatior	า	Surf.Area	Inc	Store	Cum.Store				
(feet))	(sq-ft)	(cubi	c-feet)	(cubic-feet)				
2,474.50)	125		0	0				
2,475.50)	125		125	125				
Elevation	า	Surf Area	Inc	Store	Cum Store				
(feet))	(sq-ft)	(cubi	c-feet)	(cubic-feet)				
2,475.50)	125		0	0				
2,478.00)	125		313	313				
Elevatior	า	Surf.Area	Inc	.Store	Cum.Store				
(feet)	(sq-ft)	(cubi	c-feet)	(cubic-feet)				
2,478.00)	125		0	0				
2,480.00)	400		525	525				
Device	Routing	Inve	rt Outle	et Devices					
#1	Primary	2,474.5	0' 0.50	0 in/hr Ex	filtration over	Surface area			
#2	Primary	2,479.5	0' 5.0'	long x 1.0)' breadth Bro	ad-Crested Rectangular Weir			

Head (feet) 0.20 0.40 0.60 0.80 1.00 1.20 1.40 1.60 1.80 2.00 2.50 3.00 Coef. (English) 2.69 2.72 2.75 2.85 2.98 3.08 3.20 3.28 3.31 3.30 3.31 3.32

Primary OutFlow Max=0.01 cfs @ 15.83 hrs HW=2,479.03' (Free Discharge) 1=Exfiltration (Exfiltration Controls 0.01 cfs) 2=Broad-Crested Rectangular Weir (Controls 0.00 cfs)

Summary for Pond P11.6: DRY SWALE

Inflow Area	1 =	3.304 ac,	4.07% Impervious,	Inflow Depth = 0 .	86" for 1-Year event
Inflow	=	3.52 cfs @	12.07 hrs, Volume	= 0.236 af	
Outflow	=	0.88 cfs @	12.42 hrs, Volume	= 0.236 af,	Atten= 75%, Lag= 20.5 min
Primary	=	0.88 cfs @	12.42 hrs, Volume	= 0.236 af	

Routing by Stor-Ind method, Time Span= 0.00-144.00 hrs, dt= 0.05 hrs / 2 Peak Elev= 2,483.48' @ 12.42 hrs Surf.Area= 5,202 sf Storage= 3,898 cf

Plug-Flow detention time= 486.9 min calculated for 0.236 af (100% of inflow) Center-of-Mass det. time= 488.1 min (1,362.1 - 874.0)

Volume	Inve	ert Avail.Sto	orage	Storage D	escription	
#1	2,478.5	0' 4	64 cf	stone un	derdrain (Pris	s matic) Listed below (Recalc) % Voids
#2	2,479.5	0' 4	35 cf	filter med	lia (Prismatic)Listed below (Recalc) % Voids
#3	2,482.0	0' 4,6	640 cf	surface s	torage (Prisn	natic)Listed below (Recalc)
	·	5,5	539 cf	Total Avai	lable Storage	
Elevation (feet)		Surf.Area (sq-ft)	Inc. (cubic	Store -feet)	Cum.Store (cubic-feet)	
2,478.50		1,160		0	0	
2,479.50		1,160		1,160	1,160	
Elevation (feet)		Surf.Area (sq-ft)	Inc. (cubic	Store -feet)	Cum.Store (cubic-feet)	
2.479.50		1.160	•	0	0	
2,482.00		1,160		2,900	2,900	
Elevation (feet)		Surf.Area (sq-ft)	Inc. (cubic	Store -feet)	Cum.Store (cubic-feet)	
2.482.00		1.160		0	0	
2,484.00		3,480		4,640	4,640	
Device F	Routing	Invert	Outle	t Devices		
#1 F #2 F	Primary Primary	2,478.50' 2,483.40'	0.50 12.0 Head 2.50 Coef) in/hr Exf long x 1. I (feet) 0.2 3.00 . (English)	iltration over 0' breadth Br 20 0.40 0.60 2.69 2.72 2.	Surface areaoad-Crested Rectangular Weir0.801.001.201.401.601.802.852.983.083.203.283.31

3.30 3.31 3.32

Primary OutFlow Max=0.83 cfs @ 12.42 hrs HW=2,483.48' (Free Discharge) 1=Exfiltration (Exfiltration Controls 0.06 cfs) 2=Broad-Crested Rectangular Weir (Weir Controls 0.77 cfs @ 0.78 fps)

Summary for Pond P11.7: BIORETENTION

Inflow Area	a =	0.741 ac, 5	5.14% Impe	rvious, Inflow De	epth = 1.7	4" for 1-Ye	ar event
Inflow	=	2.20 cfs @	11.97 hrs, \	Volume=	0.107 af		
Outflow	=	0.11 cfs @	12.05 hrs, \	Volume=	0.107 af,	Atten= 95%,	Lag= 4.8 min
Primary	=	0.11 cfs @	12.05 hrs, \	Volume=	0.107 af		-

Routing by Stor-Ind method, Time Span= 0.00-144.00 hrs, dt= 0.05 hrs / 2 Peak Elev= 2,244.94' @ 13.23 hrs Surf.Area= 9,100 sf Storage= 2,462 cf

Plug-Flow detention time= 335.6 min calculated for 0.107 af (100% of inflow) Center-of-Mass det. time= 335.8 min (1,154.4 - 818.5)

Volume	Inve	ert Ava	il.Storage	Storag	ge Description			
#1	2,243.0	0'	1,820 cf	grave 4,550	I drainage layer (cf Overall x 40.09	(Prismatic) Listed below (Red % Voids	calc)	
#2	2,244.0	00'	2,730 cf	filter	media (Prismatic)Listed below (Recalc)		
#2	2 248 0	00'	10.350 of	18,20 surfa	U CT Overall X 15.0	U% VOIDS		
#3	2,240.0	0	10,330 Cl	Tatal		Tatic Justed Delow (Recald)		
			14,900 Cl	Total	Available Storage			
Elevatior	า	Surf.Area	Ind	c.Store	Cum.Store			
(feet)	(sq-ft)	(cub	ic-feet)	(cubic-feet)			
2,243.00)	4,550		0	0			
2,244.00	כ	4,550		4,550	4,550			
Elevatior	า	Surf.Area	Inc	c.Store	Cum.Store			
(feet)	(sq-ft)	(cub	ic-feet)	(cubic-feet)			
2.244.00)	4.550		0				
2,248.00	0	4,550		18,200	18,200			
Elevatior	า	Surf.Area	Inc	c.Store	Cum.Store			
(feet)	(sq-ft)	(cub	ic-feet)	(cubic-feet)			
2.248.00)	4.550		0	0			
2,250.00)	5,800		10,350	10,350			
Device	Routing	In	vert Out	let Devi	ces			
#1	Primary	2,243	3.00' 18.0 L= 5 Inle	18.0" Round Culvert L= 50.0' CPP, square edge headwall, Ke= 0.500 Inlet / Outlet Invert= 2 243 00' / 2 240 00' S= 0 0600 '/' Cc= 0 900				
			n= (0.020 C	orrugated PE, cor	rrugated interior		
#2	Device 1	2,243	3.00' 0.50	00 in/hr	Exfiltration over	Surface area		
#3	Device 1	2,248	"3.50' 6.0 Limi)" Horiz. Orifice/Grate C= 0.600 mited to weir flow at low beads				
#4	Primary	2,249	9.00' 25.0)' long	x 2.0' breadth Br	oad-Crested Rectangular V	Veir	

Head (feet) 0.20 0.40 0.60 0.80 1.00 1.20 1.40 1.60 1.80 2.00 2.50 3.00 3.50 Coef. (English) 2.54 2.61 2.61 2.60 2.66 2.70 2.77 2.89 2.88 2.85 3.07 3.20 3.32

Primary OutFlow Max=0.11 cfs @ 12.05 hrs HW=2,244.16' (Free Discharge)

1=Culvert (Passes 0.11 cfs of 5.35 cfs potential flow)

2=Exfiltration (Exfiltration Controls 0.11 cfs)

3=Orifice/Grate (Controls 0.00 cfs)

-4=Broad-Crested Rectangular Weir (Controls 0.00 cfs)

Summary for Pond P11.8: BIORETENTION

Inflow Area	a =	0.432 ac, 7	7.25% Impe	rvious, Inflov	v Depth = 2	2.25" for	1-Year event
Inflow	=	1.59 cfs @	11.96 hrs, \	√olume=	0.081 af	f	
Outflow	=	0.07 cfs @	12.00 hrs, \	√olume=	0.081 af	f, Atten= 9	96%, Lag= 2.1 min
Primary	=	0.07 cfs @	12.00 hrs, \	√olume=	0.081 af	f	•

Routing by Stor-Ind method, Time Span= 0.00-144.00 hrs, dt= 0.05 hrs / 2 Peak Elev= 2,257.90' @ 13.34 hrs Surf.Area= 5,700 sf Storage= 1,951 cf

Plug-Flow detention time= 358.4 min calculated for 0.081 af (100% of inflow) Center-of-Mass det. time= 358.3 min (1,150.0 - 791.7)

Volume	Invert Ava	il.Storage	Storag	ge Description			
#1	2,255.00'	1,140 cf	grave	I underdrain (Pris	smatic)Listed below (Recalc)		
#2	2,256.00'	1,710 cf	filter 1	filter media (Prismatic)Listed below (Recalc)			
#3	2,260.00'	6,450 cf	surfac	ce storage (Prism	natic)Listed below (Recalc)		
		9,300 cf	Total /	Available Storage			
Elevation	Surf.Area	Inc	.Store	Cum.Store			
(feet)	(sq-ft)	(cubi	c-feet)	(cubic-feet)			
2,255.00	2,850		0	0			
2,256.00	2,850		2,850	2,850			
Elevation	Surf.Area	Inc	.Store	Cum.Store			
(feet)	(sq-ft)	(cubi	c-feet)	(cubic-feet)			
2,256.00	2,850		0	0			
2,260.00	2,850	1	1,400	11,400			
Elevation	Surf.Area	Inc	.Store	Cum.Store			
(feet)	(sq-ft)	(cubi	c-feet)	(cubic-feet)			
2,260.00	2,850		0	0			
2,262.00	3,600		6,450	6,450			

Type II 24-hr 1-Year Rainfall=3.00" Printed 12/9/2011 Page 15

Prepared by The LA Group P.C.

HydroCAD® 9.10 s/n 00439 © 2010 HydroCAD Software Solutions LLC

Device	Routing	Invert	Outlet Devices
#1	Primary	2,255.00'	12.0" Round Culvert
			L= 50.0' CPP, square edge headwall, Ke= 0.500
			Inlet / Outlet Invert= 2,255.00' / 2,254.50' S= 0.0100 '/' Cc= 0.900
			n= 0.020 Corrugated PE, corrugated interior
#2	Device 1	2,255.00'	0.500 in/hr Exfiltration over Surface area
#3	Device 1	2,260.50'	6.0" Horiz. Orifice/Grate C= 0.600
			Limited to weir flow at low heads
#4	Primary	2,261.00'	15.0' long x 2.0' breadth Broad-Crested Rectangular Weir
	,	,	Head (feet) 0.20 0.40 0.60 0.80 1.00 1.20 1.40 1.60 1.80 2.00
			2.50 3.00 3.50
			Coef (English) 2.54 2.61 2.61 2.60 2.66 2.70 2.77 2.89 2.88
			2 85 3 07 3 20 3 32

Primary OutFlow Max=0.07 cfs @ 12.00 hrs HW=2,256.51' (Free Discharge)

-1=Culvert (Passes 0.07 cfs of 2.77 cfs potential flow)

2=Exfiltration (Exfiltration Controls 0.07 cfs) 3=Orifice/Grate (Controls 0.00 cfs)

-4=Broad-Crested Rectangular Weir (Controls 0.00 cfs)

Summary for Pond P11.9: BIORETENTION

Inflow Area	a =	0.575 ac, 2	2.45% Impervious	Inflow Depth =	1.19" for 1-Y	ear event
Inflow	=	1.19 cfs @	11.98 hrs, Volum	e= 0.057 a	af	
Outflow	=	0.06 cfs @	0.00 hrs, Volum	e= 0.099 a	af, Atten= 95%	, Lag= 0.0 min
Primary	=	0.06 cfs @	0.00 hrs, Volum	e= 0.099 a	af	

Routing by Stor-Ind method, Time Span= 0.00-144.00 hrs, dt= 0.05 hrs Starting Elev= 2,219.00' Surf.Area= 5,520 sf Storage= 1,840 cf Peak Elev= 2,219.00' @ 0.00 hrs Surf.Area= 5,520 sf Storage= 1,840 cf

Plug-Flow detention time= 533.3 min calculated for 0.057 af (100% of inflow) Center-of-Mass det. time= 116.4 min (962.5 - 846.1)

Volume	Invert	Avai	I.Storage	Stora	ge Description	
#1	2,214.00'		736 cf	grave	el drainage layer (Prismatic)Listed below (Recalc)
#2	2 215 00'		1 104 cf	1,840	cf Overall x 40.09	% Voids N isted below (Recalc)
π ∠	2,210.00		1,104 01	7,360	cf Overall x 15.09	% Voids
#3	2,219.00'		2,040 cf	surfa	ce storage (Prism	natic)Listed below (Recalc)
			3,880 cf	Total	Available Storage	
Elevation	Surf	.Area	Inc	.Store	Cum.Store	
(feet)	(sq-ft)	(cubi	c-feet)	(cubic-feet)	
2,214.00		1,840		0	0	
2,215.00		1,840		1,840	1,840	
Elevation	Surf	.Area	Inc	.Store	Cum.Store	
(feet)	(sq-ft)	(cubi	c-feet)	(cubic-feet)	
2,215.00		1,840		0	0	
2,219.00		1,840		7,360	7,360	

Prepared by The LA Group P.C. HydroCAD® 9.10 s/n 00439 © 2010 HydroCAD Software Solutions LLC

Elevatio	on et)	Surf.Area (sq-ft)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)	
2,219.0	00	1,840	0	0	
2,220.0	00	2,239	2,040	2,040	
Device	Routing	Invert	Outlet Devices		
#1 #2	Primary Primary	2,214.00' 2,219.50'	0.500 in/hr Exfi 15.0' long x 1.0 Head (feet) 0.20 2.50 3.00	Itration over breadth Br 0 0.40 0.60 2 60 2 72 2	Surface area oad-Crested Rectangular Weir 0.80 1.00 1.20 1.40 1.60 1.80 2.00
			3.30 3.31 3.32	2.09 2.72 2.	75 2.05 2.96 5.06 5.20 5.26 5.51

Primary OutFlow Max=0.06 cfs @ 0.00 hrs HW=2,219.00' (Free Discharge)

1=Exfiltration (Exfiltration Controls 0.06 cfs)

2=Broad-Crested Rectangular Weir (Controls 0.00 cfs)

Summary for Pond P12.1: Pond 1.1

Inflow A	Area =	17.893 ac,	9.84% Impervious,	Inflow Depth = 0.96"	for 1-Year event
Inflow	=	16.01 cfs @	12.16 hrs, Volume=	= 1.434 af	
Outflow	/ =	0.80 cfs @	16.04 hrs, Volume=	= 1.433 af, At	ten= 95%, Lag= 233.2 min
Primary	/ =	0.80 cfs @	16.04 hrs, Volume=	= 1.433 af	-

Routing by Stor-Ind method, Time Span= 0.00-144.00 hrs, dt= 0.05 hrs Starting Elev= 2,295.25' Surf.Area= 5,504 sf Storage= 5,359 cf Peak Elev= 2,299.15' @ 16.04 hrs Surf.Area= 14,704 sf Storage= 43,883 cf (38,524 cf above start)

Plug-Flow detention time= 1,520.6 min calculated for 1.310 af (91% of inflow) Center-of-Mass det. time= 1,344.2 min (2,211.9 - 867.7)

Volume	Inve	ert Avail.Sto	rage	Storage	Description			
#1	2,294.0	0' 120,04	48 cf	Custor	n Stage Data (Pi	r ismatic) Listed below (Recalc)		
Elevatio	n	Surf.Area	Inc	.Store	Cum.Store			
(fee	t)	(sq-ft)	(cubio	c-feet)	(cubic-feet)			
2,294.0	0	3,070		0	0			
2,296.0	0	6,964	1	0,034	10,034			
2,298.0	0	11,720	1	8,684	28,718			
2,300.0	0	16,919	2	8,639	57,357			
2,302.0	0	22,520	3	9,439	96,796			
2,303.0	0	23,983	2	3,252	120,048			
Device	Routing	Invert	Outle	et Device	S			
#1	Primary	2,294.00'	24.0	" Round	I Culvert			
			L= 1	15.0' Cl	PP, square edge	headwall, Ke= 0.500		
			Inlet	Inlet / Outlet Invert= 2,294.00' / 2,293.25' S= 0.0065 '/' Cc= 0.900				
			n= 0.	.020 Co	rrugated PE, cor	rugated interior		
#2	Device 1	2,295.25'	2.0"	Vert. Or	ifice/Grate C=	0.600		
#3	Device 1	2,298.50'	6.0"	Vert. Or	ifice/Grate C=	0.600		
#4	Device 1	2,299.50'	24.0	" x 24.0"	Horiz. Orifice/0	Grate C= 0.600		
			Limit	ed to we	ir flow at low hea	ads		

08077_Proposed Prepared by The LA Group P.C. HydroCAD® 9.10 s/n 00439 © 2010 HydroCAD Software Solutions LLC

#5 Primary 2,302.00' **50.0' long x 2.0' breadth Broad-Crested Rectangular Weir** Head (feet) 0.20 0.40 0.60 0.80 1.00 1.20 1.40 1.60 1.80 2.00 2.50 3.00 3.50 Coef. (English) 2.54 2.61 2.61 2.60 2.66 2.70 2.77 2.89 2.88 2.85 3.07 3.20 3.32

Primary OutFlow Max=0.80 cfs @ 16.04 hrs HW=2,299.15' (Free Discharge)

-1=Culvert (Passes 0.80 cfs of 22.50 cfs potential flow)

2=Orifice/Grate (Orifice Controls 0.21 cfs @ 9.40 fps)

-3=Orifice/Grate (Orifice Controls 0.60 cfs @ 3.04 fps)

4=Orifice/Grate (Controls 0.00 cfs)

-5=Broad-Crested Rectangular Weir (Controls 0.00 cfs)

Summary for Pond P12.2: Dry Swale

Inflow Area	1 =	0.376 ac, 2	6.90% Impervi	ious, Inflow D	epth = $1.25"$	for 1-Year ever	nt
Inflow	=	0.82 cfs @	11.98 hrs, Vo	olume=	0.039 af		
Outflow	=	0.02 cfs @	15.09 hrs, Vo	olume=	0.039 af, Att	en= 97%, Lag= 1	87.0 min
Primary	=	0.02 cfs @	15.09 hrs, Vo	olume=	0.039 af		

Routing by Stor-Ind method, Time Span= 0.00-144.00 hrs, dt= 0.05 hrs Peak Elev= 2,269.31' @ 15.09 hrs Surf.Area= 2,064 sf Storage= 984 cf

Plug-Flow detention time= 542.0 min calculated for 0.039 af (100% of inflow) Center-of-Mass det. time= 541.9 min (1,384.7 - 842.8)

Volume	Invert	Avail.Storage	Storage Description
#1	2,265.00'	160 cf	stone underdrain (Prismatic)Listed below (Recalc)
			400 cf Overall x 40.0% Voids
#2	2,266.00'	150 cf	filter media (Prismatic)Listed below (Recalc)
			1,000 cf Overall x 15.0% Voids
#3	2,268.50'	2,900 cf	surface storage (Prismatic)Listed below (Recalc)
		3,210 cf	Total Available Storage

Elevation (feet)	Surf.Area (sq-ft)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)
2,265.00	400	0	0
2,266.00	400	400	400
Elevation	Surf.Area	Inc.Store	Cum.Store
(feet)	(sq-ft)	(cubic-feet)	(cubic-feet)
2,266.00	400	0	0
2,268.50	400	1,000	1,000
Elevation	Surf.Area	Inc.Store	Cum.Store
(feet)	(sq-ft)	(cubic-feet)	(cubic-feet)
2,268.50	400	0	0
2,270.00	2,000	1,800	1,800
2,270.50	2,400	1,100	2,900

Type II 24-hr 1-Year Rainfall=3.00" Printed 12/9/2011 Page 18

Prepared by The LA Group P.C. HydroCAD® 9.10 s/n 00439 © 2010 HydroCAD Software Solutions LLC

Device	Routing	Invert	Outlet Devices
#1	Primary	2,269.50'	8.0' long x 1.0' breadth Broad-Crested Rectangular Weir Head (feet) 0.20 0.40 0.60 0.80 1.00 1.20 1.40 1.60 1.80 2.00 2.50 3.00
#2	Primary	2,265.00'	Coef. (English) 2.69 2.72 2.75 2.85 2.98 3.08 3.20 3.28 3.31 3.30 3.31 3.32 0.500 in/hr Exfiltration over Surface area

Primary OutFlow Max=0.02 cfs @ 15.09 hrs HW=2,269.31' (Free Discharge)

1=Broad-Crested Rectangular Weir (Controls 0.00 cfs)

2=Exfiltration (Exfiltration Controls 0.02 cfs)

Summary for Pond P2.2: Dry Swale

Inflow Area	ι =	3.322 ac, 2	2.38% Impervi	ious, Inflow De	pth = 1.19"	for 1-Yea	ar event
Inflow	=	5.86 cfs @	12.03 hrs, Vo	olume=	0.329 af		
Outflow	=	4.41 cfs @	12.11 hrs, Vo	olume=	0.328 af, Atte	en= 25%,	Lag= 4.9 min
Primary	=	4.41 cfs @	12.11 hrs, Vo	olume=	0.328 af		

Routing by Stor-Ind method, Time Span= 0.00-144.00 hrs, dt= 0.05 hrs / 2 Peak Elev= 2,265.61' @ 12.11 hrs Surf.Area= 5,116 sf Storage= 3,920 cf

Plug-Flow detention time= 271.6 min calculated for 0.328 af (100% of inflow) Center-of-Mass det. time= 270.4 min (1,120.6 - 850.2)

Volume	Invert	Avail.Storage	Storag	ge Description	
#1	2,261.50'	420 cf	grave	l underdrain (Pris	smatic)Listed below (Recalc)
#2	2,262.50'	236 cf	1,050 Filter 1,575	cf Overall x 40.09 Media (Prismatic cf Overall x 15.09	% Voids :)Listed below (Recalc) % Voids
#3	2,264.00'	8,400 cf	Surfa	ce Storage (Prisr	natic)Listed below (Recalc)
		9,056 cf	Total A	Available Storage	
Elevation (feet)	Surf.A (sq	rea Inc I-ft) (cubi	c.Store c-feet)	Cum.Store (cubic-feet)	
2,261.50	1,0)50	0	0	
2,262.50	1,0)50	1,050	1,050	
Elevation (feet)	Surf.A (sq	rea Inc I-ft) (cubi	:.Store c-feet)	Cum.Store (cubic-feet)	
2,262.50	1,0)50	0	0	
2,264.00	1,0)50	1,575	1,575	
Elevation (feet)	Surf.A	rea Inc I-ft) (cubi	Store: c-feet)	Cum.Store	
2 264 00	1.0)50	0	0	
2,266.00	3,5	500	4,550	4,550	
2,267.00	4,2	200	3,850	8,400	

Type II 24-hr 1-Year Rainfall=3.00" Printed 12/9/2011 Page 19

Prepared by The LA Group P.C. HydroCAD® 9.10 s/n 00439 © 2010 HydroCAD Software Solutions LLC

Device	Routing	Invert	Outlet Devices
#1	Primary	2,265.25'	24.0" Horiz. Orifice/Grate C= 0.600
	-		Limited to weir flow at low heads
#2	Primary	2,266.50'	100.0' long x 50.0' breadth Broad-Crested Rectangular Weir
	-		Head (feet) 0.20 0.40 0.60 0.80 1.00 1.20 1.40 1.60
			Coef. (English) 2.68 2.70 2.70 2.64 2.63 2.64 2.64 2.63
#3	Primary	2,261.50'	0.500 in/hr Exfiltration over Surface area

Primary OutFlow Max=4.29 cfs @ 12.11 hrs HW=2,265.60' (Free Discharge)

1=Orifice/Grate (Weir Controls 4.23 cfs @ 1.93 fps)

-2=Broad-Crested Rectangular Weir (Controls 0.00 cfs)

-3=Exfiltration (Exfiltration Controls 0.06 cfs)

Summary for Pond P2.3: BIORETENTION

Inflow Area	I =	5.821 ac, 2	4.98% Imperv	ious, Inflow De	pth = 1.21"	for 1-Yea	ar event
Inflow	=	7.56 cfs @	12.10 hrs, Vo	olume=	0.587 af		
Outflow	=	0.36 cfs @	15.27 hrs, Vo	olume=	0.587 af, Att	en= 95%,	Lag= 190.0 min
Primary	=	0.36 cfs @	15.27 hrs, Vo	olume=	0.587 af		

Routing by Stor-Ind method, Time Span= 0.00-144.00 hrs, dt= 0.05 hrs / 2 Peak Elev= 2,227.14' @ 15.27 hrs Surf.Area= 31,185 sf Storage= 11,803 cf

Plug-Flow detention time= 473.3 min calculated for 0.587 af (100% of inflow) Center-of-Mass det. time= 473.7 min (1,474.0 - 1,000.4)

Volume	Invert Av	ail.Storage	Storag	ge Description	
#1	2,222.00'	4,142 cf	stone	underdrain (Pris	smatic)Listed below (Recalc)
			10,354	4 cf Overall x 40.0	0% Voids
#2	2,223.00'	6,212 cf	filter r	nedia (Prismatic	Listed below (Recalc)
			41,416	6 cf Overall x 15.0	0% Voids
#3	2,227.00'	22,469 cf	surfac	ce storage (Prisn	natic)Listed below (Recalc)
		32,823 cf	Total /	Available Storage	
Elevation	Surf.Area	a Inc	Store.	Cum.Store	
(feet)	(sq-ft) (cubi	c-feet)	(cubic-feet)	
2,222.00	10,354	1	0	0	
2,223.00	10,354	4 ⁻	0,354	10,354	
Elevation	Surf.Area	a Inc	.Store	Cum.Store	
(feet)	(sq-ft) (cubi	c-feet)	(cubic-feet)	
2,223.00	10,354	1	0	0	
2,227.00	10,354	4 4	11,416	41,416	
Elevation	Surf.Area	a Inc	Store.	Cum.Store	
(feet)	(sq-ft) (cubi	c-feet)	(cubic-feet)	
2,227.00	10,354	1	0	0	
2,229.00	12,11	5 2	22,469	22,469	

Type II 24-hr 1-Year Rainfall=3.00" Printed 12/9/2011 Page 20

Prepared by The LA Group P.C. HydroCAD® 9.10 s/n 00439 © 2010 HydroCAD Software Solutions LLC

Device	Routing	Invert	Outlet Devices
#1	Primary	2,222.00'	18.0" Round Culvert
			L= 60.0' CPP, square edge headwall, Ke= 0.500
			Inlet / Outlet Invert= 2,222.00' / 2,221.40' S= 0.0100 '/' Cc= 0.900
			n= 0.013 Corrugated PE, smooth interior
#2	Primary	2,222.00'	0.500 in/hr Exfiltration over Surface area
#3	Device 1	2,227.50'	6.0" Horiz. Orifice/Grate C= 0.600
			Limited to weir flow at low heads
#4	Primary	2,228.50'	35.0' long x 1.0' breadth Broad-Crested Rectangular Weir
			Head (feet) 0.20 0.40 0.60 0.80 1.00 1.20 1.40 1.60 1.80 2.00
			2.50 3.00
			Coef. (English) 2.69 2.72 2.75 2.85 2.98 3.08 3.20 3.28 3.31
			3.30 3.31 3.32
			Coef. (English) 2.69 2.72 2.75 2.85 2.98 3.08 3.20 3.28 3.31 3.30 3.31 3.32

Primary OutFlow Max=0.36 cfs @ 15.27 hrs HW=2,227.14' (Free Discharge)

-1=Culvert (Passes 0.00 cfs of 17.83 cfs potential flow) -3=Orifice/Grate (Controls 0.00 cfs)

-2=Exfiltration (Exfiltration Controls 0.36 cfs)

-4=Broad-Crested Rectangular Weir (Controls 0.00 cfs)

Summary for Pond P2.5: Pond 2.5

Inflow Area	=	36.326 ac, 1	7.04% Impe	ervious, Inflo	w Depth = 1	1.01"	for 1-Ye	ar event
Inflow	=	30.76 cfs @	12.03 hrs,	Volume=	3.047 a	ıf		
Outflow	=	3.35 cfs @	13.41 hrs,	Volume=	3.020 a	if, Atter	n= 89%,	Lag= 83.2 min
Primary	=	3.35 cfs @	13.41 hrs,	Volume=	3.020 a	ıf		-
Secondary	=	0.00 cfs @	0.00 hrs,	Volume=	0.000 a	ıf		

Routing by Stor-Ind method, Time Span= 0.00-144.00 hrs, dt= 0.05 hrs / 2 Starting Elev= 2,161.00' Surf.Area= 7,652 sf Storage= 13,933 cf Peak Elev= 2,165.53' @ 13.41 hrs Surf.Area= 18,496 sf Storage= 71,433 cf (57,500 cf above start)

Plug-Flow detention time= 1,854.8 min calculated for 2.699 af (89% of inflow) Center-of-Mass det. time= 1,513.6 min (2,519.7 - 1,006.1)

Volume	Invert	Avail.S	torage	Storage	Description	
#1	2,158.00'	216,	744 cf	Custom	n Stage Data (Pr	ismatic)Listed below (Recalc)
Elevation (feet)	Su	rf.Area (sq-ft)	Inc (cubio	.Store c-feet)	Cum.Store (cubic-feet)	
2,158.00 2,160.00 2,162.00 2,164.00 2,166.00 2,168.00		1,411 5,797 9,507 14,282 19,778 25,755	1 2 3	0 7,208 5,304 23,789 34,060	0 7,208 22,512 46,301 80,361 125 894	
2,170.00 2,171.00		32,133 33,791	53	57,888 52,962	183,782 216,744	

Type II 24-hr 1-Year Rainfall=3.00" Printed 12/9/2011 Page 21

Prepared by The LA Group P.C. HydroCAD® 9.10 s/n 00439 © 2010 HydroCAD Software Solutions LLC

Device	Routing	Invert	Outlet Devices					
#1	Primary	2,158.00'	36.0" Round Culvert L= 300.0' CPP. square edge headwall. Ke= 0.500					
			Inlet / Outlet Invert= $2,158.00' / 2,156.50' = 0.0050' / Cc= 0.900$ n= 0.020 Corrugated PE corrugated interior					
#2	Device 1	2,161.00'	2.0" Vert. Orifice/Grate C= 0.600					
#3	Device 1	2,165.00'	30.0" W x 18.0" H Vert. Orifice/Grate C= 0.600					
#4	Device 1	2,166.50'	36.0" W x 30.0" H Vert. Orifice/Grate C= 0.600					
#5	Device 1	2,169.00'	48.0" W x 12.0" H Vert. Orifice/Grate C= 0.600					
#6	Secondary	2,170.25'	10.0' long x 1.0' breadth Broad-Crested Rectangular Weir Head (feet) 0.20 0.40 0.60 0.80 1.00 1.20 1.40 1.60 1.80 2.00 2.50 3.00					
			Coef. (English) 2.69 2.72 2.75 2.85 2.98 3.08 3.20 3.28 3.31 3.30 3.31 3.32					
Primary	Primary OutFlow Max=3.35 cfs @ 13.41 hrs HW=2,165.53' (Free Discharge)							

1=Culvert (Passes 3.35 cfs of 54.01 cfs potential flow)

2=Orifice/Grate (Orifice Controls 0.22 cfs @ 10.16 fps)

-3=Orifice/Grate (Orifice Controls 3.13 cfs @ 2.34 fps)

-4=Orifice/Grate (Controls 0.00 cfs)

Secondary OutFlow Max=0.00 cfs @ 0.00 hrs HW=2,161.00' (Free Discharge) G=Broad-Crested Rectangular Weir (Controls 0.00 cfs)

Summary for Pond P3.1: Dry Swale

Inflow Area	a =	10.077 ac, 1	13.20% Impervious,	Inflow Depth =	1.02" for	r 1-Year event
Inflow	=	14.59 cfs @	12.02 hrs, Volume	÷= 0.857 :	af	
Outflow	=	8.31 cfs @	12.14 hrs, Volume	÷= 0.857 :	af, Atten=	43%, Lag= 7.4 min
Primary	=	8.31 cfs @	12.14 hrs, Volume	÷= 0.857 a	af	

Routing by Stor-Ind method, Time Span= 0.00-144.00 hrs, dt= 0.05 hrs Peak Elev= 2,288.19' @ 12.14 hrs Surf.Area= 14,260 sf Storage= 11,855 cf

Plug-Flow detention time= 391.4 min calculated for 0.857 af (100% of inflow) Center-of-Mass det. time= 392.0 min (1,244.3 - 852.4)

Volume	Invert Ava	ail.Storage	Storage Description
#1	2,283.00'	1,086 cf	stone underdrain (Prismatic)Listed below (Recalc)
			2,715 cf Overall x 40.0% Voids
#2	2,284.00'	1,018 cf	filter media (Prismatic)Listed below (Recalc)
			6,788 cf Overall x 15.0% Voids
#3	2,286.50'	18,100 cf	surface storage (Prismatic)Listed below (Recalc)
		20,204 cf	Total Available Storage
Elevation	Surf.Area	Inc	c.Store Cum.Store
(feet)	(sq-ft)	(cubio	c-feet) (cubic-feet)
2,283.00	2,715		0 0
2,284.00	2,715		2,715 2,715

Prepared by The	LA Group P.0	C.	
HydroCAD® 9.10 s/	n 00439 © 2010	0 HydroCAD Softwa	re Solutions LLC

Elevatio	on et)	Surf.Area (sq-ft)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)				
2,284.0	0	2,715	0	0				
2,286.5	50	2,715	6,788	6,788				
Elevatio	n	Surf.Area	Inc.Store	Cum.Store				
(fee	et)	(sq-ft)	(cubic-feet)	(cubic-feet)				
2,286.5	50	2,715	0	0				
2,289.0	00	11,765	18,100	18,100				
Device	Routing	Invert	Outlet Devices					
#1	Primary	2,284.50'	48.0" Round C	ulvert				
	•		L= 50.0' CPP, :	square edge l	headwall, Ke= 0.500			
			Inlet / Outlet Inv	ert= 2,284.50	'/2,282.00' S= 0.0500 '/'	Cc= 0.900		
			n= 0.020 Corru	gated PE, cor	rugated interior			
#2	Device 1	2,288.00'	30.0" x 30.0" He	oriz. Orifice/0	Grate X 3.00 C= 0.600			
			Limited to weir f	Limited to weir flow at low heads				
#3	Primary	2,283.00'	0.500 in/hr Exfi	Itration over	Surface area			

Primary OutFlow Max=8.01 cfs @ 12.14 hrs HW=2,288.19' (Free Discharge)

1=Culvert (Passes 7.84 cfs of 79.14 cfs potential flow) **2=Orifice/Grate** (Weir Controls 7.84 cfs @ 1.41 fps)

-3=Exfiltration (Exfiltration Controls 0.16 cfs)

Summary for Pond P3.2: Dry Swale

Inflow Area	a =	7.881 ac, 2	0.98% Impervious,	Inflow Depth =	1.13" for 1-Y	ear event
Inflow	=	14.08 cfs @	12.01 hrs, Volume	e= 0.741 a	af	
Outflow	=	13.15 cfs @	12.07 hrs, Volume	e= 0.741 a	af, Atten= 7%,	Lag= 3.6 min
Primary	=	13.15 cfs @	12.07 hrs, Volume	e= 0.741 a	af	

Routing by Stor-Ind method, Time Span= 0.00-144.00 hrs, dt= 0.05 hrs Peak Elev= 2,203.26' @ 12.07 hrs Surf.Area= 10,195 sf Storage= 8,502 cf

Plug-Flow detention time= 296.9 min calculated for 0.741 af (100% of inflow) Center-of-Mass det. time= 297.4 min (1,149.3 - 851.9)

Volume	Invert Av	vail.Storage	Storage Description
#1	2,199.00'	762 cf	stone underdrain (Prismatic)Listed below (Recalc)
			1,905 cf Overall x 40.0% Voids
#2	2,200.00'	429 cf	filter media (Prismatic)Listed below (Recalc)
			2,858 cf Overall x 15.0% Voids
#3	2,201.50'	12,700 cf	surface storage (Prismatic)Listed below (Recalc)
		13,891 cf	Total Available Storage
- 1 ()	0 ()		
Elevation	Surf.Are	a inc	c.store Cum.store
(feet)	(sq-fi	t) (cubio	c-feet) (cubic-feet)
2,199.00	1,90	5	0 0
2,200.00	1,90	5	1,905 1,905

Prepared by The LA Gro	up P.C.
HydroCAD® 9.10 s/n 00439	© 2010 HydroCAD Software Solutions LLC

Elevatio	on et)	Surf.Area (sq-ft)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)		
2,200.0)0	1,905	0	0		
2,201.5	50	1,905	2,858	2,858		
Elevatio	on	Surf.Area	Inc.Store	Cum.Store		
(fee	et)	(sq-ft)	(cubic-feet)	(cubic-feet)		
2,201.5	50	1,905	0	0		
2,204.0	00	8,255	12,700	12,700		
Device	Routing	Invert	Outlet Devices			
#1	Primary	2,198.00'	42.0" Round C L= 550.0' CPP Inlet / Outlet Inv	ulvert , square edge ert= 2,198.00 [°] gated PE_cor	e headwall, Ke= 0.500 ' / 2,192.50' S= 0.0100 '/'	Cc= 0.900
#2	Device 1	2,203.00'	30.0" x 30.0" H	oriz. Orifice/(Grate X 3.00 C= 0.600	
#3	Primary	2,199.00'	0.500 in/hr Exfi	Itration over	Surface area	

Primary OutFlow Max=11.79 cfs @ 12.07 hrs HW=2,203.24' (Free Discharge)

-1=Culvert (Passes 11.67 cfs of 68.52 cfs potential flow) -2=Orifice/Grate (Weir Controls 11.67 cfs @ 1.61 fps)

-3=Exfiltration (Exfiltration Controls 0.12 cfs)

Summary for Pond P3.3: P-1

Inflow Area	ι =	20.668 ac, 1	6.21% Impervious	, Inflow Depth =	1.07" f	or 1-Yea	r event
Inflow	=	16.94 cfs @	12.07 hrs, Volum	ie= 1.841	af		
Outflow	=	1.21 cfs @	15.11 hrs, Volum	ie= 1.840	af, Atten	= 93%, L	.ag= 182.6 min
Primary	=	1.21 cfs @	15.11 hrs, Volum	ie= 1.840	af		-

Routing by Stor-Ind method, Time Span= 0.00-144.00 hrs, dt= 0.05 hrs Starting Elev= 2,183.00' Surf.Area= 5,003 sf Storage= 5,563 cf Peak Elev= 2,186.79' @ 15.11 hrs Surf.Area= 13,276 sf Storage= 39,870 cf (34,307 cf above start)

Plug-Flow detention time= 1,659.6 min calculated for 1.712 af (93% of inflow) Center-of-Mass det. time= 1,418.4 min (2,575.0 - 1,156.6)

Volume	Invert	Avail.Storage	Storage Desc	cription	
#1	2,181.00'	116,977 cf	Custom Stag	ge Data (Prisma	t ic) Listed below (Recalc)
Elevation (feet)	Surf.A (S ⁱ	Area In q-ft) (cub	c.Store C ic-feet) (c	Cum.Store cubic-feet)	
2,181.00 2,182.00 2,184.00 2,186.00	2, 7, 11	300 ,911 ,095	0 1,606 10,006 18,507	0 1,606 11,612 30,119	
2,188.00 2,190.00 2,191.00	11, 16, 21, 22,	132 255 600	27,544 37,387 21,928	57,663 95,050 116,977	

Type II 24-hr 1-Year Rainfall=3.00" Printed 12/9/2011 Page 24

Prepared by The LA Group P.C. HydroCAD® 9.10 s/n 00439 © 2010 HydroCAD Software Solutions LLC

Device	Routing	Invert	Outlet Devices
#1	Primary	2,181.00'	30.0" Round Culvert
			L= 30.0' CPP, square edge headwall, Ke= 0.500
			Inlet / Outlet Invert= 2,181.00' / 2,180.85' S= 0.0050 '/' Cc= 0.900
			n= 0.020 Corrugated PE, corrugated interior
#2	Device 1	2,183.00'	2.0" Vert. Orifice/Grate C= 0.600
#3	Device 1	2,186.50'	24.0" W x 6.0" H Vert. Orifice/Grate C= 0.600
#4	Device 1	2,187.50'	30.0" x 30.0" Horiz. Orifice/Grate C= 0.600
			Limited to weir flow at low heads
#5	Primary	2,190.00'	10.0' long x 1.0' breadth Broad-Crested Rectangular Weir
	-		Head (feet) 0.20 0.40 0.60 0.80 1.00 1.20 1.40 1.60 1.80 2.00
			2.50 3.00
			Coef. (English) 2.69 2.72 2.75 2.85 2.98 3.08 3.20 3.28 3.31
			3.30 3.31 3.32

Primary OutFlow Max=1.20 cfs @ 15.11 hrs HW=2,186.79' (Free Discharge)

1=Culvert (Passes 1.20 cfs of 49.74 cfs potential flow)

2=Orifice/Grate (Orifice Controls 0.20 cfs @ 9.27 fps)

-3=Orifice/Grate (Orifice Controls 1.00 cfs @ 1.73 fps)

4=Orifice/Grate (Controls 0.00 cfs)

-5=Broad-Crested Rectangular Weir (Controls 0.00 cfs)

Summary for Pond P5.1: BIORETENTION

Inflow Area	a =	0.684 ac, 1	6.21% Impe	rvious, I	nflow Depth =	1.07"	for 1-Ye	ar event
Inflow	=	1.27 cfs @	11.98 hrs, \	Volume=	0.061	af		
Outflow	=	0.10 cfs @	12.75 hrs, \	Volume=	: 0.084	af, At	ten= 92%,	Lag= 46.5 min
Primary	=	0.10 cfs @	12.75 hrs, `	Volume=	: 0.084	af		-

Routing by Stor-Ind method, Time Span= 0.00-144.00 hrs, dt= 0.05 hrs / 2 Starting Elev= 1,808.00' Surf.Area= 2,961 sf Storage= 987 cf Peak Elev= 1,808.51' @ 12.75 hrs Surf.Area= 3,043 sf Storage= 1,514 cf (527 cf above start)

Plug-Flow detention time= 549.7 min calculated for 0.061 af (100% of inflow) Center-of-Mass det. time= 277.0 min (1,129.8 - 852.7)

Volume	Invert /	Avail.Storage	Storage Description
#1	1,803.00'	395 cf	stone underdrain (Prismatic)Listed below (Recalc)
			987 cf Overall x 40.0% Voids
#2	1,804.00'	592 cf	filter media (Prismatic)Listed below (Recalc)
			3,948 cf Overall x 15.0% Voids
#3	1,808.00'	2,295 cf	surface storage (Prismatic)Listed below (Recalc)
		3,282 cf	Total Available Storage
Elevation	Surf Ar		a Store
	Sull.Al	th (oubi	is fact) (subjected)
(leet)	(SQ	-it) (Cubi	(cubic-leet) (cubic-leet)
1,803.00	9	87	0 0
1,804.00	9	87	987 987

Prepared by The LA Gro	up P.C.	
HydroCAD® 9.10 s/n 00439	© 2010 HydroCAD S	Software Solutions LLC

Elevatio (fee	on et)	Surf.Area (sq-ft)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)								
1,804.0	0	987	0	0								
1,808.0	00	987	3,948	3,948								
Elevatio	n	Surf.Area	Inc.Store	Cum.Store								
(fee	et)	(sq-ft)	(cubic-feet)	(cubic-feet)								
1,808.0	0	987	0	0								
1,810.0	00	1,308	2,295	2,295								
Device	Routing	Invert	Outlet Devices									
#1	Primary	1,808.50'	10.0' long x 1.0)' breadth Br	road-(Creste	ed Re	ectar	ngu	lar V	Neir	
	•		Head (feet) 0.2	0 0.40 0.60	0.80	1.00	1.20	1.4	0 1	.60	1.80	2.00
			2.50 3.00									
			Coef. (English)	2.69 2.72 2	.75 2	.85 2	.98 3	8.08	3.2	20 3.	.28 3	3.31
			3.30 3.31 3.32									

#2 Primary 1,803.00' **0.500 in/hr Exfiltration over Surface area**

Primary OutFlow Max=0.07 cfs @ 12.75 hrs HW=1,808.51' (Free Discharge) 1=Broad-Crested Rectangular Weir (Weir Controls 0.04 cfs @ 0.31 fps) 2=Exfiltration (Exfiltration Controls 0.04 cfs)

Summary for Pond P6.1: BIORETENTION

Inflow Area =	0.225 ac, 48.98% Impervious, Inflow	Depth = 1.66" for 1-Year event	
Inflow =	0.64 cfs @ 11.97 hrs, Volume=	0.031 af	
Outflow =	0.02 cfs @ 11.95 hrs, Volume=	0.031 af, Atten= 97%, Lag= 0.0 mir	n
Primary =	0.02 cfs @ 11.95 hrs, Volume=	0.031 af	

Routing by Stor-Ind method, Time Span= 0.00-144.00 hrs, dt= 0.05 hrs / 2 Starting Elev= 0.01' Surf.Area= 0 sf Storage= 0 cf Peak Elev= 1,685.87' @ 14.63 hrs Surf.Area= 1,600 sf Storage= 784 cf

Plug-Flow detention time= 479.8 min calculated for 0.031 af (100% of inflow) Center-of-Mass det. time= 480.1 min (1,302.4 - 822.3)

Volume	Invert A	Avail.Storage	Storage Description
#1	1,681.00'	320 cf	stone underdrain (Prismatic)Listed below (Recalc)
			800 cf Overall x 40.0% Voids
#2	1,682.00'	480 cf	filter media (Prismatic)Listed below (Recalc)
			3,200 cf Overall x 15.0% Voids
#3	1,686.00'	2,300 cf	surface storage (Prismatic)Listed below (Recalc)
		3,100 cf	Total Available Storage
Elevation	Surf.Ar	ea Inc	nc.Store Cum.Store
(feet)	(sq-	ft) (cubi	bic-feet) (cubic-feet)
1,681.00	8	00	0 0
1,682.00	8	00	800 800

Prepared by The LA Gro	up P.C.	
HydroCAD® 9.10 s/n 00439	© 2010 HydroCAE	D Software Solutions LLC

Elevatio (fee	on et)	Surf.Area (sq-ft)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)	
1,682.0	00	800	0	0	
1,686.0	00	800	3,200	3,200	
Elevatio	on	Surf.Area	Inc.Store	Cum.Store	
(fee	et)	(sq-ft)	(cubic-feet)	(cubic-feet)	
1,686.0	00	800	0	0	
1,688.0	00	1,500	2,300	2,300	
Device	Routing	Invert	Outlet Devices		
#1	Primary	1,686.50'	5.0' long x 1.0' Head (feet) 0.2 2.50 3.00 Coef. (English) 3.30 3.31 3.32	breadth Bro 0 0.40 0.60 2.69 2.72 2.	ad-Crested Rectangular Weir 0.80 1.00 1.20 1.40 1.60 1.80 2.00 75 2.85 2.98 3.08 3.20 3.28 3.31

#2 Primary 1,681.00' **0.500 in/hr Exfiltration over Surface area**

Primary OutFlow Max=0.02 cfs @ 11.95 hrs HW=1,682.30' (Free Discharge) 1=Broad-Crested Rectangular Weir (Controls 0.00 cfs) 2=Exfiltration (Exfiltration Controls 0.02 cfs)

Summary for Pond P6.2: BIORETENTION

Inflow Area =	0.249 ac, 44.31% Impervious, Inflow De	epth = 1.59" for 1-Year event
Inflow =	0.68 cfs @ 11.97 hrs, Volume=	0.033 af
Outflow =	0.03 cfs @ 13.60 hrs, Volume=	0.033 af, Atten= 96%, Lag= 97.6 min
Primary =	0.03 cfs @ 13.60 hrs, Volume=	0.033 af

Routing by Stor-Ind method, Time Span= 0.00-144.00 hrs, dt= 0.05 hrs / 2 Starting Elev= 0.01' Surf.Area= 0 sf Storage= 0 cf Peak Elev= 1,686.01' @ 13.60 hrs Surf.Area= 2,402 sf Storage= 805 cf

Plug-Flow detention time= 480.0 min calculated for 0.033 af (100% of inflow) Center-of-Mass det. time= 480.4 min (1,306.3 - 825.9)

Volume	Invert A	Avail.Storage	Storage Description
#1	1,681.00'	320 cf	stone underdrain (Prismatic)Listed below (Recalc)
			800 cf Overall x 40.0% Voids
#2	1,682.00'	480 cf	filter media (Prismatic)Listed below (Recalc)
			3,200 cf Overall x 15.0% Voids
#3	1,686.00'	2,300 cf	surface storage (Prismatic)Listed below (Recalc)
		3,100 cf	Total Available Storage
Elevation	Surf.Ar	ea Inc	nc.Store Cum.Store
(feet)	(sq-	ft) (cubi	bic-feet) (cubic-feet)
1,681.00	8	00	0 0
1,682.00	8	00	800 800

Prepared by The LA Gro	up P.C.	
HydroCAD® 9.10 s/n 00439	© 2010 HydroCAE	D Software Solutions LL

Elevatio	on et)	Surf.Area (sq-ft)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)	
1,682.0	00	800	0	0	
1,686.0	00	800	3,200	3,200	
Elevatio	on	Surf.Area	Inc.Store	Cum.Store	
(fee	et)	(sq-ft)	(cubic-feet)	(cubic-feet)	
1,686.0	00	800	0	0	
1,688.0	00	1,500	2,300	2,300	
Device	Routing	Invert	Outlet Devices		
#1	Primary	1,686.50'	5.0' long x 1.0'	breadth Bro	ad-Crested Rectangular Weir
			Head (feet) 0.2	0 0.40 0.60	0.80 1.00 1.20 1.40 1.60 1.80 2.00
			2.50 3.00		
			Coef. (English) 3.30 3.31 3.32	2.69 2.72 2	.75 2.85 2.98 3.08 3.20 3.28 3.31

#2 Primary 1,681.00' 0.500 in/hr Exfiltration over Surface area

Primary OutFlow Max=0.03 cfs @ 13.60 hrs HW=1,686.01' (Free Discharge) 1=Broad-Crested Rectangular Weir (Controls 0.00 cfs) 2=Exfiltration (Exfiltration Controls 0.03 cfs)

Summary for Pond P7.1: P-1

Inflow Area	I =	2.973 ac, 3	9.49% Impe	ervious,	Inflow Depth =	1.45"	for 1-Ye	ar event
Inflow	=	7.41 cfs @	11.97 hrs,	Volume	= 0.358	8 af		
Outflow	=	0.12 cfs @	18.68 hrs,	Volume	= 0.358	8 af, At	ten= 98%,	Lag= 402.5 min
Primary	=	0.12 cfs @	18.68 hrs,	Volume	= 0.358	8 af		

Routing by Stor-Ind method, Time Span= 0.00-144.00 hrs, dt= 0.05 hrs / 2 Starting Elev= 1,676.00' Surf.Area= 2,800 sf Storage= 3,265 cf Peak Elev= 1,678.44' @ 18.68 hrs Surf.Area= 6,237 sf Storage= 14,213 cf (10,948 cf above start)

Plug-Flow detention time= 1,502.2 min calculated for 0.283 af (79% of inflow) Center-of-Mass det. time= 1,142.7 min (1,975.5 - 832.8)

Volume	Invert Av	ail.Storage	Storage	Description	
#1	1,674.00'	34,944 cf	Custom	Stage Data (P	rismatic)Listed below (Recalc)
Elevation	Surf.Area	Inc.	Store	Cum.Store	
(teet)	(sq-tt)		c-reet)	(cubic-feet)	
1,674.00	465		0	0	
1,676.00	2,800		3,265	3,265	
1,678.00	5,541		8,341	11,606	
1,680.00	8,686	1	4,227	25,833	
1,681.00	9,535		9,111	34,944	

Type II 24-hr 1-Year Rainfall=3.00" Printed 12/9/2011 Page 28

Prepared by The LA Group P.C. HydroCAD® 9.10 s/n 00439 © 2010 HydroCAD Software Solutions LLC

Device	Routing	Invert	Outlet Devices
#1	Primary	1,674.00'	24.0" Round Culvert
			L= 74.0' CPP, square edge headwall, Ke= 0.500
			Inlet / Outlet Invert= 1,674.00' / 1,673.63' S= 0.0050 '/' Cc= 0.900
			n= 0.020 Corrugated PE, corrugated interior
#2	Device 1	1,676.00'	1.7" Vert. Orifice/Grate C= 0.600
#3	Device 1	1,678.50'	6.0" Vert. Orifice/Grate C= 0.600
#4	Device 1	1,679.50'	24.0" x 24.0" Horiz. Orifice/Grate C= 0.600
			Limited to weir flow at low heads
#5	Primary	1,680.00'	20.0' long x 1.0' breadth Broad-Crested Rectangular Weir
	-		Head (feet) 0.20 0.40 0.60 0.80 1.00 1.20 1.40 1.60 1.80 2.00
			2.50 3.00
			Coef. (English) 2.69 2.72 2.75 2.85 2.98 3.08 3.20 3.28 3.31
			3.30 3.31 3.32

Primary OutFlow Max=0.12 cfs @ 18.68 hrs HW=1,678.44' (Free Discharge)

1=Culvert (Passes 0.12 cfs of 22.03 cfs potential flow)

2=Orifice/Grate (Orifice Controls 0.12 cfs @ 7.42 fps)

-3=Orifice/Grate (Controls 0.00 cfs)

4=Orifice/Grate (Controls 0.00 cfs)

-5=Broad-Crested Rectangular Weir (Controls 0.00 cfs)

Summary for Pond P8.1: DRY SWALE

Inflow Area	1 =	2.715 ac, 2	28.55% Imper	vious, Inflow D	epth = 1.25	for 1-Ye	ar event
Inflow	=	4.58 cfs @	12.06 hrs, V	/olume=	0.283 af		
Outflow	=	2.68 cfs @	12.19 hrs, V	/olume=	0.283 af, A	tten= 42%,	Lag= 8.1 min
Primary	=	2.68 cfs @	12.19 hrs, V	/olume=	0.283 af		

Routing by Stor-Ind method, Time Span= 0.00-144.00 hrs, dt= 0.05 hrs / 2 Peak Elev= 2,309.46' @ 12.19 hrs Surf.Area= 5,492 sf Storage= 4,061 cf

Plug-Flow detention time= 372.8 min calculated for 0.283 af (100% of inflow) Center-of-Mass det. time= 373.2 min (1,222.8 - 849.6)

Volume	Invert	Avai	il.Storage	Stora	ge Description		
#1	2,304.50'		444 cf	stone	underdrain (Prisr	matic)Listed below	/ (Recalc)
				1,110	cf Overall x 40.0%	6 Voids	
#2	2,305.50'		416 cf	filter	media (Prismatic)	Listed below (Rec	alc)
			E 400 - (2,775	ct Overall x 15.0%		
#3	2,308.00		5,180 cf	surfa	ce storage (Prisma	atic)Listed below	(Recalc)
			6,040 cf	Total	Available Storage		
Elevation	Sur	f Area	Inc	Store	Cum Store		
(foot)	Our	(eq_ft)	(cubi	c_foot)	(cubic-feet)		
			(cubi				
2,304.50		1,110		0	0		
2,305.50		1,110		1,110	1,110		
Elevation	Sur	f.Area	Inc	Store	Cum.Store		
(feet)		(sq-ft)	(cubi	c-feet)	(cubic-feet)		
2,305.50		1,110		0	0		
2,308.00		1,110		2,775	2,775		

Elevation (feet)	Surf.Area (sɑ-ft)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)	
2,308.00	1,110	0	0	
2,310.00	4,070	5,180	5,180	

Device Routing Invert Outlet Devices Primary 2,309.25' 10.0' long x 1.0' breadth Broad-Crested Rectangular Weir #1 Head (feet) 0.20 0.40 0.60 0.80 1.00 1.20 1.40 1.60 1.80 2.00 2.50 3.00 Coef. (English) 2.69 2.72 2.75 2.85 2.98 3.08 3.20 3.28 3.31 3.30 3.31 3.32 #2 Primary 2,304.50' 0.500 in/hr Exfiltration over Surface area

Primary OutFlow Max=2.63 cfs @ 12.19 hrs HW=2,309.46' (Free Discharge) 1=Broad-Crested Rectangular Weir (Weir Controls 2.57 cfs @ 1.23 fps) 2=Exfiltration (Exfiltration Controls 0.06 cfs)

Summary for Pond P8.2: P-1

Inflow Ar	ea =	27.190 ac, 22.39% Impervious, Inflow	Depth = 1.16" for 1-Year event
Inflow	=	37.90 cfs @ 12.02 hrs, Volume=	2.639 af
Outflow	=	3.07 cfs @ 13.25 hrs, Volume=	2.638 af, Atten= 92%, Lag= 73.7 min
Primary	=	3.07 cfs @ 13.25 hrs, Volume=	2.638 af

Routing by Stor-Ind method, Time Span= 0.00-144.00 hrs, dt= 0.05 hrs Starting Elev= 1,675.75' Surf.Area= 4,839 sf Storage= 10,231 cf Peak Elev= 1,681.61' @ 13.25 hrs Surf.Area= 14,576 sf Storage= 65,430 cf (55,199 cf above start)

Plug-Flow detention time= 1,555.7 min calculated for 2.402 af (91% of inflow) Center-of-Mass det. time= 1,327.4 min (2,250.6 - 923.3)

Volume	Inve	rt Avail.Sto	rage Storage	Description			
#1	1,672.0	0' 106,08	B0 cf Custon	n Stage Data (Pr	r ismatic) Listed below (Recalc)		
Elevatio	n	Surf.Area	Inc.Store	Cum.Store			
(fee	t)	(sq-ft)	(cubic-feet)	(cubic-feet)			
1,672.0	0	1,000	0	0			
1,674.0	0	2,665	3,665	3,665			
1,676.0	0	5,150	7,815	11,480			
1,678.0	0	8,130	13,280	24,760			
1,680.0	0	11,525	19,655	44,415			
1,682.0	0	15,315	26,840	71,255			
1,684.0	0	19,510	34,825	106,080			
Device	Routing	Invert	Outlet Device	es			
#1	Primary	1,672.00'	24.0" Round	d Culvert			
			L= 93.0' CP	P, square edge h	neadwall, Ke= 0.500		
			Inlet / Outlet	Invert= 1,672.00'	/ 1,671.54' S= 0.0049 '/' Cc= 0.900		
	D · · · ·		n= 0.020 Corrugated PE, corrugated interior				
#2	Device 1	1,675.75	2.0" vert. Or	ITICE/Grate C=			
#3	Device 1	1,681.00	24.0" W X 6.0	J" H vert. Orific	e/Grate C = 0.600		

08077_Proposed	Type II 24
Prepared by The LA Group P.C.	
HydroCAD® 9.10 s/n 00439 © 2010 HydroCAD Software Solutions LLC	

#4	Device 1	1,682.00'	36.0" x 36.0" Horiz. Orifice/Grate C= 0.600 Limited to weir flow at low heads
#5	Primary	1,683.00'	35.0' long x 1.0' breadth Broad-Crested Rectangular Weir Head (feet) 0.20 0.40 0.60 0.80 1.00 1.20 1.40 1.60 1.80 2.00 2.50 3.00 Coef. (English) 2.69 2.72 2.75 2.85 2.98 3.08 3.20 3.28 3.31 3.30 3.31 3.32

Primary OutFlow Max=3.08 cfs @ 13.25 hrs HW=1,681.61' (Free Discharge)

-1=Culvert (Passes 3.08 cfs of 34.77 cfs potential flow)

2=Orifice/Grate (Orifice Controls 0.25 cfs @ 11.57 fps)

3=Orifice/Grate (Orifice Controls 2.83 cfs @ 2.83 fps)

4=Orifice/Grate (Controls 0.00 cfs)

-5=Broad-Crested Rectangular Weir (Controls 0.00 cfs)

Summary for Pond P8.3: DRY SWALE

Inflow Are	ea =	1.145 ac, 16.92% Impervious, I	nflow Depth = 1.13" for 1-Year event
Inflow	=	2.25 cfs @ 11.98 hrs, Volume=	0.108 af
Outflow	=	0.11 cfs @ 13.49 hrs, Volume=	0.108 af, Atten= 95%, Lag= 90.9 min
Primary	=	0.11 cfs @ 13.49 hrs, Volume=	0.108 af

Routing by Stor-Ind method, Time Span= 0.00-144.00 hrs, dt= 0.05 hrs / 2 Peak Elev= 1,756.52' @ 13.49 hrs Surf.Area= 3,482 sf Storage= 2,651 cf

Plug-Flow detention time= 738.7 min calculated for 0.108 af (100% of inflow) Center-of-Mass det. time= 739.0 min (1,588.4 - 849.4)

Volume	Invert	Avail.Storage	Storage Description
#1	1,751.50'	264 cf	stone underdrain (Prismatic)Listed below (Recalc)
			660 cf Overall x 40.0% Voids
#2	1,752.50'	248 cf	filter media (Prismatic)Listed below (Recalc)
			1,650 cf Overall x 15.0% Voids
#3	1,755.00'	6,105 cf	surface storage (Prismatic)Listed below (Recalc)
		6,617 cf	Total Available Storage

Elevation (feet)	Surf.Area (sq-ft)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)
1,751.50 1,752.50	660 660	0 660	0 660
Elevation (feet)	Surf.Area (sq-ft)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)
1,752.50	660	0	0
1,755.00	660	1,650	1,650
Elevation	Surf.Area	Inc.Store	Cum.Store
(feet)	(sq-ft)	(cubic-feet)	(cubic-feet)
1,755.00	660	0	0
1,757.00	2,640	3,300	3,300
1,758.00	2,970	2,805	6,105

Type II 24-hr 1-Year Rainfall=3.00" Printed 12/9/2011 Page 31

Prepared by The LA Group P.C. HydroCAD® 9.10 s/n 00439 © 2010 HydroCAD Software Solutions LLC

Device	Routing	Invert	Outlet Devices
#1 #2	Primary Primary	1,756.50' 1,751.50'	7.0' long x 1.0' breadth Broad-Crested Rectangular WeirHead (feet)0.200.400.600.801.001.201.401.601.802.002.503.003.000.600.801.001.201.401.601.802.00Coef. (English)2.692.722.752.852.983.083.203.283.313.303.313.320.500 in/hr Exfiltration over Surface area

Primary OutFlow Max=0.08 cfs @ 13.49 hrs HW=1,756.52' (Free Discharge) 1=Broad-Crested Rectangular Weir (Weir Controls 0.04 cfs @ 0.35 fps)

2=Exfiltration (Exfiltration Controls 0.04 cfs)

Summary for Pond P9.1: DRY SWALE

Inflow Area	ι =	4.151 ac, 2	1.51% Impe	ervious,	Inflow Depth =	1.13"	for 1-Yea	ar event
Inflow	=	6.07 cfs @	12.07 hrs,	Volume	= 0.391	af		
Outflow	=	1.85 cfs @	12.34 hrs,	Volume	= 0.391	af, Atte	en= 70%,	Lag= 15.9 min
Primary	=	1.85 cfs @	12.34 hrs,	Volume	= 0.391	af		

Routing by Stor-Ind method, Time Span= 0.00-144.00 hrs, dt= 0.05 hrs Peak Elev= 1,819.16' @ 12.33 hrs Surf.Area= 8,136 sf Storage= 6,673 cf

Plug-Flow detention time= 492.8 min calculated for 0.390 af (100% of inflow) Center-of-Mass det. time= 493.3 min (1,350.4 - 857.0)

Volume	Inve	ert Ava	il.Storage	Storage	e Description				
#1	1,814.0)0'	624 cf	stone u	stone underdrain (Prismatic)Listed below (Recalc)				
			(1,560 c	1,560 cf Overall x 40.0% Voids				
#2	1,815.0)0'	585 cf	filter m	edia (Prismatic)	Listed below (Recalc)			
#3	1 817 5	50'	10 400 cf	Surface	e storage (Prism	atic)			
	1,01110		11.609 cf	Total A	vailable Storage				
			,		i analoro o toralgo				
Elevation		Surf.Area	Inc	.Store	Cum.Store				
(feet)		(sq-ft)	(cubi	c-feet)	(cubic-feet)				
1,814.00		1,560		0	0				
1,815.00		1,560		1,560	1,560				
_		~		O /					
Elevation		Surf.Area	Inc	Store	Cum Store				
(feet)		(sq-ft)	(cubi	c-feet)	(cubic-feet)				
1,815.00		1,560		0	0				
1,817.50		1,560		3,900	3,900				
Elevation		Surf Area	Inc	Store	Cum Store				
(feet)		(sa-ft)	(cubi	c-feet)	(cubic-feet)				
1.817.50		1.560		0	0				
1,820.00		6,760	1	0,400	10,400				
<u>Device</u> F	Routing	lr	nvert Outle	et Device	es				
#1 F	Primary	1,814	4.00' 0.50	0 in/hr E	Exfiltration over	Surface area			
#2 F	Primary	1,819	9.00' 10.0	'long x	1.0' breadth Bro	oad-Crested Rectangular Weir			

Head (feet) 0.20 0.40 0.60 0.80 1.00 1.20 1.40 1.60 1.80 2.00 2.50 3.00 Coef. (English) 2.69 2.72 2.75 2.85 2.98 3.08 3.20 3.28 3.31 3.30 3.31 3.32

Primary OutFlow Max=1.83 cfs @ 12.34 hrs HW=1,819.16' (Free Discharge) 1=Exfiltration (Exfiltration Controls 0.09 cfs) 2=Broad-Crested Rectangular Weir (Weir Controls 1.73 cfs @ 1.08 fps)

Summary for Pond P9.2: Pond 9.2

Inflow Are	a =	19.480 ac, 21.84% Impervious, Inflow Depth = 1.15" for 1-Year event	
Inflow	=	28.88 cfs @ 12.00 hrs, Volume= 1.868 af	
Outflow	=	0.58 cfs @ 19.79 hrs, Volume= 1.867 af, Atten= 98%, Lag= 467.9 mir	ſ
Primary	=	0.58 cfs @ 19.79 hrs, Volume= 1.867 af	

Routing by Stor-Ind method, Time Span= 0.00-144.00 hrs, dt= 0.05 hrs Starting Elev= 1,667.00' Surf.Area= 3,838 sf Storage= 6,979 cf Peak Elev= 1,672.14' @ 19.79 hrs Surf.Area= 18,624 sf Storage= 63,821 cf (56,841 cf above start)

Plug-Flow detention time= 2,551.5 min calculated for 1.707 af (91% of inflow) Center-of-Mass det. time= 2,237.1 min (3,194.4 - 957.3)

Volume	Inver	t Avail.Sto	rage Storage	Description	
#1	1,664.00	' 169,8 <i>°</i>	13 cf Custom	Stage Data (Pi	rismatic)Listed below (Recalc)
Elevatio	n S	Surf.Area	Inc.Store	Cum.Store	
	.)	(54-11)			
1,664.0	0	433	0	0	
1,666.0	0	3,085	3,518	3,518	
1,668.0	0	4,590	7,675	11,193	
1,670.0	0	13,607	18,197	29,390	
1,672.0	0	18,274	31,881	61,271	
1,674.0	0	23,344	41,618	102,889	
1,676.0	0	28,815	52,159	155,048	
1,676.5	0	30,246	14,765	169,813	
Device	Routing	Invert	Outlet Device	S	
#1	Primary	1,653.00'	24.0" Round	l Culvert	
	2	·	L= 300.0' CF	PP, square edge	e headwall, Ke= 0.500
			Inlet / Outlet I	nvert= 1,653.00	'/1,651.50' S= 0.0050 '/' Cc= 0.900
			n= 0.020 Cor	rugated PE, cor	rugated interior
#2	Device 1	1,667.00'	2.0" Vert. Ori	fice/Grate C=	0.600
#3	Device 1	1,671.75'	6.0" Vert. Ori	fice/Grate C=	0.600
#4	Device 1	1,675.00'	24.0" x 24.0"	Horiz. Orifice/0	Grate C= 0.600
			Limited to wei	ir flow at low hea	ads
#5	Primary	1,675.50'	50.0' long x	1.0' breadth Bro	oad-Crested Rectangular Weir
		·	Head (feet) 0	.20 0.40 0.60	0.80 1.00 1.20 1.40 1.60 1.80 2.00
			2.50 3.00		
			Coef. (Enalish	n) 2.69 2.72 2.	75 2.85 2.98 3.08 3.20 3.28 3.31
			3.30 3.31 3.3	32	

Primary OutFlow Max=0.58 cfs @ 19.79 hrs HW=1,672.14' (Free Discharge)

-1=Culvert (Passes 0.58 cfs of 33.83 cfs potential flow)

2=Orifice/Grate (Orifice Controls 0.24 cfs @ 10.83 fps)

-3=Orifice/Grate (Orifice Controls 0.35 cfs @ 2.12 fps)

4=Orifice/Grate (Controls 0.00 cfs)

-5=Broad-Crested Rectangular Weir (Controls 0.00 cfs)

Summary for Pond P9.3: BIORETENTION

Inflow Area	1 =	1.347 ac, 3	5.43% Imper	vious, Inflow De	epth = 1.45"	for 1-Yea	ar event
Inflow	=	3.36 cfs @	11.97 hrs, V	/olume=	0.162 af		
Outflow	=	0.13 cfs @	13.73 hrs, V	/olume=	0.162 af, Atte	en= 96%,	Lag= 105.4 min
Primary	=	0.13 cfs @	13.73 hrs, V	/olume=	0.162 af		

Routing by Stor-Ind method, Time Span= 0.00-144.00 hrs, dt= 0.05 hrs / 2 Peak Elev= 1,658.03' @ 13.73 hrs Surf.Area= 11,610 sf Storage= 3,979 cf

Plug-Flow detention time= 488.1 min calculated for 0.162 af (100% of inflow) Center-of-Mass det. time= 488.5 min (1,321.4 - 832.8)

Volume	Invert	Avail.Sto	rage	Storage D	escription		
#1	1,653.00'	1,54	46 cf	stone underdrain (Prismatic)Listed below (Recalc)			
#2	1,654.00'	2,3	18 cf	filter med	ia (Prismatic) Overall_x 15.0	Listed below (Recalc)	
#3	1,658.00'	8,9	14 cf	surface st	torage (Prism	natic)Listed below (Recalc)	
		12,7	78 cf	Total Avai	lable Storage		
Elevation	S	urf.Area	Inc.	Store	Cum.Store		
(feet)		(sq-ft)	(cubic	:-feet)	(cubic-feet)		
1,653.00		3,864		0	0		
1,654.00		3,864		3,864	3,864		
Elevation	S	urf.Area	Inc.	Store	Cum.Store		
(feet)		(sq-ft)	(cubic	:-feet)	(cubic-feet)		
1,654.00		3,864		0	0		
1,658.00		3,864	1	5,456	15,456		
Elevation	S	urf.Area	Inc.	Store	Cum.Store		
(feet)		(sq-ft)	(cubic	:-feet)	(cubic-feet)		
1,658.00		3,864		0	0		
1,660.00		5,050		8,914	8,914		
Device F	Routing	Invert	Outle	t Devices			
#1 F	Primary	1,653.00'	12.0'	' Round C	ulvert		
#2 [Device 1	1.653.00'	L= 80 Inlet n= 0.	80.0' CPP, square edge headwall, Ke= 0.500 et / Outlet Invert= 1,653.00' / 1,652.60' S= 0.0050 '/' Cc= 0.900 0.020 Corrugated PE, corrugated interior 500 in/br Exfittration over Surface area			
#3 E	Device 1	1,658.50'	6.0"	Horiz. Orif	ice/Grate C	= 0.600	

08077_Proposed	Type II 24-hr 1-Year Rainfall=3.00"
Prepared by The LA Group P.C.	Printed 12/9/2011
HydroCAD® 9.10 s/n 00439 © 2010 HydroCAD Software Solutions LLC	Page 34
Limited to weir flow at low boad	- -

#4	Primary	1,659.50'	25.0' long x 1.0' breadth Broad-Crested Rectangular Weir
			Head (feet) 0.20 0.40 0.60 0.80 1.00 1.20 1.40 1.60 1.80 2.00
			2.50 3.00
			Coef. (English) 2.69 2.72 2.75 2.85 2.98 3.08 3.20 3.28 3.31
			3.30 3.31 3.32

Primary OutFlow Max=0.13 cfs @ 13.73 hrs HW=1,658.03' (Free Discharge)

-1=Culvert (Passes 0.13 cfs of 4.86 cfs potential flow)

2=Exfiltration (Exfiltration Controls 0.13 cfs) **3=Orifice/Grate** (Controls 0.00 cfs)

-4=Broad-Crested Rectangular Weir (Controls 0.00 cfs)

Summary for Pond P9.ex: Existing Pond

Inflow Area	1 =	2.870 ac,	4.48% Impervious,	Inflow Depth = 0.9	91" for 1-Year event
Inflow	=	4.37 cfs @	11.99 hrs, Volume	= 0.217 af	
Outflow	=	0.30 cfs @	13.00 hrs, Volume	= 0.105 af,	Atten= 93%, Lag= 60.7 min
Primary	=	0.30 cfs @	13.00 hrs, Volume	= 0.105 af	

Routing by Stor-Ind method, Time Span= 0.00-144.00 hrs, dt= 0.05 hrs / 2 Peak Elev= 1,672.04' @ 13.00 hrs Surf.Area= 2,670 sf Storage= 4,988 cf

Plug-Flow detention time= 299.1 min calculated for 0.105 af (48% of inflow) Center-of-Mass det. time= 157.0 min (1,020.6 - 863.6)

Volume	Inve	ert Avail.Sto	orage S	torage D	Description	
#1	1,668.5	0' 6,3	00 cf C	ustom S	Stage Data (P	rismatic)Listed below (Recalc)
Elevation (feet))	Surf.Area (sq-ft)	Inc.St (cubic-fe	ore eet)	Cum.Store (cubic-feet)	
1,668.50		150		0	0	
1,672.50		3,000	6,3	300	6,300	
Device I	Routing	Invert	Outlet I	Devices		
#1	Primary	1,672.00'	15.0' lc Head (f 2.50 3 Coef. (f 2.85 3	ong x 2. feet) 0.2 .00 3.50 English) .07 3.20	0' breadth Br 20 0.40 0.60) 2.54 2.61 2.) 3.32	Dad-Crested Rectangular Weir0.801.001.201.401.601.802.00612.602.662.702.772.892.88

Primary OutFlow Max=0.28 cfs @ 13.00 hrs HW=1,672.04' (Free Discharge) 1=Broad-Crested Rectangular Weir (Weir Controls 0.28 cfs @ 0.49 fps)

Summary for Pond 1.1P: Pond 1.1

Inflow Area	a =	9.950 ac, 14.75%	Impervious, Inflow	Depth = 2.64"	for 10-Year event
Inflow	=	42.14 cfs @ 11.99	hrs, Volume=	2.188 af	
Outflow	=	6.18 cfs @ 12.32	hrs, Volume=	2.187 af, Atte	en= 85%, Lag= 19.9 min
Primary	=	6.18 cfs @ 12.32	hrs, Volume=	2.187 af	

Routing by Stor-Ind method, Time Span= 0.00-144.00 hrs, dt= 0.05 hrs Starting Elev= 2,158.50' Surf.Area= 4,792 sf Storage= 6,889 cf Peak Elev= 2,163.31' @ 12.32 hrs Surf.Area= 15,060 sf Storage= 53,671 cf (46,782 cf above start)

Plug-Flow detention time= 743.5 min calculated for 2.029 af (93% of inflow) Center-of-Mass det. time= 646.1 min (1,473.8 - 827.7)

Volume	Inver	t Avail.Sto	rage Storage	Description	
#1	2,156.00	125,35	59 cf Custom	Stage Data (Pi	rismatic)Listed below (Recalc)
	~				
Elevation	5	Surf.Area	Inc.Store	Cum.Store	
(feet)		(sq-ft)	(cubic-feet)	(cubic-feet)	
2,156.00		902	0	0	
2,158.00		3,831	4,733	4,733	
2,160.00		7,673	11,504	16,237	
2,162.00		11,982	19,655	35,892	
2,164.00		16,663	28,645	64,537	
2,166.00		21,746	38,409	102,946	
2,167.00		23,079	22,413	125,359	
Device F	Pouting	Invert	Outlet Device	e	
<u>#1</u>	<u>Vouting</u>	2 159 50'	24.0" Bound	Culvert	
#1 r	linary	2,156.50	24.0 Round		boodwall Ka-0 E00
			L= 50.0 CFF	$^{\circ}$, square euger	1/2 157 65' S= 0.000
			n = 0.020 Cor	rugated PE cor	72,157.05 $S=0.01707$ $CC=0.900$
# 2 [Dovice 1	2 159 50'	2 0" Vort Ori		
#Z L #2 [2,100.00	2.0 Vert. Ori	fice/Grate C=	0.000
#3 L #4 [2,101.23	0.0 Vert. Or	Horiz Orifical	$C_{-0.600}$
#4 L	Jevice I	2,103.00	Limited to wei	r flow at low box	
#5 [Drimony	2 164 75		1 110W at 10W fied	aus
#5 6	linary	2,104.75			
				.20 0.40 0.00	0.80 1.00 1.20 1.40 1.60 1.60 2.00
			2.30 3.00 Coof (English		75 2 05 2 00 2 00 2 20 2 20 2 21
				1) 2.09 2.12 2.	15 2.05 2.90 3.00 3.20 3.20 3.31
			3.30 3.31 3.3	52	
Primary C	OutFlow ♪	Max=6.09 cfs @	2 12.32 hrs HV	V=2,163.31' (F	ree Discharge)
1=Culv	vert (Pass	ses 6.09 cfs of	27.98 cfs poten	tial flow)	······································
1 1−2=0	rifice/Gra	te (Orifice Co	ntrols 0.23 cfs	@ 10.47 fps)	
-3=0	rifice/Gra	ate (Orifice Co	ntrols 1.27 cfs	@ 6.48 fps)	

4=Orifice/Grate (Weir Controls 4.59 cfs @ 1.83 fps)

-5=Broad-Crested Rectangular Weir (Controls 0.00 cfs)

Summary for Pond 2.1P: Dry Swale

Inflow Area	a =	6.302 ac,	9.60% Impervious,	Inflow Depth =	2.45" for 10-	Year event
Inflow	=	19.74 cfs @	12.07 hrs, Volume	= 1.286 a	af	
Outflow	=	18.63 cfs @	12.11 hrs, Volume	= 1.287 a	af, Atten= 6% ,	Lag= 2.4 min
Primary	=	18.63 cfs @	12.11 hrs, Volume	= 1.287 a	af	-

Routing by Stor-Ind method, Time Span= 0.00-144.00 hrs, dt= 0.05 hrs / 2 Peak Elev= 2,302.48' @ 12.11 hrs Surf.Area= 9,133 sf Storage= 8,781 cf

Plug-Flow detention time= 134.0 min calculated for 1.286 af (100% of inflow) Center-of-Mass det. time= 134.8 min (974.9 - 840.1)

Volume	Inv	ert Avai	I.Storage	Storag	e Description		
#1	2,297.0	00'	460 cf	grave 1,150	l underdrain (Pris	smatic) Listed below (Recalc) % Voids	
#2	2,298.0	00'	431 cf	Filter	Filter Media (Prismatic)Listed below (Recalc)		
				2,875	cf Overall x 15.09	% Voids	
#3	2,300.5	50'	8,050 cf	Surfac	ce Storage (Prisr	matic)Listed below (Recalc)	
			8,941 cf	Total A	Available Storage		
Elevatior	ı	Surf.Area	In	c.Store	Cum.Store		
(feet		(sq-ft)	(cub	oic-feet)	(cubic-feet)		
2,297.00)	1,150		0	0		
2,298.00)	1,150		1,150	1,150		
Elevatior	1	Surf.Area	In	c.Store	Cum.Store		
(feet))	(sq-ft)	(cub	oic-feet)	(cubic-feet)		
2,298.00)	1,150		0	0		
2,300.50)	1,150		2,875	2,875		
Elevatior	n	Surf.Area	In	c.Store	Cum.Store		
(feet))	(sq-ft)	(cub	ic-feet)	(cubic-feet)		
2,300.50)	1,150		0	0		
2,302.50)	6,900		8,050	8,050		
Device	Routing	Inv	vert Out	let Devid	ces		
#1	Primary	2,301	.85' 12.	0' long	x 0.5' breadth Br	oad-Crested Rectangular Weir	
			Hea	ad (teet)	0.20 0.40 0.60		
# 0	Drimon	2 207		er. (Engli 20 in/hr	SN) 2.80 2.92 3.	$.08 \ 3.30 \ 3.32$	
#2	Primary	2,297.	.00° 0.5	uu in/nr	Exhibiting over	Surrace area	
	24 E la	May 10.00				(Free Discharge)	

Primary OutFlow Max=18.30 cfs @ 12.11 hrs HW=2,302.47' (Free Discharge) 1=Broad-Crested Rectangular Weir (Weir Controls 18.20 cfs @ 2.44 fps) 2=Exfiltration (Exfiltration Controls 0.11 cfs)

Summary for Pond 2.4P: Dry Swale

Inflow Area =	5.002 ac, 2	20.72% Impervious,	Inflow Depth = 2.75	5" for 10-Year event
Inflow =	23.55 cfs @	11.97 hrs, Volume=	= 1.147 af	
Outflow =	22.49 cfs @	11.99 hrs, Volume=	= 1.146 af, <i>I</i>	Atten= 5%, Lag= 1.3 min
Primary =	22.37 cfs @	11.99 hrs, Volume=	= 0.870 af	
Secondary =	0.12 cfs @	11.99 hrs, Volume=	= 0.276 af	

Routing by Stor-Ind method, Time Span= 0.00-144.00 hrs, dt= 0.05 hrs / 2 Peak Elev= 2,191.95' @ 11.99 hrs Surf.Area= 10,086 sf Storage= 9,483 cf

Plug-Flow detention time= 201.3 min calculated for 1.146 af (100% of inflow) Center-of-Mass det. time= 200.8 min (1,023.5 - 822.7)

Volume	Inve	ert Avail.Sto	orage	Storage [Description	
#1	2,186.5	0' 7	'20 cf	Stone Ur	derdrain (Pris	smatic)Listed below (Recalc)
#2	2 187 5	0' F	375 cf	1,800 cf (Filter Me	Jverall x 40.0% dia (Prismatic	% Volds N isted below (Recalc)
π∠	2,107.5	0 0	1001	4.500 cf (Overall x 15.09	% Voids
#3	2,190.0	0' 8,4	00 cf	Surface S	Storage (Prisn	natic)Listed below (Recalc)
		9,7	'95 cf	Total Ava	ilable Storage	
Elevation		Surf.Area	Inc.	Store	Cum.Store	
(feet)		(sq-ft)	(cubic	-feet)	(cubic-feet)	
2,186.50		1,800		0	0	
2,187.50		1,800		1,800	1,800	
Elevation		Surf.Area	Inc.	Store	Cum.Store	
(feet)		(sq-ft)	(cubic	-feet)	(cubic-feet)	
2,187.50		1,800		0	0	
2,190.00		1,800	2	1,500	4,500	
Elevation		Surf.Area	Inc.	Store	Cum.Store	
(feet)		(sq-ft)	(cubic	-feet)	(cubic-feet)	
2,190.00		1,800		0	0	
2,192.00		6,600	8	3,400	8,400	
Device I	Routing	Invert	Outle	t Devices		
#1 F	Primary	2,191.50'	18.0"	Horiz. O	rifice/Grate X	3.00 C= 0.600
#2 F	Primary	2 191 50'	10.0'		0' breadth Br	oad-Crested Rectangular Weir
	innary	2,101100	Head	(feet) 0.2	20 0.40 0.60	0.80 1.00 1.20 1.40 1.60 1.80 2.00
			2.50	3.00 [′]		
			Coef.	(English)	2.69 2.72 2.	75 2.85 2.98 3.08 3.20 3.28 3.31
	_		3.30	3.31 3.32	2	
#3 \$	Seconda	ry 2,186.50'	0.500	in/hr Ext	filtration over	Surface area

Primary OutFlow Max=21.90 cfs @ 11.99 hrs HW=2,191.95' (Free Discharge) 1=Orifice/Grate (Weir Controls 13.78 cfs @ 2.18 fps) 2=Broad-Crested Rectangular Weir (Weir Controls 8.13 cfs @ 1.82 fps)

Secondary OutFlow Max=0.12 cfs @ 11.99 hrs HW=2,191.95' (Free Discharge) —3=Exfiltration (Exfiltration Controls 0.12 cfs)

Summary for Pond 2.6P: Dry Swale

Inflow Area	a =	3.914 ac, 1	1.46% Impervious,	Inflow Depth = 2	2.54" for	10-Year event
Inflow	=	14.54 cfs @	12.03 hrs, Volume	e 0.827 a	af	
Outflow	=	9.04 cfs @	12.14 hrs, Volume	e 0.826 a	af, Atten= 3	8%, Lag= 6.4 min
Primary	=	9.04 cfs @	12.14 hrs, Volume	e 0.826 a	af	-

Routing by Stor-Ind method, Time Span= 0.00-144.00 hrs, dt= 0.05 hrs / 2 Peak Elev= 2,422.47' @ 12.14 hrs Surf.Area= 12,664 sf Storage= 12,044 cf

Plug-Flow detention time= 344.4 min calculated for 0.826 af (100% of inflow) Center-of-Mass det. time= 343.9 min (1,177.7 - 833.8)

Volume	Inv	ert Ava	il.Storage	e Storag	ge Description	
#1	2,417.0)0'	850 c	f Stone	Underdrain (Pris	smatic)Listed below (Recalc)
#0	0 440 0		707 0	2,125	cf Overall x 40.09	% Voids
#2	2,418.0	JU [*]	797 C	5 313	of Overall x 15 09	LISTED DEIOW (RECAIC)
#3	2,420.5	50'	10,625 c	f surfac	ce storage (Prism	natic)Listed below (Recalc)
			12,272 c	f Total	Available Storage	
Elevation		Surf Area	h	nc Store	Cum Store	
(feet)		(sq-ft)	(cu	bic-feet)	(cubic-feet)	
2,417.00		2,125	•	0	0	
2,418.00)	2,125		2,125	2,125	
Elevation	l	Surf.Area	h	nc.Store	Cum.Store	
(feet)		(sq-ft)	(cu	bic-feet)	(cubic-feet)	
2,418.00	1	2,125		0	0	
2,420.50		2,125		5,313	5,313	
Elevation	l	Surf.Area	h	nc.Store	Cum.Store	
(feet)		(sq-ft)	(cu	bic-feet)	(cubic-feet)	
2,420.50)	2,125		0	0	
2,422.50		8,500		10,625	10,625	
Device I	Routing	In	ivert Ou	itlet Devi	ces	
#1 F	Primary	2,422	2.00' 10	.0' long	x 1.0' breadth Br	oad-Crested Rectangular Weir
			He	ead (feet)	0.20 0.40 0.60	0.80 1.00 1.20 1.40 1.60 1.80 2.00
			2.5	50 3.00		
			Co	ef. (Engli	sh) 2.69 2.72 2.	75 2.85 2.98 3.08 3.20 3.28 3.31
<i>"</i> 0 "	D uitana a 4	0.44	3.3	30 3.31	3.32	0
#2	rimary	2,417	'.00° 0.	ouu in/hr	Extiltration over	Surface area

Primary OutFlow Max=8.87 cfs @ 12.14 hrs HW=2,422.47' (Free Discharge) 1=Broad-Crested Rectangular Weir (Weir Controls 8.73 cfs @ 1.87 fps) 2=Exfiltration (Exfiltration Controls 0.15 cfs)

Summary for Pond P1.2: BIORETENTION

Inflow Area	I =	2.022 ac,	27.06% Imp	ervious,	Inflow Depth =	2.95"	for 10-Y	ear event	
Inflow	=	8.66 cfs @	2 11.99 hrs,	Volume	= 0.497	af			
Outflow	=	0.97 cfs @	2 12.47 hrs,	Volume	= 0.497	af, Atte	en= 89%,	Lag= 28.6 m	nin
Primary	=	0.97 cfs @	2 12.47 hrs,	Volume	= 0.497	af		-	

Routing by Stor-Ind method, Time Span= 0.00-144.00 hrs, dt= 0.05 hrs / 2 Peak Elev= 2,215.23' @ 12.47 hrs Surf.Area= 14,003 sf Storage= 10,319 cf

Plug-Flow detention time= 369.4 min calculated for 0.497 af (100% of inflow) Center-of-Mass det. time= 369.0 min (1,167.1 - 798.1)

Volume	Inve	ert Ava	il.Storag	ge Stora	ge Description		
#1	2,209.0)0'	1,758	cf stone 4,394	e underdrain (Pris cf Overall x 40.0	matic)Listed below (Recald % Voids	;)
#2	2,210.0	00'	2,636	cf filter 17,57	media (Prismatic 6 cf Overall x 15.0)Listed below (Recalc) 0% Voids	
#3	2,214.0	00'	10,119	cf surfa	ce storage (Prisn	natic)Listed below (Recalc)	
			14,513	cf Total	Available Storage		
Elevatio	n	Surf.Area	,	Inc.Store	Cum.Store		
(teet	t)	(sq-ft)	(C	ubic-feet)	(cubic-feet)		
2,209.0	0	4,394		0	0		
2,210.0	0	4,394		4,394	4,394		
Elevatio	n	Surf.Area		Inc.Store	Cum.Store		
(feet	t)	(sq-ft)	(c	ubic-feet)	(cubic-feet)		
2,210.0	0	4,394		0	0		
2,214.0	0	4,394		17,576	17,576		
Elevatio	n	Surf.Area		Inc.Store	Cum.Store		
(feet	t)	(sq-ft)	(c	ubic-feet)	(cubic-feet)		
2,214.0	0	4,394		0	0		
2,216.0	0	5,725		10,119	10,119		
Device	Routing	Ir	nvert C	Dutlet Devi	ces		
#1	Primary	2,209	9.00' 1	8.0" Rou	nd Culvert		
			L	.= 100.0'	CPP, square edge	e headwall, Ke= 0.500	
			li li	nlet / Outle	et Invert= 2,209.00	'/2,208.50' S= 0.0050 '/'	Cc= 0.900
	D ·	0.00	n	= 0.020 C	Corrugated PE, cor	rugated interior	
#2	Primary	2,20	9.00° 0	.500 in/hr	Exfiltration over	Surface area	
#3	Device	۷,۷۱۷	+.50 b I	imited to v	veir flow at low he	= 0.000 ads	
#4	Primary	2,21	5.50' 2 F	5.0' long lead (feet)	x 1.0' breadth Br 0.20 0.40 0.60	oad-Crested Rectangular 0.80 1.00 1.20 1.40 1.60	Weir 1.80 2.00

08077_Proposed 7 Prepared by The LA Group P.C. HydroCAD® 9.10 s/n 00439 © 2010 HydroCAD Software Solutions LLC

Type II 24-hr 10-Year Rainfall=5.00" Printed 12/9/2011 C Page 40

2.50 3.00 Coef. (English) 2.69 2.72 2.75 2.85 2.98 3.08 3.20 3.28 3.31 3.30 3.31 3.32

Primary OutFlow Max=0.97 cfs @ 12.47 hrs HW=2,215.23' (Free Discharge)

1=Culvert (Passes 0.81 cfs of 13.44 cfs potential flow)

1-3=Orifice/Grate (Orifice Controls 0.81 cfs @ 4.12 fps)

-2=Exfiltration (Exfiltration Controls 0.16 cfs)

-4=Broad-Crested Rectangular Weir (Controls 0.00 cfs)

Summary for Pond P11.1: P-1

Inflow .	Area	=	24.870 ac,	18.86% Imper	vious, Inflow	Depth =	2.33"	for	10-Ye	ar event	
Inflow		=	92.06 cfs @	11.99 hrs, V	/olume=	4.837	af				
Outflow	N	=	20.20 cfs @	12.35 hrs, V	/olume=	4.831	af, At	ten= 7	8%, L	.ag= 21.6	min
Primar	y	=	20.20 cfs @	12.35 hrs, V	/olume=	4.831	af				

Routing by Stor-Ind method, Time Span= 0.00-144.00 hrs, dt= 0.05 hrs Starting Elev= 2,296.75' Surf.Area= 6,846 sf Storage= 11,991 cf Peak Elev= 2,302.92' @ 12.35 hrs Surf.Area= 23,039 sf Storage= 99,622 cf (87,631 cf above start)

Plug-Flow detention time= 829.6 min calculated for 4.554 af (94% of inflow) Center-of-Mass det. time= 748.7 min (1,576.3 - 827.6)

Volume	Invert	Avail.Sto	rage	Storage	Description	
#1	2,294.00'	126,45	54 cf	Custom	Stage Data (Pr	ismatic) Listed below (Recalc)
Elevatio	n S	urf Area	Inc	Store	Cum Store	
(fee	t)	(sa-ft)	(cubic	c-feet)	(cubic-feet)	
2 294 0	0	2 612	(00010	0	0	
2.296.0	0	4.954		7.566	7.566	
2,298.0	0	10,000	1	4,954	22,520	
2,300.0	0	13,679	2	3,679	46,199	
2,302.0	0	19,963	3	3,642	79,841	
2,304.0	0	26,650	4	6,613	126,454	
Device	Routing	Invert	Outle	et Devices	5	
#1	Primary	2,293.00'	24.0'	" Round	Culvert	
	ŗ		L= 60 Inlet n= 0.	0.0' CPP / Outlet Ir .020 Corr	, square edge h wert= 2,293.00 ugated PE, cor	neadwall, Ke= 0.500 / 2,292.50' S= 0.0083 '/' Cc= 0.900 rugated interior
#2	Device 1	2,296.75'	2.0"	Vert. Orif	ice/Grate C=	0.600
#3	Device 1	2,300.25'	6.0"	Vert. Orif	ice/Grate C=	0.600
#4	Device 1	2,302.00'	24.0	" x 24.0"	Horiz. Orifice/C	Grate C= 0.600
#5	Primary	2,303.00'	Limit 50.0' Head 2.50 Coef 2.85	ed to well long x 2 d (feet) 0. 3.00 3.5 . (English 3.07 3.2	10w at low hea 2.0' breadth Bro 20 0.40 0.60 0) 2.54 2.61 2.0 0 3.32	ads Dad-Crested Rectangular Weir 0.80 1.00 1.20 1.40 1.60 1.80 2.00 61 2.60 2.66 2.70 2.77 2.89 2.88

Primary OutFlow Max=20.20 cfs @ 12.35 hrs HW=2,302.92' (Free Discharge)

-1=Culvert (Passes 20.20 cfs of 40.45 cfs potential flow)

2=Orifice/Grate (Orifice Controls 0.26 cfs @ 11.88 fps)

-3=Orifice/Grate (Orifice Controls 1.47 cfs @ 7.49 fps)

4=Orifice/Grate (Orifice Controls 18.47 cfs @ 4.62 fps)

-5=Broad-Crested Rectangular Weir (Controls 0.00 cfs)

Summary for Pond P11.10: DRY SWALE

Inflow Area	a =	1.246 ac, 1	2.83% Impe	ervious,	Inflow Depth =	2.54"	for 10-Y	ear event
Inflow	=	5.43 cfs @	11.97 hrs,	Volume	= 0.263	3 af		
Outflow	=	3.81 cfs @	12.05 hrs,	Volume	= 0.263	3 af, Att	en= 30%,	Lag= 4.8 min
Primary	=	3.81 cfs @	12.05 hrs,	Volume	= 0.263	3 af		

Routing by Stor-Ind method, Time Span= 0.00-144.00 hrs, dt= 0.05 hrs Starting Elev= 2,192.00' Surf.Area= 3,150 sf Storage= 814 cf Peak Elev= 2,193.78' @ 12.05 hrs Surf.Area= 5,640 sf Storage= 4,896 cf (4,082 cf above start)

Plug-Flow detention time= 770.3 min calculated for 0.244 af (93% of inflow) Center-of-Mass det. time= 673.4 min (1,502.5 - 829.1)

Volume	Inve	ert Avail.St	orage	Storage D	Description	
#1	2,188.5	50' 2	120 cf	gravel ur 1,050 cf (derdrain (Pri Overall x 40.0	smatic) Listed below (Recalc) % Voids
#2	2,189.5	50' 3	394 cf	filter med 2,625 cf (dia (Prismatic Overall x 15.0 ^o)Listed below (Recalc) % Voids
#3	2,192.0	00' 4,9	900 cf	surface s	storage (Prisn	natic)Listed below (Recalc)
		5,7	'14 cf	Total Ava	ilable Storage	
Elevation		Surf.Area	Inc	.Store	Cum.Store	
(feet)		(sq-ft)	(cubio	c-feet)	(cubic-feet)	
2,188.50		1,050		0	0	
2,189.50		1,050		1,050	1,050	
Elevation		Surf.Area	Inc	.Store	Cum.Store	
(feet)		(sq-ft)	(cubio	c-feet)	(cubic-feet)	
2,189.50		1,050		0	0	
2,192.00		1,050		2,625	2,625	
				_		
Elevation		Surf.Area	Inc	.Store	Cum.Store	
(feet)		(sq-ft)	(cubio	c-feet)	(cubic-feet)	
2,192.00		1,050		0	0	
2,194.00		3,850		4,900	4,900	
Device F	Routing	Invert	Outle	et Devices		
#1 F	Primary	2,192.00'	0.50	0 in/hr Ext	iltration over	Surface area above 2,192.00'
#2 F	Primary	2,193.50'	Excli 10.0 Head 2.50	lided Suffa l long x 2 d (feet) 0.2 3.00 3.50	ice area = 3,15 . 0' breadth Br 20 0.40 0.60)	ou sr oad-Crested Rectangular Weir 0.80 1.00 1.20 1.40 1.60 1.80 2.00

08077_Proposed Prepared by The LA Group P.C. HydroCAD® 9.10 s/n 00439 © 2010 HydroCAD Software Solutions LLC

Coef. (English) 2.54 2.61 2.61 2.60 2.66 2.70 2.77 2.89 2.88 2.85 3.07 3.20 3.32

Primary OutFlow Max=3.78 cfs @ 12.05 hrs HW=2,193.78' (Free Discharge) 1=Exfiltration (Exfiltration Controls 0.03 cfs) 2=Broad-Crested Rectangular Weir (Weir Controls 3.75 cfs @ 1.35 fps)

Summary for Pond P11.11: DRY SWALE

Inflow Area	a =	3.383 ac, 1	4.24% Impe	rvious, Inflow D	epth = 2.73	" for 10-`	Year event
Inflow	=	7.98 cfs @	12.03 hrs, \	Volume=	0.769 af		
Outflow	=	7.70 cfs @	12.06 hrs, \	Volume=	0.769 af, A	tten= 3%,	Lag= 1.9 min
Primary	=	7.70 cfs @	12.06 hrs, \	Volume=	0.769 af		-

Routing by Stor-Ind method, Time Span= 0.00-144.00 hrs, dt= 0.05 hrs Peak Elev= 2,179.84' @ 12.06 hrs Surf.Area= 4,909 sf Storage= 4,388 cf

Plug-Flow detention time= 257.9 min calculated for 0.769 af (100% of inflow) Center-of-Mass det. time= 257.8 min (1,375.2 - 1,117.4)

Volume	Inve	ert Avail.	.Storage	Storage	Description	
#1	2,174.5	50'	360 cf	gravel u	underdrain (Pris	smatic)Listed below (Recalc)
#2	2,175.5	50'	338 cf	filter me	edia (Prismatic)	Listed below (Recalc)
#2	2 170 (<u>ا</u> مי	4 200 of	2,250 cf	Overall x 15.0%	% Voids
#3	2,170.0	10	4,200 CI	Sunace	storage (Frish	
			4,898 cf	I otal Av	allable Storage	
Elevation		Surf.Area	Inc	.Store	Cum.Store	
(feet)		(sq-ft)	(cubio	c-feet)	(cubic-feet)	
2,174.50		900		0	0	
2,175.50		900		900	900	
Elevation		Surf.Area	Inc	.Store	Cum.Store	
(feet)		(sq-ft)	(cubic	c-feet)	(cubic-feet)	
2,175.50		900		0	0	
2,178.00		900		2,250	2,250	
Elevation		Surf.Area	Inc	Store	Cum.Store	
(feet)		(sq-ft)	(cubio	c-feet)	(cubic-feet)	
2,178.00		900		0	0	
2,180.00		3,300		4,200	4,200	
Device F	Routing	Inv	ert Outle	et Device	S	
 #1 F	Primarv	2.174.	50' 0.50	0 in/hr E	xfiltration over	Surface area
#2 F	Primary	2.179.4	40' 10.0'	long x	2.0' breadth Bro	oad-Crested Rectangular Weir
	,	, -	Head	d (feet) 0	.20 0.40 0.60	0.80 1.00 1.20 1.40 1.60 1.80 2.00
			2.50	3.00 3.	50	
			Coef	. (English	n) 2.54 2.61 2.0	61 2.60 2.66 2.70 2.77 2.89 2.88
			2.85	3.07 3.2	20 3.32	

Primary OutFlow Max=7.61 cfs @ 12.06 hrs HW=2,179.84' (Free Discharge) 1=Exfiltration (Exfiltration Controls 0.06 cfs) 2=Broad-Crested Rectangular Weir (Weir Controls 7.55 cfs @ 1.73 fps)

Summary for Pond P11.2: BIORETENTION

Inflow Area =	=	9.625 ac, 2	9.34% Impe	ervious, Inflow	Depth = 2.7	'9" for 10-`	Year event
Inflow =	:	33.06 cfs @	11.98 hrs,	Volume=	2.235 af		
Outflow =	:	31.78 cfs @	12.01 hrs,	Volume=	2.234 af,	Atten= 4%,	Lag= 2.1 min
Primary =	:	31.44 cfs @	12.01 hrs,	Volume=	1.496 af		
Secondary =		0.34 cfs @	12.01 hrs,	Volume=	0.738 af		

Routing by Stor-Ind method, Time Span= 0.00-144.00 hrs, dt= 0.05 hrs / 2 Peak Elev= 2,373.60' @ 12.01 hrs Surf.Area= 29,695 sf Storage= 25,629 cf

Plug-Flow detention time= 203.2 min calculated for 2.234 af (100% of inflow) Center-of-Mass det. time= 202.6 min (1,014.1 - 811.5)

Volume	Inve	ert Ava	il.Storage	e Storag	ge Description	
#1	2,367.0	0'	3,652 c	f stone 9.131	underdrain (Pris	s matic) Listed below (Recalc) % Voids
#2	2,368.0	0'	5,479 c	f filter 1 36.52	media (Prismatic 4 cf Overall x 15.0)Listed below (Recalc) 0% Voids
#3	2,372.0	00'	21,131 c	f surfa	ce storage (Prisn	natic)Listed below (Recalc)
			30,262 c	f Total	Available Storage	
Elevation		Surf.Area	I	nc.Store	Cum.Store	
(feet)		(sq-ft)	(cu	bic-feet)	(cubic-feet)	
2,367.00		9,131		0	0	
2,368.00		9,131		9,131	9,131	
Elevation		Surf.Area	I	nc.Store	Cum.Store	
(feet)		(sq-ft)	(cu	bic-feet)	(cubic-feet)	
2,368.00		9,131		0	0	
2,372.00		9,131		36,524	36,524	
Elevation		Surf.Area	I	nc.Store	Cum.Store	
(feet)		(sq-ft)	(cu	bic-feet)	(cubic-feet)	
2,372.00		9,131		0	0	
2,374.00		12,000		21,131	21,131	
Device F	Routing	Ir	nvert Ou	utlet Devi	ces	
#1 F	Primary	2,367	7.00' 12	.0" Rou	nd Culvert	
			L=	50.0' C	PP, square edge	headwall, Ke= 0.500
			Inl	et / Outle	t Invert= 2,367.00	'/2,366.00' S= 0.0200 '/' Cc= 0.900
<i>"</i> 0 г	- · .	0.070	n=	0.020 C	orrugated PE, cor	rrugated interior
#2 L	Jevice 1	2,372	2.50° 12 Lir	.0" Horiz nited to w	. Orifice/Grate (J= 0.600 ads
#3 F	Primary	2,373	3.25' 50 He	.0' long ad (feet)	x 2.0' breadth Br 0.20 0.40 0.60	oad-Crested Rectangular Weir 0.80 1.00 1.20 1.40 1.60 1.80 2.00

2.50 3.00 3.50 Coef. (English) 2.54 2.61 2.61 2.60 2.66 2.70 2.77 2.89 2.88 2.85 3.07 3.20 3.32

#4 Secondary 2,367.00' 0.500 in/hr Exfiltration over Surface area

Primary OutFlow Max=30.72 cfs @ 12.01 hrs HW=2,373.60' (Free Discharge) **1=Culvert** (Passes 3.96 cfs of 7.09 cfs potential flow) 2=Orifice/Grate (Orifice Controls 3.96 cfs @ 5.05 fps) -3=Broad-Crested Rectangular Weir (Weir Controls 26.75 cfs @ 1.53 fps)

Secondary OutFlow Max=0.34 cfs @ 12.01 hrs HW=2,373.60' (Free Discharge) -4=Exfiltration (Exfiltration Controls 0.34 cfs)

Summary for Pond P11.4: DRY SWALE

Inflow Area	=	0.233 ac,	10.77% Imper	vious, Inflow D	epth = 2.45'	' for 10-	Year event
Inflow	=	0.98 cfs @	11.97 hrs, V	/olume=	0.048 af		
Outflow	=	0.95 cfs @	12.00 hrs, V	/olume=	0.048 af, A	tten= 4%,	Lag= 1.4 min
Primary	=	0.95 cfs @	12.00 hrs, V	/olume=	0.048 af		

Routing by Stor-Ind method, Time Span= 0.00-144.00 hrs, dt= 0.05 hrs / 2 Peak Elev= 2,475.67' @ 12.00 hrs Surf.Area= 642 sf Storage= 527 cf

Plug-Flow detention time= 292.3 min calculated for 0.048 af (100% of inflow) Center-of-Mass det. time= 315.7 min (1,147.3 - 831.7)

Volume	Invert	Avail.Stor	age	Storag	ge Description	
#1	2,470.50'	6	0 cf	stone	underdrain (Pris	smatic)Listed below (Recalc)
		_		150 cf	Overall x 40.0%	Voids
#2	2,471.50'	5	6 cf	filter r	nedia (Prismatic)Listed below (Recalc)
#3	2 474 00'	53	0 cf	3/5 CI	Overall X 15.0%	VOIDS natic) isted below (Recalc)
<u>#5</u>	2,474.00		6 cf	Total	Available Storage	
		04	0.01	i otai i	-valiable Storage	
Elevation	Surf	.Area	Inc.	Store	Cum.Store	
(feet)		(sq-ft)	(cubic	c-feet)	(cubic-feet)	
2,470.50		150		0	0	
2,471.50		150		150	150	
Flowetiers	C		ما	Ctore	Curro Otorio	
Elevation (foot)	Suri	.Area	INC. (cubic	Store	(cubic-foot)	
		150	(CUDIC	<u>,-ieel)</u>		
2,471.50		150		375	0 375	
2,777.00		150		575	515	
Elevation	Surf	.Area	Inc.	Store	Cum.Store	
(feet)		(sq-ft)	(cubic	c-feet)	(cubic-feet)	
2,474.00		150		0	0	
2,476.00		380		530	530	

 Type II 24-hr 10-Year Rainfall=5.00"

 Printed 12/9/2011

 C
 Page 45

Prepared by The LA	Group P.C.
HydroCAD® 9.10 s/n 004	439 © 2010 HydroCAD Software Solutions LLC

Device	Routing	Invert	Outlet Devices
#1	Primary	2,470.50'	0.500 in/hr Exfiltration over Surface area
#2	Primary	2,475.50'	5.0' long x 1.0' breadth Broad-Crested Rectangular Weir Head (feet) 0.20 0.40 0.60 0.80 1.00 1.20 1.40 1.60 1.80 2.00 2.50 3.00 Coef. (English) 2.69 2.72 2.75 2.85 2.98 3.08 3.20 3.28 3.31 3.30 3.31 3.32

Primary OutFlow Max=0.93 cfs @ 12.00 hrs HW=2,475.67' (Free Discharge) 1=Exfiltration (Exfiltration Controls 0.01 cfs)

-2=Broad-Crested Rectangular Weir (Weir Controls 0.92 cfs @ 1.10 fps)

Summary for Pond P11.5: DRY SWALE

Inflow Area	=	0.116 ac, 2	7.15% Impervi	ous, Inflow Dep	oth = 2.80"	for 10-Year event
Inflow	=	0.56 cfs @	11.97 hrs, Vo	lume=	0.027 af	
Outflow	=	0.39 cfs @	12.06 hrs, Vo	lume=	0.027 af, Atte	n= 30%, Lag= 5.4 min
Primary	=	0.39 cfs @	12.06 hrs, Vo	lume=	0.027 af	

Routing by Stor-Ind method, Time Span= 0.00-144.00 hrs, dt= 0.05 hrs / 2 Peak Elev= 2,479.59' @ 12.06 hrs Surf.Area= 594 sf Storage= 471 cf

Plug-Flow detention time= 529.1 min calculated for 0.027 af (99% of inflow) Center-of-Mass det. time= 522.8 min (1,344.1 - 821.4)

Volume	Inve	ert Avail.S	torage	Storage	e Description	
#1	2,474.5	50'	50 cf	stone	underdrain (Pris	matic)Listed below (Recalc)
#0	0 475 5	:O'	17 of	125 cf (Overall x 40.0%	Voids
#2	2,475.0	0	47 0	313 cf (Overall x 15.0%	Voids
#3	2,478.0	00'	525 cf	surfac	e storage (Prism	natic)Listed below (Recalc)
			622 cf	Total A	vailable Storage	
Elevation	n	Surf.Area	Inc	.Store	Cum.Store	
(feet))	(sq-ft)	(cubio	c-feet)	(cubic-feet)	
2,474.50)	125		0	0	
2,475.50)	125		125	125	
Elevation	n	Surf.Area	Inc	Store	Cum.Store	
(feet))	(sq-ft)	(cubic	c-feet)	(cubic-feet)	
2,475.50)	125		0	0	
2,478.00)	125		313	313	
Elevation	n	Surf.Area	Inc	.Store	Cum.Store	
(feet)		(sq-ft)	(cubio	c-feet)	(cubic-feet)	
2,478.00)	125		0	0	
2,480.00)	400		525	525	
Device	Routing	Invei	rt Outle	et Device	es	
#1	Primary	2,474.50)' 0.50	0 in/hr E	Exfiltration over	Surface area
#2	Primary	2,479.50)' 5.0'	long x '	1.0' breadth Bro	ad-Crested Rectangular Weir
Head (feet) 0.20 0.40 0.60 0.80 1.00 1.20 1.40 1.60 1.80 2.00 2.50 3.00 Coef. (English) 2.69 2.72 2.75 2.85 2.98 3.08 3.20 3.28 3.31 3.30 3.31 3.32

Primary OutFlow Max=0.33 cfs @ 12.06 hrs HW=2,479.58' (Free Discharge) 1=Exfiltration (Exfiltration Controls 0.01 cfs) 2=Broad-Crested Rectangular Weir (Weir Controls 0.33 cfs @ 0.78 fps)

Summary for Pond P11.6: DRY SWALE

Inflow Area	a =	3.304 ac,	4.07% Impervious,	Inflow Depth =	2.28" for	10-Year event
Inflow	=	9.94 cfs @	12.06 hrs, Volume)= 0.628	af	
Outflow	=	9.48 cfs @	12.10 hrs, Volume)= 0.627	af, Atten= 5	%, Lag= 2.1 min
Primary	=	9.48 cfs @	12.10 hrs, Volume)= 0.627	af	

Routing by Stor-Ind method, Time Span= 0.00-144.00 hrs, dt= 0.05 hrs / 2 Peak Elev= 2,483.84' @ 12.10 hrs Surf.Area= 5,610 sf Storage= 4,984 cf

Plug-Flow detention time= 191.4 min calculated for 0.627 af (100% of inflow) Center-of-Mass det. time= 190.6 min (1,034.8 - 844.2)

Volume	Inve	rt Avail.Sto	rage Sto	brage Description
#1	2,478.5	0' 46	64 cf sto	one underdrain (Prismatic)Listed below (Recalc)
#2	2,479.5	0' 43	B5 cf filte	er media (Prismatic)Listed below (Recalc)
#3	2,482.0	0' 4,64	40 cf sur	face storage (Prismatic)Listed below (Recalc)
		5,53	39 cf Tota	al Available Storage
Elevation (feet)		Surf.Area (sq-ft)	Inc.Stor (cubic-fee	re Cum.Store et) (cubic-feet)
2.478.50		1.160	•	0 0
2,479.50		1,160	1,16	60 1,160
_		- · · ·		
Elevation		Surf.Area	Inc.Stor	re Cum.Store
(feet)		(sq-ft)	(cubic-fee	et) (cubic-feet)
2,479.50		1,160		0 0
2,482.00		1,160	2,90	00 2,900
Elevation		Surf Area	Inc Stor	
(feet)		(sa-ft)	(cubic-fee	et) (cubic-feet)
2 482 00		1 160	(00.010 100	
2,484.00		3,480	4.64	4.640
2,101100		0,100	1,01	
Device F	Routing	Invert	Outlet De	evices
#1 F #2 F	Primary Primary	2,478.50' 2,483.40'	0.500 in/ 12.0' long Head (fee 2.50 3.00 Coef. (Er	Thr Exfiltration over Surface area ig x 1.0' breadth Broad-Crested Rectangular Weir et) 0.20 0.40 0.60 0.80 1.00 1.20 1.40 1.60 1.80 2.00 0 nglish) 2.69 2.72 2.75 2.85 2.98 3.08 3.20 3.28 3.31

3.30 3.31 3.32

Primary OutFlow Max=9.46 cfs @ 12.10 hrs HW=2,483.84' (Free Discharge) 1=Exfiltration (Exfiltration Controls 0.06 cfs) 2=Broad-Crested Rectangular Weir (Weir Controls 9.40 cfs @ 1.80 fps)

Summary for Pond P11.7: BIORETENTION

Inflow Area	a =	0.741 ac, 5	5.14% Impe	ervious,	Inflow Depth =	3.57"	for 10-Y	ear event
Inflow	=	4.36 cfs @	11.97 hrs,	Volume	= 0.220	af		
Outflow	=	0.16 cfs @	13.62 hrs,	Volume	= 0.220	af, Atte	en= 96%,	Lag= 99.2 min
Primary	=	0.16 cfs @	13.62 hrs,	Volume	= 0.220	af		-

Routing by Stor-Ind method, Time Span= 0.00-144.00 hrs, dt= 0.05 hrs / 2 Peak Elev= 2,248.21' @ 13.62 hrs Surf.Area= 13,783 sf Storage= 5,531 cf

Plug-Flow detention time= 466.3 min calculated for 0.220 af (100% of inflow) Center-of-Mass det. time= 467.0 min (1,265.1 - 798.1)

Volume	Inve	ert Avai	I.Storage	Storag	e Description				
#1	2,243.0	0'	1,820 cf	grave 4.550	l drainage layer (cf Overall x 40.09	Prismatic)Listed below (Re % Voids	calc)		
#2	2,244.0	0'	2,730 cf	filter r	nedia (Prismatic	Listed below (Recalc)			
				18,200) cf Overall x 15.0	0% Voids			
#3	2,248.0	0'	10,350 cf	surfac	e storage (Prism	natic)Listed below (Recalc)			
			14,900 cf	Total A	Available Storage				
Elevation		Surf.Area	Inc	.Store	Cum.Store				
(feet)		(sq-ft)	(cubi	c-feet)	(cubic-feet)				
2,243.00		4,550		0	0				
2,244.00		4,550		4,550	4,550				
Elevation		Surf.Area	Inc	.Store	Cum.Store				
(feet)		(sq-ft)	(cubi	c-feet)	(cubic-feet)				
2,244.00		4,550		0	0				
2,248.00		4,550	1	8,200	18,200				
Elevation		Surf.Area	Inc	.Store	Cum.Store				
(feet)		(sq-ft)	(cubi	c-feet)	(cubic-feet)				
2,248.00		4,550		0	0				
2,250.00		5,800	1	0,350	10,350				
Device F	Routing	In	vert Outle	et Devic	es				
#1 F	Primary	2,243	.00' 18.0 L= 5 Inlet n= 0	18.0" Round Culvert L= 50.0' CPP, square edge headwall, Ke= 0.500 Inlet / Outlet Invert= 2,243.00' / 2,240.00' S= 0.0600 '/' Cc= 0.900					
#2 [Device 1	2,243	.00' 0.50	0 in/hr	Exfiltration over	Surface area			
#3 [Device 1	2,248	.50' 6.0" Limit	Horiz.	Orifice/Grate C=	= 0.600 ads			
#4 F	Primary	2,249	.00' 25.0	long	x 2.0' breadth Br	oad-Crested Rectangular	Weir		

08077_Proposed Prepared by The LA Group P.C. HydroCAD® 9.10 s/n 00439 © 2010 HydroCAD Software Solutions LLC

Head (feet) 0.20 0.40 0.60 0.80 1.00 1.20 1.40 1.60 1.80 2.00 2.50 3.00 3.50 Coef. (English) 2.54 2.61 2.61 2.60 2.66 2.70 2.77 2.89 2.88 2.85 3.07 3.20 3.32

Primary OutFlow Max=0.16 cfs @ 13.62 hrs HW=2,248.21' (Free Discharge)

1=Culvert (Passes 0.16 cfs of 17.97 cfs potential flow)

2=Exfiltration (Exfiltration Controls 0.16 cfs)

3=Orifice/Grate (Controls 0.00 cfs)

-4=Broad-Crested Rectangular Weir (Controls 0.00 cfs)

Summary for Pond P11.8: BIORETENTION

Inflow Area	a =	0.432 ac, 7	77.25% Impe	ervious,	Inflow Depth =	4.20"	for 10-Y	ear event	
Inflow	=	2.84 cfs @	11.96 hrs,	Volume	= 0.151	af			
Outflow	=	0.10 cfs @	13.58 hrs,	Volume	= 0.151	af, Atte	en= 96%,	Lag= 97.2 r	min
Primary	=	0.10 cfs @	13.58 hrs,	Volume	= 0.151	af		·	

Routing by Stor-Ind method, Time Span= 0.00-144.00 hrs, dt= 0.05 hrs / 2 Peak Elev= 2,260.34' @ 13.58 hrs Surf.Area= 8,679 sf Storage= 3,852 cf

Plug-Flow detention time= 477.9 min calculated for 0.151 af (100% of inflow) Center-of-Mass det. time= 477.4 min (1,252.3 - 774.9)

Volume	Invert Ava	il.Storage	Storag	ge Description	
#1	2,255.00'	1,140 cf	grave	l underdrain (Pris	smatic)Listed below (Recalc)
# 0	2 256 00	1 710 of	2,850	ct Overall x 40.09	% Voids
#2	2,230.00	1,710 CI	11 40	0 cf Overall x 15 (Clisted below (Recalc)
#3	2,260.00'	6,450 cf	surfa	ce storage (Prism	natic)Listed below (Recalc)
		9,300 cf	Total	Available Storage	
Elevation	Surf Area	Inc	Store	Cum Store	
(feet)	(sa-ft)	(cubi	c-feet)	(cubic-feet)	
2 255 00	2 850	(00.01)	0	(00.0.0 1001)	
2,256.00	2,850		2,850	2,850	
Elevation	Surf.Area	Inc	.Store	Cum.Store	
(feet)	(sq-ft)	(cubi	c-feet)	(cubic-feet)	
2,256.00	2,850		0	0	
2,260.00	2,850	1	1,400	11,400	
Elevation	Surf Area	Inc	Store	Cum Store	
(feet)	(sq-ft)	(cubi	c-feet)	(cubic-feet)	
2,260.00	2,850	```	Ó	0	
2,262.00	3,600		6,450	6,450	

Type II 24-hr 10-Year Rainfall=5.00" Printed 12/9/2011 Page 49

Prepared by The LA Group P.C. HydroCAD® 9.10 s/n 00439 © 2010 HydroCAD Software Solutions LLC

Device	Routing	Invert	Outlet Devices
#1	Primary	2,255.00'	12.0" Round Culvert
			L= 50.0' CPP, square edge headwall, Ke= 0.500
			Inlet / Outlet Invert= 2,255.00' / 2,254.50' S= 0.0100 '/' Cc= 0.900
			n= 0.020 Corrugated PE, corrugated interior
#2	Device 1	2,255.00'	0.500 in/hr Exfiltration over Surface area
#3	Device 1	2,260.50'	6.0" Horiz. Orifice/Grate C= 0.600
			Limited to weir flow at low heads
#4	Primary	2,261.00'	15.0' long x 2.0' breadth Broad-Crested Rectangular Weir
	,		Head (feet) 0.20 0.40 0.60 0.80 1.00 1.20 1.40 1.60 1.80 2.00
			2.50 3.00 3.50
			Coef. (English) 2.54 2.61 2.61 2.60 2.66 2.70 2.77 2.89 2.88
			2.85 3.07 3.20 3.32

Primary OutFlow Max=0.10 cfs @ 13.58 hrs HW=2,260.34' (Free Discharge)

-1=Culvert (Passes 0.10 cfs of 6.07 cfs potential flow)

2=Exfiltration (Exfiltration Controls 0.10 cfs)

-3=Orifice/Grate (Controls 0.00 cfs)

-4=Broad-Crested Rectangular Weir (Controls 0.00 cfs)

Summary for Pond P11.9: BIORETENTION

Inflow Area	I =	0.575 ac, 2	2.45% Impe	rvious, I	Inflow Depth =	2.80'	" for 10-Y	ear event
Inflow	=	2.75 cfs @	11.97 hrs, \	Volume=	= 0.134	1 af		
Outflow	=	1.12 cfs @	12.10 hrs, \	Volume=	= 0.177	7 af, A	tten= 59%,	Lag= 8.1 min
Primary	=	1.12 cfs @	12.10 hrs, \	Volume=	= 0.177	7 af		

Routing by Stor-Ind method, Time Span= 0.00-144.00 hrs, dt= 0.05 hrs Starting Elev= 2,219.00' Surf.Area= 5,520 sf Storage= 1,840 cf Peak Elev= 2,219.59' @ 12.11 hrs Surf.Area= 5,754 sf Storage= 2,990 cf (1,150 cf above start)

Plug-Flow detention time= 469.0 min calculated for 0.134 af (100% of inflow) Center-of-Mass det. time= 253.2 min (1,074.5 - 821.4)

Volume	Invert	Avai	I.Storage	Stora	age Description	
#1	2,214.00'		736 cf	grave	vel drainage layer (Prismatic)Listed below (Reca	alc)
				1,840	0 cf Overall x 40.0% Voids	
#2	2,215.00'		1,104 cf	filter	r media (Prismatic)Listed below (Recalc)	
	0.040.00		0.040(7,360	0 cf Overall x 15.0% Voids	
#3	2,219.00		2,040 cf	surta	ace storage (Prismatic)Listed below (Recalc)	,
			3,880 cf	Total	I Available Storage	
	C	A	lin o	Ctore	Cum Store	
Elevation	Suri.	Area	Inc	.Store	e Cum.Store	
(feet)	(9	sq-ft)	(cubi	c-feet)) (cubic-feet)	
2,214.00	1	,840		0	0 0	
2,215.00	1	,840		1,840	0 1,840	
Flovetion	Curf	Aree	Inc	Ctore	Cum Store	
Elevation	Suri,	Area		.Store	e Cum.Store	
(feet)	()	sq-ft)	(cubi	<u>c-feet)</u>) (cubic-feet)	
2,215.00	1	,840		0	0	
2,219.00	1	,840		7,360) 7,360	

Type II 24-hr 10-Year Rainfall=5.00" Printed 12/9/2011 Page 50

Prepared by The LA Group P.C. HydroCAD® 9.10 s/n 00439 © 2010 HydroCAD Software Solutions LLC

Elevatio (fee	on et)	Surf.Area (sq-ft)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)					
2,219.0	00	1,840	0	0					
2,220.0	00	2,239	2,040	2,040					
Device	Routing	Invert	Outlet Devices						
#1	Primary	2,214.00'	0.500 in/hr Exfi	Itration over	Surface area				
#2	Primary	2,219.50'	15.0' long x 1.0 Head (feet) 0.2 2.50 3.00 Coef. (English) 3.30 3.31 3.32)' breadth Br 0 0.40 0.60 2.69 2.72 2.	oad-Crested Rectangular Weir 0.80 1.00 1.20 1.40 1.60 1.80 2.00 75 2.85 2.98 3.08 3.20 3.28 3.31				
Drimon	Reimony OutFlow May 1.07 of a @ 12.10 hrs. LIVI. 2.210 EQL. (Free Discharge)								

Primary OutFlow Max=1.07 cfs @ 12.10 hrs HW=2,219.58' (Free Discharge)

1=Exfiltration (Exfiltration Controls 0.07 cfs)

2=Broad-Crested Rectangular Weir (Weir Controls 1.00 cfs @ 0.78 fps)

Summary for Pond P12.1: Pond 1.1

Inflow Area	a =	17.893 ac,	9.84% Impervious,	Inflow Depth = 2	2.43" for	10-Year event
Inflow	=	44.13 cfs @	12.15 hrs, Volume	= 3.629 a	f	
Outflow	=	20.17 cfs @	12.40 hrs, Volume	= 3.628 at	f, Atten= 5	54%, Lag= 15.5 min
Primary	=	20.17 cfs @	12.40 hrs, Volume	= 3.628 at	f	

Routing by Stor-Ind method, Time Span= 0.00-144.00 hrs, dt= 0.05 hrs Starting Elev= 2,295.25' Surf.Area= 5,504 sf Storage= 5,359 cf Peak Elev= 2,300.44' @ 12.40 hrs Surf.Area= 18,161 sf Storage= 65,135 cf (59,776 cf above start)

Plug-Flow detention time= 665.7 min calculated for 3.504 af (97% of inflow) Center-of-Mass det. time= 621.4 min (1,464.3 - 842.9)

Volume	Inve	ert Avail.Sto	rage 3	Storage	Description			
#1	2,294.0	0' 120,04	48 cf	Custom	Stage Data (P	'ismatic) Listed below (Recalc)		
Elevatio	n	Surf.Area	Inc.S	Store	Cum.Store			
(feet	t)	(sq-ft)	(cubic-	feet)	(cubic-feet)			
2,294.0	0	3,070		0	0			
2,296.0	0	6,964	10),034	10,034			
2,298.0	0	11,720	18	3,684	28,718			
2,300.0	0	16,919	28	3,639	57,357			
2,302.0	0	22,520	39	9,439	96,796			
2,303.0	0	23,983	23	3,252	120,048			
Device	Routing	Invert	Outlet	t Device:	S			
#1	Primary	2,294.00'	24.0"	Round	Culvert			
			L= 115.0' CPP, square edge headwall, Ke= 0.500 Inlet / Outlet Invert= 2,294.00' / 2,293.25' S= 0.0065 '/' Cc= 0.900 n= 0.020. Corrugated PE_corrugated interior					
#2	Device 1	2,295.25'	2.0" Vert. Orifice/Grate C= 0.600					
#3	Device 1	2,298.50'	6.0" V	/ert. Ori	fice/Grate C=	0.600		
#4	Device 1	2,299.50'	24.0"	x 24.0"	Horiz. Orifice/0	Grate C= 0.600		
			Limite	ed to wei	r flow at low hea	ads		

08077_Proposed *T* Prepared by The LA Group P.C. HydroCAD® 9.10 s/n 00439 © 2010 HydroCAD Software Solutions LLC

#5 Primary 2,302.00' **50.0' long x 2.0' breadth Broad-Crested Rectangular Weir** Head (feet) 0.20 0.40 0.60 0.80 1.00 1.20 1.40 1.60 1.80 2.00 2.50 3.00 3.50 Coef. (English) 2.54 2.61 2.61 2.60 2.66 2.70 2.77 2.89 2.88 2.85 3.07 3.20 3.32

Primary OutFlow Max=20.16 cfs @ 12.40 hrs HW=2,300.44' (Free Discharge)

_1=Culvert (Passes 20.16 cfs of 25.97 cfs potential flow)

2=Orifice/Grate (Orifice Controls 0.24 cfs @ 10.88 fps)

-3=Orifice/Grate (Orifice Controls 1.23 cfs @ 6.26 fps)

4=Orifice/Grate (Orifice Controls 18.69 cfs @ 4.67 fps)

-5=Broad-Crested Rectangular Weir (Controls 0.00 cfs)

Summary for Pond P12.2: Dry Swale

Inflow Area	I =	0.376 ac, 2	26.90% Impe	ervious,	Inflow Depth =	2.8	9" for 10-Y	ear event
Inflow	=	1.86 cfs @	11.97 hrs,	Volume	= 0.091	af		
Outflow	=	1.33 cfs @	12.05 hrs,	Volume	= 0.091	af,	Atten= 28%,	Lag= 4.9 min
Primary	=	1.33 cfs @	12.05 hrs,	Volume	= 0.091	af		-

Routing by Stor-Ind method, Time Span= 0.00-144.00 hrs, dt= 0.05 hrs Peak Elev= 2,269.65' @ 12.05 hrs Surf.Area= 2,430 sf Storage= 1,480 cf

Plug-Flow detention time= 382.3 min calculated for 0.091 af (100% of inflow) Center-of-Mass det. time= 382.7 min (1,201.4 - 818.7)

Volume	Invert	Avail.Storage	Storage Description
#1	2,265.00'	160 cf	stone underdrain (Prismatic)Listed below (Recalc)
			400 cf Overall x 40.0% Voids
#2	2,266.00'	150 cf	filter media (Prismatic)Listed below (Recalc)
			1,000 cf Overall x 15.0% Voids
#3	2,268.50'	2,900 cf	surface storage (Prismatic)Listed below (Recalc)
		3,210 cf	Total Available Storage

Elevation (feet)	Surf.Area (sq-ft)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)
2,265.00	400	0	0
2,266.00	400	400	400
Elevation	Surf.Area	Inc.Store	Cum.Store
(feet)	(sq-ft)	(cubic-feet)	(cubic-feet)
2,266.00	400	0	0
2,268.50	400	1,000	1,000
Elevation	Surf.Area	Inc.Store	Cum.Store
(feet)	(sq-ft)	(cubic-feet)	(cubic-feet)
2,268.50	400	0	0
2,270.00	2,000	1,800	1,800
2,270.50	2,400	1,100	2,900

Prepared by The LA Group P.C.

Type II 24-hr 10-Year Rainfall=5.00" Printed 12/9/2011 Page 52

HydroCAD® 9.10 s/n 00439 © 2010 HydroCAD Software Solutions LLC **Outlet Devices** Device Routing Invert #1 Primary 2.269.50' 8.0' long x 1.0' breadth Broad-Crested Rectangular Weir Head (feet) 0.20 0.40 0.60 0.80 1.00 1.20 1.40 1.60 1.80 2.00

2.50 3.00 Coef. (English) 2.69 2.72 2.75 2.85 2.98 3.08 3.20 3.28 3.31 3.30 3.31 3.32

#2 0.500 in/hr Exfiltration over Surface area Primary 2,265.00'

Primary OutFlow Max=1.30 cfs @ 12.05 hrs HW=2,269.65' (Free Discharge) -1=Broad-Crested Rectangular Weir (Weir Controls 1.27 cfs @ 1.05 fps) -2=Exfiltration (Exfiltration Controls 0.03 cfs)

Summary for Pond P2.2: Dry Swale

Inflow Area	a =	3.322 ac, 2	2.38% Impervious,	Inflow Depth =	2.80" for 10-	Year event
Inflow	=	13.84 cfs @	12.02 hrs, Volume	= 0.776 a	af	
Outflow	=	12.86 cfs @	12.05 hrs, Volume	≔ 0.776 a	af, Atten=7%,	Lag= 2.0 min
Primary	=	12.86 cfs @	12.05 hrs, Volume	= 0.776 a	af	

Routing by Stor-Ind method, Time Span= 0.00-144.00 hrs, dt= 0.05 hrs / 2 Peak Elev= 2,265.99' @ 12.05 hrs Surf.Area= 5,582 sf Storage= 5,155 cf

Plug-Flow detention time= 121.5 min calculated for 0.775 af (100% of inflow) Center-of-Mass det. time= 122.0 min (947.4 - 825.4)

Volume	Invert	Avail.Storage	Storag	ge Description	
#1	2,261.50'	420 cf	grave	l underdrain (Pris	smatic)Listed below (Recalc)
#2	2,262.50'	236 cf	1,050 Filter 1,575	cf Overall x 40.09 Media (Prismatic cf Overall x 15.09	% Voids)Listed below (Recalc) % Voids
#3	2,264.00'	8,400 cf	Surfa	ce Storage (Prisr	natic)Listed below (Recalc)
		9,056 cf	Total /	Available Storage	
Elevation (feet)	Surf.A (sq	rea Inc I-ft) (cubi	:.Store c-feet)	Cum.Store (cubic-feet)	
2,261.50	1,0)50	0	0	
2,262.50	1,0)50	1,050	1,050	
Elevation (feet)	Surf.A (sq	rea Inc I-ft) (cubi	:.Store c-feet)	Cum.Store (cubic-feet)	
2,262.50	1,0)50	0	0	
2,264.00	1,0)50	1,575	1,575	
Elevation (feet)	Surf.A (sq	rea Inc I-ft) (cubi	:.Store c-feet)	Cum.Store (cubic-feet)	
2,264.00	1,0)50	0	0	
2,266.00	3,5	500	4,550	4,550	
2,267.00	4,2	200	3,850	8,400	

Elevation

2,227.00

2,229.00

(feet)

Surf.Area

(sq-ft)

10,354

12,115

Type II 24-hr 10-Year Rainfall=5.00" Printed 12/9/2011 Page 53

Prepared by The LA Group P.C. HydroCAD® 9.10 s/n 00439 © 2010 HydroCAD Software Solutions LLC

Device	Routing	Invert	Outlet Devices
#1	Primary	2,265.25'	24.0" Horiz. Orifice/Grate C= 0.600
	-		Limited to weir flow at low heads
#2	Primary	2,266.50'	100.0' long x 50.0' breadth Broad-Crested Rectangular Weir
			Head (feet) 0.20 0.40 0.60 0.80 1.00 1.20 1.40 1.60
			Coef. (English) 2.68 2.70 2.70 2.64 2.63 2.64 2.64 2.63
#3	Primary	2,261.50'	0.500 in/hr Exfiltration over Surface area

Primary OutFlow Max=12.92 cfs @ 12.05 hrs HW=2,265.98' (Free Discharge)

1=Orifice/Grate (Weir Controls 12.86 cfs @ 2.80 fps)

-2=Broad-Crested Rectangular Weir (Controls 0.00 cfs)

-3=Exfiltration (Exfiltration Controls 0.06 cfs)

Summary for Pond P2.3: BIORETENTION

Inflow Are	a =	5.821 ac, 24.98% Impervious, Inflow Depth = 2.83" for 10-Year event	
Inflow	=	22.20 cfs @ 12.04 hrs, Volume= 1.372 af	
Outflow	=	3.02 cfs @ 12.53 hrs, Volume= 1.372 af, Atten= 86%, Lag= 29.3 r	min
Primary	=	3.02 cfs @ 12.53 hrs, Volume= 1.372 af	

Routing by Stor-Ind method, Time Span= 0.00-144.00 hrs, dt= 0.05 hrs / 2 Peak Elev= 2,228.56' @ 12.53 hrs Surf.Area= 32,439 sf Storage= 27,625 cf

Plug-Flow detention time= 396.2 min calculated for 1.372 af (100% of inflow) Center-of-Mass det. time= 396.2 min (1,289.8 - 893.7)

Inc.Store

22,469

0

(cubic-feet)

Volume	Invert	Avai	I.Storage	Storag	ge Description	
#1	2,222.00'		4,142 cf	stone	underdrain (Pris	matic)Listed below (Recalc)
				10,354	4 cf Overall x 40.0	0% Voids
#2	2,223.00'		6,212 cf	filter r	nedia (Prismatic	Listed below (Recalc)
				41,416	6 cf Overall x 15.0	0% Voids
#3	2,227.00'	2	22,469 cf	surfac	ce storage (Prisn	natic)Listed below (Recalc)
		ć	32,823 cf	Total /	Available Storage	
Elevation	Surf.A	Area	Inc	.Store	Cum.Store	
(feet)	(s	q-ft)	(cubio	c-feet)	(cubic-feet)	
2,222.00	10,	,354		0	0	
2,223.00	10,	,354	1	0,354	10,354	
Elevation	Surf.A	Area	Inc	.Store	Cum.Store	
(feet)	(s	q-ft)	(cubio	c-feet)	(cubic-feet)	
2,223.00	10	,354		0	0	
2,227.00	10	,354	4	1,416	41,416	

Cum.Store

(cubic-feet)

22,469

0

Type II 24-hr 10-Year Rainfall=5.00" Printed 12/9/2011 Page 54

Prepared by The LA Group P.C. HydroCAD® 9.10 s/n 00439 © 2010 HydroCAD Software Solutions LLC

Device	Routing	Invert	Outlet Devices
#1	Primary	2,222.00'	18.0" Round Culvert
			L= 60.0' CPP, square edge headwall, Ke= 0.500
			Inlet / Outlet Invert= 2,222.00' / 2,221.40' S= 0.0100 '/' Cc= 0.900
			n= 0.013 Corrugated PE, smooth interior
#2	Primary	2,222.00'	0.500 in/hr Exfiltration over Surface area
#3	Device 1	2,227.50'	6.0" Horiz. Orifice/Grate C= 0.600
			Limited to weir flow at low heads
#4	Primary	2,228.50'	35.0' long x 1.0' breadth Broad-Crested Rectangular Weir
			Head (feet) 0.20 0.40 0.60 0.80 1.00 1.20 1.40 1.60 1.80 2.00
			2.50 3.00
			Coef. (English) 2.69 2.72 2.75 2.85 2.98 3.08 3.20 3.28 3.31
			3.30 3.31 3.32

Primary OutFlow Max=2.86 cfs @ 12.53 hrs HW=2,228.56' (Free Discharge)

1=Culvert (Passes 0.98 cfs of 20.52 cfs potential flow) **3=Orifice/Grate** (Orifice Controls 0.98 cfs @ 4.97 fps)

-2=Exfiltration (Exfiltration Controls 0.38 cfs)

-4=Broad-Crested Rectangular Weir (Weir Controls 1.51 cfs @ 0.68 fps)

Summary for Pond P2.5: Pond 2.5

Inflow Area =	36.326 ac,	17.04% Impervious,	Inflow Depth = 2.56" for 10-Year event
Inflow =	101.86 cfs @	12.00 hrs, Volume	= 7.740 af
Outflow =	40.28 cfs @	12.27 hrs, Volume	= 7.711 af, Atten= 60%, Lag= 16.1 min
Primary =	40.28 cfs @	12.27 hrs, Volume	= 7.711 af
Secondary =	0.00 cfs @	0.00 hrs, Volume	= 0.000 af

Routing by Stor-Ind method, Time Span= 0.00-144.00 hrs, dt= 0.05 hrs / 2 Starting Elev= 2,161.00' Surf.Area= 7,652 sf Storage= 13,933 cf Peak Elev= 2,167.80' @ 12.27 hrs Surf.Area= 25,160 sf Storage= 120,826 cf (106,893 cf above start)

Plug-Flow detention time= 709.3 min calculated for 7.389 af (95% of inflow) Center-of-Mass det. time= 619.5 min (1,516.1 - 896.6)

Invert	Avail.S	Storage	Storage	e Description	
2,158.00'	216	5,744 cf	Custor	n Stage Data (Pi	rismatic)Listed below (Recalc)
Su	rf.Area (sq-ft)	Inc (cubie)	.Store c-feet)	Cum.Store (cubic-feet)	
	1,411		0	0	
	5,797		7,208	7,208	
	9,507	1	5,304	22,512	
	14,282	2	3,789	46,301	
	19,778	3	4,060	80,361	
	25,755	4	5,533	125,894	
	32,133	5	7,888	183,782	
3	33,791	3	2,962	216,744	
	Invert 2,158.00' Su	Invert Avail.5 2,158.00' 216 Surf.Area (sq-ft) 1,411 5,797 9,507 14,282 19,778 25,755 32,133 33,791	Invert Avail.Storage 2,158.00' 216,744 cf Surf.Area Inc (sq-ft) (cubic) 1,411 5,797 9,507 1 14,282 2 19,778 3 25,755 4 32,133 5 33,791 3	InvertAvail.StorageStorage2,158.00'216,744 cfCustorSurf.AreaInc.Store(sq-ft)(cubic-feet)1,41105,7977,2089,50715,30414,28223,78919,77834,06025,75545,53332,13357,88833,79132,962	Invert Avail.Storage Storage Description 2,158.00' 216,744 cf Custom Stage Data (Provide Cubic-feet) Surf.Area Inc.Store Cum.Store (sq-ft) (cubic-feet) (cubic-feet) 1,411 0 0 5,797 7,208 7,208 9,507 15,304 22,512 14,282 23,789 46,301 19,778 34,060 80,361 25,755 45,533 125,894 32,133 57,888 183,782 33,791 32,962 216,744

Type II 24-hr 10-Year Rainfall=5.00" Printed 12/9/2011 Page 55

Prepared by The LA Group P.C. HydroCAD® 9.10 s/n 00439 © 2010 HydroCAD Software Solutions LLC

Device	Routing	Invert	Outlet Devices
#1	Primary	2,158.00'	36.0" Round Culvert L= 300.0' CPP, square edge headwall, Ke= 0.500
			Inlet / Outlet Invert= $2,158.00' / 2,156.50'$ S= $0.0050 '/$ Cc= 0.900 n= 0.020 Corrugated PE. corrugated interior
#2	Device 1	2,161.00'	2.0" Vert. Orifice/Grate C= 0.600
#3	Device 1	2,165.00'	30.0" W x 18.0" H Vert. Orifice/Grate C= 0.600
#4	Device 1	2,166.50'	36.0" W x 30.0" H Vert. Orifice/Grate C= 0.600
#5	Device 1	2,169.00'	48.0" W x 12.0" H Vert. Orifice/Grate C= 0.600
#6	Secondary	2,170.25'	10.0' long x 1.0' breadth Broad-Crested Rectangular Weir
	-		Head (feet) 0.20 0.40 0.60 0.80 1.00 1.20 1.40 1.60 1.80 2.00
			2.50 3.00
			Coef. (English) 2.69 2.72 2.75 2.85 2.98 3.08 3.20 3.28 3.31
			3.30 3.31 3.32

Primary OutFlow Max=40.09 cfs @ 12.27 hrs HW=2,167.79' (Free Discharge)

-1=Culvert (Passes 40.09 cfs of 63.32 cfs potential flow)

-2=Orifice/Grate (Orifice Controls 0.27 cfs @ 12.47 fps)

-3=Orifice/Grate (Orifice Controls 25.66 cfs @ 6.84 fps)

- -4=Orifice/Grate (Orifice Controls 14.16 cfs @ 3.65 fps)
- -5=Orifice/Grate (Controls 0.00 cfs)

Secondary OutFlow Max=0.00 cfs @ 0.00 hrs HW=2,161.00' (Free Discharge) G=Broad-Crested Rectangular Weir (Controls 0.00 cfs)

Summary for Pond P3.1: Dry Swale

Inflow Area	ι =	10.077 ac, 1	3.20% Impervious,	Inflow Depth =	2.52" for 10-	Year event
Inflow	=	37.31 cfs @	12.01 hrs, Volume	∋= 2.113	af	
Outflow	=	35.98 cfs @	12.04 hrs, Volume	∋= 2.113	af, Atten= 4%,	Lag= 1.7 min
Primary	=	35.98 cfs @	12.04 hrs, Volume	∋= 2.113	af	

Routing by Stor-Ind method, Time Span= 0.00-144.00 hrs, dt= 0.05 hrs Peak Elev= 2,288.51' @ 12.04 hrs Surf.Area= 15,423 sf Storage= 14,878 cf

Plug-Flow detention time= 166.1 min calculated for 2.113 af (100% of inflow) Center-of-Mass det. time= 166.0 min (995.0 - 829.1)

Volume	Invert Ava	ail.Storage	Storage Description
#1	2,283.00'	1,086 cf	stone underdrain (Prismatic)Listed below (Recalc)
			2,715 cf Overall x 40.0% Voids
#2	2,284.00'	1,018 cf	filter media (Prismatic)Listed below (Recalc)
			6,788 cf Overall x 15.0% Voids
#3	2,286.50'	18,100 cf	surface storage (Prismatic)Listed below (Recalc)
		20,204 cf	Total Available Storage
Elevation	Surf.Area	Inc	c.Store Cum.Store
(feet)	(sq-ft)	(cubio	c-feet) (cubic-feet)
2,283.00	2,715		0 0
2,284.00	2,715		2,715 2,715

Prepared by The LA Gro	oup P.C.
HydroCAD® 9.10 s/n 00439	© 2010 HydroCAD Software Solutions LL

Elevatio	on et)	Surf.Area (sq-ft)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)					
2,284.0)0	2,715	0	0					
2,286.5	50	2,715	6,788	6,788					
Elevatio	n	Surf.Area	Inc.Store	Cum.Store					
(fee	et)	(sq-ft)	(cubic-feet)	(cubic-feet)					
2,286.5	50	2,715	0	0					
2,289.0	00	11,765	18,100	18,100					
Device	Routing	Invert	Outlet Devices						
#1	Primary	2,284.50'	48.0" Round C L= 50.0' CPP, s Inlet / Outlet Inv	48.0" Round Culvert L= 50.0' CPP, square edge headwall, Ke= 0.500 Inlet / Outlet Invert= 2,284.50' / 2,282.00' S= 0.0500 '/' Cc= 0.900					
#2	Device 1	2,288.00'	30.0" x 30.0" Horiz. Orifice/Grate X 3.00 C= 0.600						
#3	Primary	2,283.00'	0.500 in/hr Exfi	0.500 in/hr Exfiltration over Surface area					

Primary OutFlow Max=35.32 cfs @ 12.04 hrs HW=2,288.50' (Free Discharge)

-1=Culvert (Passes 35.14 cfs of 85.66 cfs potential flow) -2=Orifice/Grate (Weir Controls 35.14 cfs @ 2.32 fps)

-3=Exfiltration (Exfiltration Controls 0.18 cfs)

Summary for Pond P3.2: Dry Swale

Inflow Are	a =	7.881 ac, 2	0.98% Impervious,	Inflow Depth = 2	2.71" for 10-Year event
Inflow	=	33.98 cfs @	12.00 hrs, Volume	e 1.781 al	f
Outflow	=	32.85 cfs @	12.02 hrs, Volume	e 1.781 af	f, Atten= 3%, Lag= 1.2 min
Primary	=	32.85 cfs @	12.02 hrs, Volume	e 1.781 af	

Routing by Stor-Ind method, Time Span= 0.00-144.00 hrs, dt= 0.05 hrs Peak Elev= 2,203.48' @ 12.02 hrs Surf.Area= 10,747 sf Storage= 9,948 cf

Plug-Flow detention time= 129.1 min calculated for 1.780 af (100% of inflow) Center-of-Mass det. time= 129.7 min (956.2 - 826.5)

Volume	Invert Av	vail.Storage	Storage Description
#1	2,199.00'	762 cf	stone underdrain (Prismatic)Listed below (Recalc)
			1,905 cf Overall x 40.0% Voids
#2	2,200.00'	429 cf	filter media (Prismatic)Listed below (Recalc)
			2,858 cf Overall x 15.0% Voids
#3	2,201.50'	12,700 cf	surface storage (Prismatic)Listed below (Recalc)
		13,891 cf	Total Available Storage
Elevation	Surf.Are	a Inc	c.Store Cum.Store
(feet)	(sq-fi	t) (cubi	c-feet) (cubic-feet)
2,199.00	1,90	5	0 0
2,200.00	1,90	5	1,905 1,905

Prepared by The LA Group P.C.	
HydroCAD® 9.10 s/n 00439 © 2010 HydroCAD Software Solutions LLC	

Elevatio (fee	on et)	Surf.Area (sq-ft)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)						
2,200.0)0	1,905	0	0						
2,201.5	50	1,905	2,858	2,858						
Elevatio	on	Surf.Area	Inc.Store	Cum.Store						
(fee	et)	(sq-ft)	(cubic-feet)	(cubic-feet)						
2,201.5	50	1,905	0	0						
2,204.0	00	8,255	12,700	12,700						
Device	Routing	Invert	Outlet Devices							
#1	Primary	2,198.00'	42.0" Round C L= 550.0' CPP Inlet / Outlet Inv n= 0.020 Corru	42.0" Round Culvert L= 550.0' CPP, square edge headwall, Ke= 0.500 Inlet / Outlet Invert= 2,198.00' / 2,192.50' S= 0.0100 '/' Cc= 0.900						
#2	Device 1	2,203.00'	30.0" x 30.0" Horiz. Orifice/Grate X 3.00 C= 0.600							
#3	Primary	2,199.00'	0.500 in/hr Exfi	Itration over	D.500 in/hr Exfiltration over Surface area					

Primary OutFlow Max=31.92 cfs @ 12.02 hrs HW=2,203.47' (Free Discharge)

-1=Culvert (Passes 31.80 cfs of 69.60 cfs potential flow) -2=Orifice/Grate (Weir Controls 31.80 cfs @ 2.25 fps)

-3=Exfiltration (Exfiltration Controls 0.12 cfs)

Summary for Pond P3.3: P-1

Inflow Area	1 =	20.668 ac, 1	6.21% Impervious	Inflow Depth =	2.60" for	10-Year event
Inflow	=	76.69 cfs @	12.03 hrs, Volum	e= 4.486	af	
Outflow	=	35.73 cfs @	12.18 hrs, Volum	e= 4.486	af, Atten= \$	53%, Lag= 9.0 min
Primary	=	35.73 cfs @	12.18 hrs, Volum	e= 4.486	af	

Routing by Stor-Ind method, Time Span= 0.00-144.00 hrs, dt= 0.05 hrs Starting Elev= 2,183.00' Surf.Area= 5,003 sf Storage= 5,563 cf Peak Elev= 2,188.45' @ 12.18 hrs Surf.Area= 17,293 sf Storage= 65,239 cf (59,676 cf above start)

Plug-Flow detention time= 681.5 min calculated for 4.357 af (97% of inflow) Center-of-Mass det. time= 607.9 min (1,566.5 - 958.7)

Volume	Invert Avail.Storage		Storage I	Storage Description				
#1	2,181.00'	116,977 cf	Custom	Stage Data (Pri	ismatic)Listed below (Recalc)			
Elevation (feet)	Surf.Are (sq-	ea Inc ft) (cubi	c.Store ic-feet)	Cum.Store (cubic-feet)				
2,181.00	30	00	0	0				
2,182.00	2,91	1	1,606	1,606				
2,184.00	7,09	95 ⁻	10,006	11,612				
2,186.00	11,41	2	18,507	30,119				
2,188.00	16,13	32 2	27,544	57,663				
2,190.00	21,25	55 3	37,387	95,050				
2,191.00	22,60	00 2	21,928	116,977				

Type II 24-hr 10-Year Rainfall=5.00" Printed 12/9/2011 Page 58

Prepared by The LA Group P.C. HydroCAD® 9.10 s/n 00439 © 2010 HydroCAD Software Solutions LLC

Device	Routing	Invert	Outlet Devices
#1	Primary	2,181.00'	30.0" Round Culvert
			L= 30.0' CPP, square edge headwall, Ke= 0.500
			Inlet / Outlet Invert= 2,181.00' / 2,180.85' S= 0.0050 '/' Cc= 0.900
			n= 0.020 Corrugated PE, corrugated interior
#2	Device 1	2,183.00'	2.0" Vert. Orifice/Grate C= 0.600
#3	Device 1	2,186.50'	24.0" W x 6.0" H Vert. Orifice/Grate C= 0.600
#4	Device 1	2,187.50'	30.0" x 30.0" Horiz. Orifice/Grate C= 0.600
			Limited to weir flow at low heads
#5	Primary	2,190.00'	10.0' long x 1.0' breadth Broad-Crested Rectangular Weir
			Head (feet) 0.20 0.40 0.60 0.80 1.00 1.20 1.40 1.60 1.80 2.00
			2.50 3.00
			Coef. (English) 2.69 2.72 2.75 2.85 2.98 3.08 3.20 3.28 3.31
			3.30 3.31 3.32

Primary OutFlow Max=35.70 cfs @ 12.18 hrs HW=2,188.44' (Free Discharge)

1=Culvert (Passes 35.70 cfs of 58.81 cfs potential flow)

2=Orifice/Grate (Orifice Controls 0.24 cfs @ 11.15 fps)

-3=Orifice/Grate (Orifice Controls 6.26 cfs @ 6.26 fps)

4=Orifice/Grate (Orifice Controls 29.20 cfs @ 4.67 fps)

-5=Broad-Crested Rectangular Weir (Controls 0.00 cfs)

Summary for Pond P5.1: BIORETENTION

Inflow Area	ι =	0.684 ac,	16.21% Impe	ervious,	Inflow	Depth =	2.62"	for	10-Year	event
Inflow	=	3.08 cfs @	11.97 hrs,	Volume=	=	0.150	af			
Outflow	=	2.99 cfs @	11.99 hrs,	Volume=	=	0.172	af, At	tten= 3	3%, Lag	= 1.0 min
Primary	=	2.99 cfs @	11.99 hrs,	Volume=	=	0.172	af			

Routing by Stor-Ind method, Time Span= 0.00-144.00 hrs, dt= 0.05 hrs / 2 Starting Elev= 1,808.00' Surf.Area= 2,961 sf Storage= 987 cf Peak Elev= 1,808.73' @ 11.99 hrs Surf.Area= 3,078 sf Storage= 1,748 cf (761 cf above start)

Plug-Flow detention time= 285.0 min calculated for 0.149 af (100% of inflow) Center-of-Mass det. time= 188.0 min (1,014.6 - 826.6)

Volume	Invert	Avail.Storage	Storage	e Description
#1	1,803.00'	395 cf	stone u	underdrain (Prismatic)Listed below (Recalc)
			987 cf (Overall x 40.0% Voids
#2	1,804.00'	592 cf	filter m	nedia (Prismatic)Listed below (Recalc)
			3,948 c	cf Overall x 15.0% Voids
#3	1,808.00'	2,295 cf	surface	e storage (Prismatic)Listed below (Recalc)
		3,282 cf	Total A	vailable Storage
Elevation	Surf.A	rea Inc	.Store	Cum.Store
(feet)	(so	q-ft) (cubi	c-feet)	(cubic-feet)
1,803.00	ę	987	0	0
1,804.00	9	987	987	987

Prepared by The LA Gro	up P.C.		
HydroCAD® 9.10 s/n 00439	© 2010 Hy	droCAD Softwar	e Solutions LLC

Elevatio	on	Surf.Area	Inc.Store	Cum.Store	
(fee	et)	(sq-ft)	(cubic-feet)	(cubic-feet)	
1,804.0)0	987	0	0	
1,808.0	00	987	3,948	3,948	
Elevatio	n	Surf Area	Inc Store	Cum Store	
(fee	et)	(sq-ft)	(cubic-feet)	(cubic-feet)	
1,808.0)0	987	0	0	
1,810.0	00	1,308	2,295	2,295	
Device	Routing	Invert	Outlet Devices		
#1	Primary	1,808.50'	10.0' long x 1.0	0' breadth Br	oad-Crested Rectangular Weir
	-		Head (feet) 0.2	0 0.40 0.60	0.80 1.00 1.20 1.40 1.60 1.80 2.00
			2.50 3.00		
			Coef. (English)	2.69 2.72 2	.75 2.85 2.98 3.08 3.20 3.28 3.31
			3.30 3.31 3.32		
#2	Primary	1,803.00'	0.500 in/hr Exfi	Itration over	Surface area

Primary OutFlow Max=2.88 cfs @ 11.99 hrs HW=1,808.72' (Free Discharge) 1=Broad-Crested Rectangular Weir (Weir Controls 2.84 cfs @ 1.27 fps) 2=Exfiltration (Exfiltration Controls 0.04 cfs)

Summary for Pond P6.1: BIORETENTION

Inflow Area = 0.225 a	c, 48.98% Impervious, li	nflow Depth = 3.47"	for 10-Year event
Inflow = 1.30 cfs	@ 11.97 hrs, Volume=	0.065 af	
Outflow = 0.41 cfs	@ 12.12 hrs, Volume=	0.065 af, Atte	n= 68%, Lag= 8.9 min
Primary = 0.41 cfs	@ 12.12 hrs, Volume=	0.065 af	

Routing by Stor-Ind method, Time Span= 0.00-144.00 hrs, dt= 0.05 hrs / 2 Starting Elev= 0.01' Surf.Area= 0 sf Storage= 0 cf Peak Elev= 1,686.59' @ 12.12 hrs Surf.Area= 2,607 sf Storage= 1,335 cf

Plug-Flow detention time= 426.1 min calculated for 0.065 af (100% of inflow) Center-of-Mass det. time= 426.3 min (1,227.6 - 801.3)

Volume	Invert A	Avail.Storage	Storage Description
#1	1,681.00'	320 cf	stone underdrain (Prismatic)Listed below (Recalc)
			800 cf Overall x 40.0% Voids
#2	1,682.00'	480 cf	filter media (Prismatic)Listed below (Recalc)
			3,200 cf Overall x 15.0% Voids
#3	1,686.00'	2,300 cf	surface storage (Prismatic)Listed below (Recalc)
		3,100 cf	Total Available Storage
Elevation	Surf.Ar	ea Inc	nc.Store Cum.Store
(feet)	(sq-	ft) (cubi	bic-feet) (cubic-feet)
1,681.00	8	00	0 0
1,682.00	8	00	800 800

Prepared by The LA Group P.C.	-
HydroCAD® 9.10 s/n 00439 © 2010 HydroCAD Software Solution:	s LLC

Elevation Sur		Surf.Area	Inc.Store	Cum.Store	
(feet)		(sq-ft)	(cubic-feet)	(cubic-feet)	
1,682.0)0	800	0	0	
1,686.0	00	800	3,200	3,200	
Elevatio	on	Surf.Area	Inc.Store	Cum.Store	
(fee	et)	(sq-ft)	(cubic-feet)	(cubic-feet)	
1,686.00		800	0	0	
1,688.0	00	1,500	2,300	2,300	
Device	Routing	Invert	Outlet Devices		
#1	Primary	1,686.50'	5.0' long x 1.0'	breadth Bro	ad-Crested Rectangular Weir
	-		Head (feet) 0.2	0 0.40 0.60	0.80 1.00 1.20 1.40 1.60 1.80 2.00
			2.50 3.00		
			Coef. (English)	2.69 2.72 2.	75 2.85 2.98 3.08 3.20 3.28 3.31
			3.30 3.31 3.32		
#2	Primary	1,681.00'	0.500 in/hr Exfi	Itration over	Surface area

Primary OutFlow Max=0.37 cfs @ 12.12 hrs HW=1,686.59' (Free Discharge) 1=Broad-Crested Rectangular Weir (Weir Controls 0.34 cfs @ 0.79 fps) 2=Exfiltration (Exfiltration Controls 0.03 cfs)

Summary for Pond P6.2: BIORETENTION

Inflow Area = 0.249 ac, 44.31% Impervious, Inflow Depth = 3.37"	for 10-Year event
Inflow = 1.40 cfs @ 11.97 hrs, Volume= 0.070 af	
Outflow = 0.56 cfs @ 12.09 hrs, Volume= 0.070 af, Atter	1= 60%, Lag= 7.6 min
Primary = 0.56 cfs @ 12.09 hrs, Volume= 0.070 af	

Routing by Stor-Ind method, Time Span= 0.00-144.00 hrs, dt= 0.05 hrs / 2 Starting Elev= 0.01' Surf.Area= 0 sf Storage= 0 cf Peak Elev= 1,686.61' @ 12.09 hrs Surf.Area= 2,615 sf Storage= 1,358 cf

Plug-Flow detention time= 408.5 min calculated for 0.070 af (100% of inflow) Center-of-Mass det. time= 409.3 min (1,213.7 - 804.4)

Volume	Invert A	vail.Storage	Storage Description
#1	1,681.00'	320 cf	stone underdrain (Prismatic)Listed below (Recalc)
			800 cf Overall x 40.0% Voids
#2	1,682.00'	480 cf	filter media (Prismatic)Listed below (Recalc)
			3,200 cf Overall x 15.0% Voids
#3	1,686.00'	2,300 cf	surface storage (Prismatic)Listed below (Recalc)
		3,100 cf	Total Available Storage
Elevation	Surf Are	a Inc	Store Cum Store
(feet)	(sq-i	ft) (cubic	ic-feet) (cubic-feet)
1,681.00	80	00	0 0
1,682.00	80	00	800 800

Prepared by The LA Gro	up P.C.
HydroCAD® 9.10 s/n 00439	© 2010 HydroCAD Software Solutions LLC

Elevatio	n	Surf.Area	Inc.Store	Cum.Store	
(feet)		(sq-ft)	(cubic-feet)	(cubic-feet)	
1,682.0	0	800	0	0	
1,686.0	00	800	3,200	3,200	
Flowetia		Curf Area	In a Otara	Curra Starra	
Elevatio	n	Surf.Area	Inc.Store	Cum.Store	
(fee	et)	(sq-ft)	(cubic-feet)	(cubic-feet)	
1,686.00		800	0	0	
1,688.00		1,500	2,300	2,300	
Device	Routing	Invert	Outlet Devices		
#1	Primary	1,686.50'	5.0' long x 1.0'	breadth Broa	ad-Crested Rectangular Weir
-			Head (feet) 0.2	0 0.40 0.60	0.80 1.00 1.20 1.40 1.60 1.80 2.00
			2.50 3.00		
			Coef. (English)	2.69 2.72 2.7	75 2.85 2.98 3.08 3.20 3.28 3.31
			3.30 3.31 3.32		
#2	Primary	1,681.00'	0.500 in/hr Exfi	Itration over	Surface area

Primary OutFlow Max=0.54 cfs @ 12.09 hrs HW=1,686.61' (Free Discharge) -1=Broad-Crested Rectangular Weir (Weir Controls 0.51 cfs @ 0.90 fps) -2=Exfiltration (Exfiltration Controls 0.03 cfs)

Summary for Pond P7.1: P-1

Inflow Area	a =	2.973 ac, 3	9.49% Imperviou	s, Inflow	Depth =	3.17"	for 10-Y	ear event
Inflow	=	15.92 cfs @	11.97 hrs, Volun	ne=	0.786	af		
Outflow	=	1.34 cfs @	12.52 hrs, Volun	ne=	0.786	af, Atte	en= 92%,	Lag= 32.9 min
Primary	=	1.34 cfs @	12.52 hrs, Volun	ne=	0.786	af		

Routing by Stor-Ind method, Time Span= 0.00-144.00 hrs, dt= 0.05 hrs / 2 Starting Elev= 1,676.00' Surf.Area= 2,800 sf Storage= 3,265 cf Peak Elev= 1,679.55' @ 12.52 hrs Surf.Area= 7,981 sf Storage= 22,096 cf (18,831 cf above start)

Plug-Flow detention time= 815.0 min calculated for 0.711 af (90% of inflow) Center-of-Mass det. time= 684.4 min (1,494.8 - 810.4)

Volume	Invert Av	ail.Storage	Storage	Description	
#1	1,674.00'	34,944 cf	Custom	Stage Data (Pr	ismatic)Listed below (Recalc)
Elevation	Surf.Area	Inc (cubic	Store	Cum.Store	
1 674 00	465	(Cubit	0	0	
1,676.00	2,800		3,265	3,265	
1,678.00	5,541		8,341	11,606	
1,680.00	8,686	1	4,227	25,833	
1,681.00	9,535		9,111	34,944	

Type II 24-hr 10-Year Rainfall=5.00" Printed 12/9/2011 C Page 62

Prepared by The LA Group P.C. HydroCAD® 9.10 s/n 00439 © 2010 HydroCAD Software Solutions LLC

Device	Routing	Invert	Outlet Devices
#1	Primary	1,674.00'	24.0" Round Culvert L= 74.0' CPP, square edge headwall, Ke= 0.500 Inlet / Outlet Invert= 1,674.00' / 1,673.63' S= 0.0050 '/' Cc= 0.900 n= 0.020 Corrugated PE, corrugated interior
#2 #3 #4	Device 1 Device 1 Device 1	1,676.00' 1,678.50' 1,679.50'	 1.7" Vert. Orifice/Grate C= 0.600 6.0" Vert. Orifice/Grate C= 0.600 24.0" x 24.0" Horiz. Orifice/Grate C= 0.600 Limited to weir flow at low heads
#5	Primary	1,680.00'	20.0' long x 1.0' breadth Broad-Crested Rectangular Weir Head (feet) 0.20 0.40 0.60 0.80 1.00 1.20 1.40 1.60 1.80 2.00 2.50 3.00 Coef. (English) 2.69 2.72 2.75 2.85 2.98 3.08 3.20 3.28 3.31 3.30 3.31 3.32

Primary OutFlow Max=1.29 cfs @ 12.52 hrs HW=1,679.55' (Free Discharge)

1=Culvert (Passes 1.29 cfs of 26.01 cfs potential flow)

2=Orifice/Grate (Orifice Controls 0.14 cfs @ 8.98 fps)

3=Orifice/Grate (Orifice Controls 0.85 cfs @ 4.31 fps)

4=Orifice/Grate (Weir Controls 0.30 cfs @ 0.74 fps)

-5=Broad-Crested Rectangular Weir (Controls 0.00 cfs)

Summary for Pond P8.1: DRY SWALE

Inflow Area	ι =	2.715 ac, 2	8.55% Impe	ervious,	Inflow	Depth =	2.89"	for 1	0-Year	event
Inflow	=	10.66 cfs @	12.05 hrs,	Volume=	=	0.655	af			
Outflow	=	10.05 cfs @	12.09 hrs,	Volume=	=	0.654	af, At	tten= 6%	%, Lag=	2.1 min
Primary	=	10.05 cfs @	12.09 hrs,	Volume=	=	0.654	af			

Routing by Stor-Ind method, Time Span= 0.00-144.00 hrs, dt= 0.05 hrs / 2 Peak Elev= 2,309.76' @ 12.09 hrs Surf.Area= 5,935 sf Storage= 5,107 cf

Plug-Flow detention time= 169.7 min calculated for 0.654 af (100% of inflow) Center-of-Mass det. time= 170.0 min (995.5 - 825.5)

Volume	Invert	Avai	I.Storage	Stora	ge Description	
#1	2,304.50'		444 cf	stone	e underdrain (Pris	matic)Listed below (Recalc)
				1,110	cf Overall x 40.0%	% Voids
#2	2,305.50'		416 cf	filter	media (Prismatic)	Listed below (Recalc)
			= 400 (2,775	ct Overall x 15.0%	6 Voids
#3	2,308.00		5,180 cf	surfa	ce storage (Prism	atic)Listed below (Recalc)
			6,040 cf	Total	Available Storage	
Elevation	Sur	f Area	Inc	Store	Cum Store	
(feet)	Call	(sq-ft)	(cubi	c-feet)	(cubic-feet)	
2,304.50		1,110		0	0	
2,305.50		1,110		1,110	1,110	
Elevation	Sur	f.Area	Inc	Store	Cum.Store	
(feet)		(sq-ft)	(cubi	c-feet)	(cubic-feet)	
2,305.50		1,110		0	0	
2,308.00		1,110		2,775	2,775	

Elevatio	on	Surf.Area	Inc.Store	Cum.Store	
(fee	et)	(sq-ft)	(cubic-feet)	(cubic-feet)	
2,308.0)0	1,110	0	0	
2,310.0)0	4,070	5,180	5,180	
Device	Routing	Invert	Outlet Devices		
#1	Primary	2,309.25'	10.0' lona x 1.0)' breadth Bro	oad-Crested Rectand

 10.0' long x 1.0' breadth Broad-Crested Rectangular Weir

 Head (feet)
 0.20
 0.40
 0.60
 0.80
 1.00
 1.20
 1.40
 1.60
 1.80
 2.00

 2.50
 3.00
 Coef. (English)
 2.69
 2.72
 2.75
 2.85
 2.98
 3.08
 3.20
 3.28
 3.31

3.30 3.31 3.32

#2 Primary 2,304.50' 0.500 in/hr Exfiltration over Surface area

Primary OutFlow Max=9.88 cfs @ 12.09 hrs HW=2,309.75' (Free Discharge) 1=Broad-Crested Rectangular Weir (Weir Controls 9.81 cfs @ 1.94 fps) 2=Exfiltration (Exfiltration Controls 0.07 cfs)

Summary for Pond P8.2: P-1

Inflow Are	a =	27.190 ac, 2	22.39% Imp	ervious,	Inflow Dept	h = 2.6	6" for	10-Yea	ar event
Inflow	=	86.72 cfs @	12.02 hrs,	Volume	= 6.	.033 af			
Outflow	=	55.26 cfs @	12.15 hrs,	Volume	= 6.	.032 af,	Atten= 3	86%, L	.ag= 8.0 min
Primary	=	55.26 cfs @	12.15 hrs,	Volume	= 6.	.032 af			

Routing by Stor-Ind method, Time Span= 0.00-144.00 hrs, dt= 0.05 hrs Starting Elev= 1,675.75' Surf.Area= 4,839 sf Storage= 10,231 cf Peak Elev= 1,683.32' @ 12.15 hrs Surf.Area= 18,075 sf Storage= 93,220 cf (82,988 cf above start)

Plug-Flow detention time= 676.3 min calculated for 5.795 af (96% of inflow) Center-of-Mass det. time= 608.2 min (1,472.1 - 863.9)

Volume	Inve	rt Avail.Sto	rage Storage	e Description	
#1	1,672.00	D' 106,08	30 cf Custon	n Stage Data (Pi	rismatic)Listed below (Recalc)
Elevatio	n S	Surf.Area	Inc.Store	Cum.Store	
(fee	t)	(sq-ft)	(cubic-feet)	(cubic-feet)	
1,672.0	0	1,000	0	0	
1,674.0	0	2,665	3,665	3,665	
1,676.0	0	5,150	7,815	11,480	
1,678.0	0	8,130	13,280	24,760	
1,680.0	0	11,525	19,655	44,415	
1,682.0	0	15,315	26,840	71,255	
1,684.0	0	19,510	34,825	106,080	
Device	Routing	Invert	Outlet Device	es	
#1	Primary	1,672.00'	24.0" Round	d Culvert	
			L= 93.0' CP	P, square edge l	neadwall, Ke= 0.500
			Inlet / Outlet	Invert= 1,672.00	/ 1,671.54' S= 0.0049 '/' Cc= 0.900
			n= 0.020 Co	rrugated PE, cor	rugated interior
#2	Device 1	1,675.75	2.0" Vert. Or	Titice/Grate C=	0.600
#3	Device 1	1,681.00'	24.0" W x 6.0	U" H Vert. Orific	e/Grate C= 0.600

08077_Proposed	Type II 24-hr 10
Prepared by The LA Group P.C.	
HydroCAD® 9.10 s/n 00439 © 2010 HydroCAD Software Solutions LLC	C

#4	Device 1	1,682.00'	36.0" x 36.0" Horiz. Orifice/Grate C= 0.600 Limited to weir flow at low heads
#5	Primary	1,683.00'	35.0' long x 1.0' breadth Broad-Crested Rectangular Weir Head (feet) 0.20 0.40 0.60 0.80 1.00 1.20 1.40 1.60 1.80 2.00 2.50 3.00 Coef. (English) 2.69 2.72 2.75 2.85 2.98 3.08 3.20 3.28 3.31 3.30 3.31 3.32

Primary OutFlow Max=54.78 cfs @ 12.15 hrs HW=1,683.31' (Free Discharge)

1=Culvert (Barrel Controls 38.26 cfs @ 12.18 fps)

2=Orifice/Grate (Passes < 0.29 cfs potential flow)

-3=Orifice/Grate (Passes < 6.91 cfs potential flow)

4=Orifice/Grate (Passes < 49.64 cfs potential flow)

-5=Broad-Crested Rectangular Weir (Weir Controls 16.52 cfs @ 1.51 fps)

Summary for Pond P8.3: DRY SWALE

Inflow Are	ea =	1.145 ac, <i>1</i>	16.92% Impervious,	Inflow Depth = 2	2.71" for	10-Year event
Inflow	=	5.32 cfs @	11.97 hrs, Volume)= 0.259 a	ıf	
Outflow	=	4.43 cfs @	12.02 hrs, Volume	e 0.259 a'	f, Atten= 1	7%, Lag= 3.1 min
Primary	=	4.43 cfs @	12.02 hrs, Volume	e 0.259 a'	ıf	

Routing by Stor-Ind method, Time Span= 0.00-144.00 hrs, dt= 0.05 hrs / 2 Peak Elev= 1,756.88' @ 12.02 hrs Surf.Area= 3,839 sf Storage= 3,495 cf

Plug-Flow detention time= 334.8 min calculated for 0.259 af (100% of inflow) Center-of-Mass det. time= 337.0 min (1,161.0 - 824.0)

Volume	Invert	Avail.Storage	Storage Description
#1	1,751.50'	264 cf	stone underdrain (Prismatic)Listed below (Recalc)
			660 cf Overall x 40.0% Voids
#2	1,752.50'	248 cf	filter media (Prismatic)Listed below (Recalc)
			1,650 cf Overall x 15.0% Voids
#3	1,755.00'	6,105 cf	surface storage (Prismatic)Listed below (Recalc)
		6,617 cf	Total Available Storage

Elevation (feet)	Surf.Area (sq-ft)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)
1,751.50 1,752.50	660 660	0 660	0 660
Elevation (feet)	Surf.Area (sq-ft)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)
1,752.50	660	0	0
1,755.00	660	1,650	1,650
Elevation	Surf.Area	Inc.Store	Cum.Store
(feet)	(sq-ft)	(cubic-feet)	(cubic-feet)
1,755.00	660	0	0
1,757.00	2,640	3,300	3,300
1,758.00	2,970	2,805	6,105

 Type II 24-hr 10-Year Rainfall=5.00"

 Printed 12/9/2011

 C
 Page 65

Prepared by The LA Group P.C. HydroCAD® 9.10 s/n 00439 © 2010 HydroCAD Software Solutions LLC

Device	Routing	Invert	Outlet Devices
#1	Primary	1,756.50'	7.0' long x 1.0' breadth Broad-Crested Rectangular Weir Head (feet) 0.20 0.40 0.60 0.80 1.00 1.20 1.40 1.60 1.80 2.00 2.50 3.00 Coef. (English) 2.69 2.72 2.75 2.85 2.98 3.08 3.20 3.28 3.31
#2	Primary	1,751.50'	0.500 in/hr Exfiltration over Surface area

Primary OutFlow Max=4.14 cfs @ 12.02 hrs HW=1,756.86' (Free Discharge) 1=Broad-Crested Rectangular Weir (Weir Controls 4.10 cfs @ 1.63 fps) 2 Evaluation (Evaluation Controls 0.04 efc)

-2=Exfiltration (Exfiltration Controls 0.04 cfs)

Summary for Pond P9.1: DRY SWALE

Inflow Area	ι =	4.151 ac, 2	1.51% Impervio	us, Inflow Dep	oth = 2.71"	for 10-1	lear event
Inflow	=	14.85 cfs @	12.06 hrs, Volu	ume= (0.938 af		
Outflow	=	13.49 cfs @	12.12 hrs, Volu	ume= (0.938 af, Att	en= 9%,	Lag= 3.3 min
Primary	=	13.49 cfs @	12.12 hrs, Volu	ume= (0.938 af		

Routing by Stor-Ind method, Time Span= 0.00-144.00 hrs, dt= 0.05 hrs Peak Elev= 1,819.62' @ 12.12 hrs Surf.Area= 9,083 sf Storage= 9,172 cf

Plug-Flow detention time= 214.9 min calculated for 0.938 af (100% of inflow) Center-of-Mass det. time= 215.5 min (1,047.1 - 831.6)

Volume	Inve	ert Ava	il.Storage	Storage	e Description	
#1	1,814.0)0'	624 cf	stone u	underdrain (Pris	matic)Listed below (Recalc)
"0			(1,560 c	f Overall x 40.0%	% Voids
#2	1,815.0)0'	585 cf	filter m	edia (Prismatic)	Listed below (Recalc)
#3	1 817 5	50'	10 400 cf	Surface	e storage (Prism	atic)
	1,01110		11.609 cf	Total A	vailable Storage	
			,		i analoro o toralgo	
Elevation		Surf.Area	Inc	.Store	Cum.Store	
(feet)		(sq-ft)	(cubi	c-feet)	(cubic-feet)	
1,814.00		1,560		0	0	
1,815.00		1,560		1,560	1,560	
_		~		C /		
Elevation		Surf.Area	Inc	Store	Cum Store	
(feet)		(sq-ft)	(cubi	c-feet)	(cubic-feet)	
1,815.00		1,560		0	0	
1,817.50		1,560		3,900	3,900	
Elevation		Surf Area	Inc	Store	Cum Store	
(feet)		(sa-ft)	(cubi	c-feet)	(cubic-feet)	
1.817.50		1.560		0	0	
1,820.00		6,760	1	0,400	10,400	
<u>Device</u> F	Routing	lr	nvert Outle	et Device	es	
#1 F	Primary	1,814	4.00' 0.50	0 in/hr E	Exfiltration over	Surface area
#2 F	Primary	1,819	9.00' 10.0	'long x	1.0' breadth Bro	oad-Crested Rectangular Weir

Head (feet) 0.20 0.40 0.60 0.80 1.00 1.20 1.40 1.60 1.80 2.00 2.50 3.00 Coef. (English) 2.69 2.72 2.75 2.85 2.98 3.08 3.20 3.28 3.31 3.30 3.31 3.32

Primary OutFlow Max=13.16 cfs @ 12.12 hrs HW=1,819.61' (Free Discharge) 1=Exfiltration (Exfiltration Controls 0.10 cfs) 2=Broad-Crested Rectangular Weir (Weir Controls 13.05 cfs @ 2.15 fps)

Summary for Pond P9.2: Pond 9.2

Inflow Area	a =	19.480 ac, 21.84% Impervious, Inflow Depth = 2.86" for 10-Year event
Inflow	=	79.47 cfs @ 12.00 hrs, Volume= 4.645 af
Outflow	=	3.29 cfs @ 13.96 hrs, Volume= 4.643 af, Atten= 96%, Lag= 117.5 min
Primary	=	3.29 cfs @ 13.96 hrs, Volume= 4.643 af

Routing by Stor-Ind method, Time Span= 0.00-144.00 hrs, dt= 0.05 hrs Starting Elev= 1,667.00' Surf.Area= 3,838 sf Storage= 6,979 cf Peak Elev= 1,675.13' @ 13.96 hrs Surf.Area= 26,447 sf Storage= 131,134 cf (124,154 cf above start)

Plug-Flow detention time= 1,438.7 min calculated for 4.481 af (96% of inflow) Center-of-Mass det. time= 1,345.3 min (2,212.0 - 866.8)

Inver	t Avail.Sto	rage Storage	Description	
1,664.00	' 169,8'	13 cf Custom	Stage Data (Pi	rismatic)Listed below (Recalc)
n S	ourf.Area	Inc.Store	Cum.Store	
)	(sq-n)	(cubic-reet)	(cubic-leet)	
)	433	0	0	
)	3,085	3,518	3,518	
)	4,590	7,675	11,193	
)	13,607	18,197	29,390	
)	18,274	31,881	61,271	
)	23,344	41,618	102,889	
)	28,815	52,159	155,048	
)	30,246	14,765	169,813	
Routing	Invert	Outlet Devices	5	
Primary	1,653.00'	24.0" Round	Culvert	
2	·	L= 300.0' CF	P, square edge	headwall, Ke= 0.500
		Inlet / Outlet In	nvert= 1,653.00'	'/1,651.50' S= 0.0050 '/' Cc= 0.900
		n= 0.020 Cor	rugated PE, cor	rugated interior
Device 1	1,667.00'	2.0" Vert. Ori	fice/Grate C=	0.600
Device 1	1,671.75'	6.0" Vert. Ori	fice/Grate C=	0.600
Device 1	1,675.00'	24.0" x 24.0"	Horiz. Orifice/C	Grate C= 0.600
		Limited to wei	r flow at low hea	ads
Primary	1,675.50'	50.0' long x '	1.0' breadth Bro	oad-Crested Rectangular Weir
-		Head (feet) 0	.20 0.40 0.60	0.80 1.00 1.20 1.40 1.60 1.80 2.00
		2.50 3.00		
		Coef. (English) 2.69 2.72 2.	75 2.85 2.98 3.08 3.20 3.28 3.31
		3.30 3.31 3.3	32	
	Inver 1,664.00 n S))))))) Routing Primary Device 1 Device 1 Device 1 Primary	Invert Avail.Sto 1,664.00' 169,8' n Surf.Area) (sq-ft) 0 433 0 3,085 0 4,590 0 13,607 0 18,274 0 23,344 0 28,815 0 30,246 Routing Invert Primary 1,653.00' Device 1 1,671.75' Device 1 1,675.00' Primary 1,675.50'	Invert Avail.Storage Storage 1,664.00' 169,813 cf Custom n Surf.Area Inc.Store) (sq-ft) (cubic-feet) 0 433 0 0 3,085 3,518 0 4,590 7,675 0 18,274 31,881 0 23,344 41,618 0 28,815 52,159 0 30,246 14,765 Routing Invert Outlet Devices Primary 1,653.00' 24.0" Round L= 300.0' CF Inlet / Outlet In n= 0.020 0 1,677.00' 2.0" Vert. Ori Device 1 1,675.00' 24.0" x 24.0" Limited to wei Limited to wei Primary 1,675.50' 50.0' long x ' Head (feet) 0 2.50 3.00 Coef. (English 3.30 3.31 3.30	Invert Avail.Storage Storage Description 1,664.00' 169,813 cf Custom Stage Data (P n Surf.Area Inc.Store Cum.Store) (sq-ft) (cubic-feet) (cubic-feet) 0 433 0 0 0 3,085 3,518 3,518 0 4,590 7,675 11,193 0 13,607 18,197 29,390 0 13,607 18,197 29,390 0 23,344 41,618 102,889 0 28,815 52,159 155,048 0 30,246 14,765 169,813 Routing Invert Outlet Devices Primary 1,653.00' 24.0" Round Culvert L= 300.0' CPP, square edge Inlet / Outlet Invert= 1,653.00 n= 0.020 0 2.0" Vert. Orifice/Grate C= Device 1 1,677.00' 2.0" Vert. Orifice/Grate C= Device 1 1,675.50' 50.0' long x 1.0' breadth Br

Primary OutFlow Max=3.26 cfs @ 13.96 hrs HW=1,675.13' (Free Discharge)

-1=Culvert (Passes 3.26 cfs of 36.45 cfs potential flow)

-2=Orifice/Grate (Orifice Controls 0.30 cfs @ 13.66 fps)

-3=Orifice/Grate (Orifice Controls 1.67 cfs @ 8.52 fps)

4=Orifice/Grate (Weir Controls 1.29 cfs @ 1.20 fps)

-5=Broad-Crested Rectangular Weir (Controls 0.00 cfs)

Summary for Pond P9.3: BIORETENTION

Inflow Area	ι =	1.347 ac, 3	85.43% Impe	ervious,	Inflow Depth =	3.17"	for 10-Ye	ear event
Inflow	=	7.22 cfs @	11.97 hrs,	Volume=	= 0.356	af		
Outflow	=	0.77 cfs @	12.38 hrs,	Volume=	= 0.356	af, Atte	n= 89%,	Lag= 24.9 min
Primary	=	0.77 cfs @	12.38 hrs,	Volume=	= 0.356	af		-

Routing by Stor-Ind method, Time Span= 0.00-144.00 hrs, dt= 0.05 hrs / 2 Peak Elev= 1,658.95' @ 12.38 hrs Surf.Area= 12,154 sf Storage= 7,794 cf

Plug-Flow detention time= 414.2 min calculated for 0.356 af (100% of inflow) Center-of-Mass det. time= 413.1 min (1,223.5 - 810.4)

Volume	Inve	ert Avail	.Storage	Storage D	Description	
#1	1,653.0	0'	1,546 cf	stone un	derdrain (Pris	matic)Listed below (Recalc)
щ о	4 05 4 0		0.040 -4	3,864 CT (Jverall x 40.0%	% VOIOS
#Z	1,654.0	0	2,318 CT	THE AFE of	ala (Prismatic)	LISTED DEIOW (RECAIC)
#3	1 658 0	0	8 01/ of	15,450 Cl	Overall X 15.0	natio) istad balow (Pacala)
#3	1,050.0	1	0,914 U	Total Ave	ilabla Starage	
		I	2,778 CI	Total Ava	liable Storage	
Elevation		Surf.Area	Inc	.Store	Cum.Store	
(feet)		(sq-ft)	(cubi	c-feet)	(cubic-feet)	
1,653.00		3,864		0	0	
1,654.00		3,864		3,864	3,864	
Elevation		Surf.Area	Inc	.Store	Cum.Store	
(feet)		(sq-ft)	(cubi	c-feet)	(cubic-feet)	
1,654.00		3,864		0	0	
1,658.00		3,864	1	5,456	15,456	
Elevation		Surf Area	Inc	Store	Cum Store	
(feet)		(sa-ft)	(cubi	c-feet)	(cubic-feet)	
1 658 00		3.864	(0000	0	0	
1.660.00		5.050		8.914	8.914	
,		- ,		-) -	-) -	
Device F	Routing	Inv	ert Outle	et Devices		
#1 F	Primary	1,653.	00' 12.0	" Round (Culvert	
			L= 8	0.0' CPP,	square edge l	headwall, Ke= 0.500
			nnet	/ Outlet III	vert = 1,055.00	71,052.00 S= 0.0050 7 CC= 0.900
#2 「	Device 1	1 653	00' 050	020 0011	iltration over	Surface area
#2 L	Device 1	1,000.	50' 6.30		fice/Grate C=	
<i></i>		1,000.				0.000

08077 Proposed Prepared by The LA Group P.C. HydroCAD® 9.10 s/n 00439 © 2010 HydroCAD Software Solutions LLC

			Limited to weir flow at low heads
#4	Primary	1,659.50'	25.0' long x 1.0' breadth Broad-Crested Rectangular Weir
	·		Head (feet) 0.20 0.40 0.60 0.80 1.00 1.20 1.40 1.60 1.80 2.00 2.50 3.00
			3.30 3.31 3.32

Primary OutFlow Max=0.77 cfs @ 12.38 hrs HW=1,658.95' (Free Discharge) -1=Culvert (Passes 0.77 cfs of 5.34 cfs potential flow) **2=Exfiltration** (Exfiltration Controls 0.14 cfs) **3=Orifice/Grate** (Orifice Controls 0.63 cfs @ 3.22 fps)

-4=Broad-Crested Rectangular Weir (Controls 0.00 cfs)

Summary for Pond P9.ex: Existing Pond

Inflow Area	a =	2.870 ac,	4.48% Impervious,	Inflow Depth = 2	.36" for 10-Year event
Inflow	=	11.59 cfs @	11.98 hrs, Volume	= 0.565 af	
Outflow	=	10.96 cfs @	12.01 hrs, Volume:	= 0.454 af	, Atten= 5%, Lag= 1.7 min
Primary	=	10.96 cfs @	12.01 hrs, Volume:	= 0.454 af	

Routing by Stor-Ind method, Time Span= 0.00-144.00 hrs, dt= 0.05 hrs / 2 Peak Elev= 1,672.43' @ 12.01 hrs Surf.Area= 2,949 sf Storage= 6,086 cf

Plug-Flow detention time= 122.4 min calculated for 0.454 af (80% of inflow) Center-of-Mass det. time= 38.4 min (873.3 - 834.9)

Volume	Inve	ert Avail.St	orage S	Storage D	escription	
#1	1,668.5	50' 6,3	300 cf (Custom S	tage Data (Pi	r ismatic) Listed below (Recalc)
Elevatior (feet	ו)	Surf.Area (sq-ft)	Inc.S (cubic-f	tore eet)	Cum.Store (cubic-feet)	
1,668.50 1,672.50))	150 3,000	6	0 ,300	0 6,300	
Device	Routing	Inver	Outlet	Devices		
#1	Primary	1,672.00	15.0' Head 2.50 3 Coef. 2.85 3	ong x 2.0 (feet) 0.2 3.00 3.50 (English) 3.07 3.20	D' breadth Br 0 0.40 0.60 2.54 2.61 2. 3.32	Dad-Crested Rectangular Weir 0.80 1.00 1.20 1.40 1.60 1.80 2.00 61 2.60 2.66 2.70 2.77 2.89 2.88

Primary OutFlow Max=10.51 cfs @ 12.01 hrs HW=1,672.42' (Free Discharge) **1=Broad-Crested Rectangular Weir** (Weir Controls 10.51 cfs @ 1.68 fps)

Summary for Pond 1.1P: Pond 1.1

Inflow Area	a =	9.950 ac, 14.75% Impervi	ious, Inflow Depth =	4.83" for 100-Year event
Inflow	=	75.87 cfs @ 11.99 hrs, Vo	olume= 4.009	af
Outflow	=	29.52 cfs @ 12.13 hrs, Vo	olume= 4.008	af, Atten= 61%, Lag= 8.5 min
Primary	=	29.52 cfs @ 12.13 hrs, Vo	olume= 4.008	af

Routing by Stor-Ind method, Time Span= 0.00-144.00 hrs, dt= 0.05 hrs Starting Elev= 2,158.50' Surf.Area= 4,792 sf Storage= 6,889 cf Peak Elev= 2,164.83' @ 12.13 hrs Surf.Area= 18,768 sf Storage= 79,208 cf (72,319 cf above start)

Plug-Flow detention time= 443.4 min calculated for 3.848 af (96% of inflow) Center-of-Mass det. time= 400.9 min (1,211.5 - 810.5)

Volume	Inver	t Avail.Sto	rage Storage	Description	
#1	2,156.00	125,38	59 cf Custom	Stage Data (P	rismatic)Listed below (Recalc)
Elevatio	n S	Surf.Area	Inc.Store	Cum.Store	
2 156 0	0	902	0	0	
2.158.0	0	3.831	4.733	4.733	
2,160.0	0	7,673	11,504	16,237	
2,162.0	0	11,982	19,655	35,892	
2,164.0	0	16,663	28,645	64,537	
2,166.0	0	21,746	38,409	102,946	
2,167.0	0	23,079	22,413	125,359	
Device	Routing	Invert	Outlet Devices	5	
#1	Primary	2,158.50'	24.0" Round	Culvert	
	-		L= 50.0' CPP Inlet / Outlet In n= 0.020 Corr	P, square edge I overt= 2,158.50 rugated PE, cor	headwall, Ke= 0.500 ' / 2,157.65' S= 0.0170 '/' Cc= 0.900 rugated interior
#2	Device 1	2,158.50'	2.0" Vert. Orif	ice/Grate C=	0.600
#3	Device 1	2,161.25'	6.0" Vert. Orif	ice/Grate C=	0.600
#4	Device 1	2,163.00'	24.0" x 24.0" Limited to weir	Horiz. Orifice/(flow at low hea	Grate C= 0.600 ads
#5	Primary	2,164.75'	25.0' long x 1 Head (feet) 0. 2.50 3.00 Coef. (English 3.30 3.31 3.3	. 0' breadth Br 20 0.40 0.60) 2.69 2.72 2.	oad-Crested Rectangular Weir 0.80 1.00 1.20 1.40 1.60 1.80 2.00 75 2.85 2.98 3.08 3.20 3.28 3.31
Primary	OutFlow N	Max=29.11 cfs	@ 12.13 hrs H	W=2,164.82' (Free Discharge)

-1=Culvert (Passes 27.95 cfs of 33.23 cfs potential flow)

2=Orifice/Grate (Orifice Controls 0.26 cfs @ 12.02 fps)

-3=Orifice/Grate (Orifice Controls 1.72 cfs @ 8.77 fps)

-4=Orifice/Grate (Orifice Controls 25.96 cfs @ 6.49 fps)

-5=Broad-Crested Rectangular Weir (Weir Controls 1.17 cfs @ 0.70 fps)

Summary for Pond 2.1P: Dry Swale

Inflow A	Area =	6.302 ac,	9.60% Impervious,	Inflow Depth = 4.4	59" for 100-Year event
Inflow	=	36.89 cfs @	12.07 hrs, Volume	= 2.412 af	
Outflow	/ =	35.39 cfs @	12.07 hrs, Volume	= 2.377 af,	Atten= 4%, Lag= 0.0 min
Primary	/ =	35.39 cfs @	12.07 hrs, Volume	= 2.377 af	

Routing by Stor-Ind method, Time Span= 0.00-144.00 hrs, dt= 0.05 hrs / 2 Peak Elev= 2,302.77' @ 12.07 hrs Surf.Area= 9,200 sf Storage= 8,941 cf

Plug-Flow detention time= 88.6 min calculated for 2.376 af (99% of inflow) Center-of-Mass det. time= 80.4 min (902.6 - 822.2)

Volume	Inve	ert Avail	I.Storage	Storag	e Description		
#1	2,297.0	00'	460 cf	grave	underdrain (Pris	smatic)Listed below (Recalc)	
#2	2,298.0	00'	431 cf	Filter	Media (Prismatic)Listed below (Recalc)	
				2,875	cf Overall x 15.09	% Voids	
#3	2,300.5	50'	8,050 cf	Surfac	ce Storage (Prisr	natic)Listed below (Recalc)	
			8,941 cf	Total A	Available Storage		
Elevation		Surf.Area	In	c.Store	Cum.Store		
(feet)		(sq-ft)	(cub	ic-feet)	(cubic-feet)		
2,297.00		1,150		0	0		
2,298.00		1,150		1,150	1,150		
Elevation		Surf.Area	In	c.Store	Cum.Store		
(feet)		(sq-ft)	(cub	ic-feet)	(cubic-feet)		
2,298.00		1,150		0	0		
2,300.50		1,150		2,875	2,875		
Elevation		Surf.Area	In	c.Store	Cum.Store		
(feet)		(sq-ft)	(cub	ic-feet)	(cubic-feet)		
2,300.50		1,150		0	0		
2,302.50		6,900		8,050	8,050		
Device F	Routing	١n	vert Out	let Devic	ces		
#1 F	Primary	2,301.	.85' 12.0)' long	x 0.5' breadth Br	oad-Crested Rectangular Weir	
			Hea Coo	iu (leet) f (Engli	0.20 0.40 0.60		
#2 F	Primary	2,297.	.00' 0.5 (00 in/hr Exfiltration over Surface area			
Brimory C	tElow	Mov-24 69) of a @ 11	07 bro		(Free Discharge)	

Primary OutFlow Max=34.68 cfs @ 12.07 hrs HW=2,302.76' (Free Discharge) 1=Broad-Crested Rectangular Weir (Weir Controls 34.58 cfs @ 3.16 fps) 2=Exfiltration (Exfiltration Controls 0.11 cfs)

Summary for Pond 2.4P: Dry Swale

Inflow Area =	5.002 ac, 2	0.72% Impervious, Ir	flow Depth = 4.98	for 100-Year event
Inflow =	41.71 cfs @	11.97 hrs, Volume=	2.075 af	
Outflow =	39.87 cfs @	11.97 hrs, Volume=	2.060 af, A	Atten= 4%, Lag= 0.0 min
Primary =	39.76 cfs @	11.97 hrs, Volume=	1.769 af	
Secondary =	0.12 cfs @	11.90 hrs, Volume=	0.291 af	

Routing by Stor-Ind method, Time Span= 0.00-144.00 hrs, dt= 0.05 hrs / 2 Peak Elev= 2,192.24' @ 11.97 hrs Surf.Area= 10,200 sf Storage= 9,795 cf

Plug-Flow detention time= 124.3 min calculated for 2.060 af (99% of inflow) Center-of-Mass det. time= 119.4 min (925.3 - 805.8)

Volume	Inve	ert Avail.St	orage	Storage	e Description	
#1	2,186.5	50'	720 cf	Stone	Underdrain (Pris	smatic)Listed below (Recalc)
	0 407 5			1,800 c	of Overall x 40.0%	% Voids
#2	2,187.5	50 [°]	575 Cf	Filter N	Aedia (Prismatic	Listed below (Recalc)
#2	2 100 0	0' 0	100 of	4,500 C	of Overall X 15.0%	% VOIDS
<u>#3</u>	2,190.0	<u>10 0,4</u> 0 1	+00 Cl	Junac Total A	voilable Storage	
		9,	795 0	Total A	valiable Storage	
Elevation		Surf.Area	Inc.	Store	Cum.Store	
(feet)		(sq-ft)	(cubic	-feet)	(cubic-feet)	
2,186.50		1,800		0	0	
2,187.50		1,800		1,800	1,800	
Elevation		Surf Area	Inc	Store	Cum Store	
(feet)		(sq-ft)	(cubic	-feet)	(cubic-feet)	
2 187 50		1 800	(00010	0	0	
2,107.00		1,800	4	4 500	4 500	
2,100100		1,000		.,000	1,000	
Elevation		Surf.Area	Inc.	Store	Cum.Store	
(feet)		(sq-ft)	(cubic	-feet)	(cubic-feet)	
2,190.00		1,800		0	0	
2,192.00		6,600	8	8,400	8,400	
Device I	Routina	Invert	Outle	t Device	es	
#1	Primary	2,191.50	18.0"	Horiz.	Orifice/Grate X	3.00 C= 0.600
	,	,	Limite	ed to we	eir flow at low hea	ads
#2 F	Primary	2,191.50	10.0'	long x	1.0' breadth Bro	oad-Crested Rectangular Weir
			Head	(feet)	0.20 0.40 0.60	0.80 1.00 1.20 1.40 1.60 1.80 2.00
			2.50	3.00		
			Coef.	(Englis	sh) 2.69 2.72 2.	/5 2.85 2.98 3.08 3.20 3.28 3.31
# 2 (Sooondo	n 0 106 E0	3.30	3.31 3 Jin/hr 5	.32 Systemation over	Surface area
#3 3	Seconda	iy ∠,160.50	0.500		Exhibition over	Surrace area

Primary OutFlow Max=38.50 cfs @ 11.97 hrs HW=2,192.21' (Free Discharge) 1=Orifice/Grate (Orifice Controls 21.57 cfs @ 4.07 fps) 2=Broad-Crested Rectangular Weir (Weir Controls 16.93 cfs @ 2.37 fps)

Secondary OutFlow Max=0.12 cfs @ 11.90 hrs HW=2,192.05' (Free Discharge) -3=Exfiltration (Exfiltration Controls 0.12 cfs)

Summary for Pond 2.6P: Dry Swale

Inflow Area	a =	3.914 ac, 1	1.46% Impervious,	Inflow Depth = 4.	71" for 100-Year event
Inflow	=	26.65 cfs @	12.03 hrs, Volume	e 1.535 af	
Outflow	=	33.10 cfs @	12.03 hrs, Volume	e= 1.670 af,	Atten= 0%, Lag= 0.0 min
Primary	=	33.10 cfs @	12.03 hrs, Volume	e 1.670 af	-

Routing by Stor-Ind method, Time Span= 0.00-144.00 hrs, dt= 0.05 hrs / 2 Peak Elev= 2,423.06' @ 12.03 hrs Surf.Area= 12,750 sf Storage= 12,272 cf

Plug-Flow detention time= 49.7 min calculated for 1.534 af (100% of inflow) Center-of-Mass det. time= 171.4 min (987.5 - 816.1)

Volume	Inve	ert Ava	il.Storac	je Storag	e Description	
#1	2,417.0)0'	850	cf Stone	Underdrain (Pris	smatic)Listed below (Recalc)
				2,125	cf Overall x 40.09	% Voids
#2	2,418.0	00'	797	cf filter r	nedia (Prismatic)	Listed below (Recalc)
"0	o 400 F		40.005	5,313	cf Overall x 15.09	% Voids
#3	2,420.5	50 [°]	10,625	ct surfac	ce storage (Prism	natic)Listed below (Recalc)
			12,272	cf Total A	Available Storage	
Elevation		Surf.Area		Inc.Store	Cum.Store	
(feet)		(sq-ft)	(c	ubic-feet)	(cubic-feet)	
2,417.00		2,125		0	0	
2,418.00		2,125		2,125	2,125	
Elovation		Surf Aroa		Inc Store	Cum Storo	
(foot)		Sun Area	(0	ubic_foot)	(cubic-foot)	
		<u>(SQ-II)</u>	(0			
2,418.00		2,120		E 212	U 5 212	
2,420.50		2,125		5,515	5,515	
Elevation		Surf.Area		Inc.Store	Cum.Store	
(feet)		(sq-ft)	(C	ubic-feet)	(cubic-feet)	
2,420.50		2,125		0	0	
2,422.50		8,500		10,625	10,625	
Device F	Routing	In	vert C	outlet Devid	ces	
#1 F	Primary	2,422	2.00' 1	0.0' long 🛛	x 1.0' breadth Bro	oad-Crested Rectangular Weir
	,	,	Н	lead (feet)	0.20 0.40 0.60	0.80 1.00 1.20 1.40 1.60 1.80 2.00
			2	.50 3.00		
			C	oef. (Engli	sh) 2.69 2.72 2.	75 2.85 2.98 3.08 3.20 3.28 3.31
			3	.30 3.31 3	3.32	
#2 F	Primary	2,417	7 .00' 0	.500 in/hr	Exfiltration over	Surface area

Primary OutFlow Max=32.40 cfs @ 12.03 hrs HW=2,423.05' (Free Discharge) 1=Broad-Crested Rectangular Weir (Weir Controls 32.25 cfs @ 3.08 fps) 2=Exfiltration (Exfiltration Controls 0.15 cfs)

Summary for Pond P1.2: BIORETENTION

Inflow Are	a =	2.022 ac, 2	7.06% Impervious	, Inflow Depth =	5.15" for	100-Year event
Inflow	=	15.13 cfs @	11.99 hrs, Volum	e= 0.868	af	
Outflow	=	12.52 cfs @	12.06 hrs, Volum	e= 0.870	af, Atten=	17%, Lag= 4.1 min
Primary	=	12.52 cfs @	12.06 hrs, Volum	e= 0.870	af	

Routing by Stor-Ind method, Time Span= 0.00-144.00 hrs, dt= 0.05 hrs / 2 Peak Elev= 2,215.80' @ 12.06 hrs Surf.Area= 14,382 sf Storage= 13,398 cf

Plug-Flow detention time= 248.1 min calculated for 0.868 af (100% of inflow) Center-of-Mass det. time= 252.7 min (1,042.2 - 789.5)

Volume	Inve	ert Ava	ail.Storage	e Storag	ge Description				
#1	2,209.0	0'	1,758 c	f stone	underdrain (Pris	matic)Listed below (Recald	;)		
#2	2 210 0	0	2 636 0	4,394	ci Overall X 40.05	% VOIDS Nisted below (Recale)			
#2	2,210.0	0	2,030 0	17.57	6 cf Overall x 15.0)% Voids			
#3	2,214.0	0'	10,119 c	f surfa	ce storage (Prism	natic)Listed below (Recalc)			
			14,513 c	f Total	Available Storage	· · · ·			
Elevation		Surf Area	l,	oc Store	Cum Store				
(feet)		(sa-ft)	(cu	bic-feet)	(cubic-feet)				
2.209.00)	4.394	(00	0	0				
2,210.00)	4,394		4,394	4,394				
Flevation	1	Surf Area	h	nc Store	Cum Store				
(feet)		(sq-ft)	(cu	bic-feet)	(cubic-feet)				
2,210.00)	4,394		0	0				
2,214.00)	4,394		17,576	17,576				
Elevatior	1	Surf.Area	Ir	nc.Store	Cum.Store				
(feet)		(sq-ft)	(cu	bic-feet)	(cubic-feet)				
2,214.00)	4,394		0	0				
2,216.00)	5,725		10,119	10,119				
Device	Routing	Ir	nvert Ou	itlet Devi	ces				
#1	Primary	2,209	9.00' 18	.0" Rou	nd Culvert				
			L=	100.0'	CPP, square edge	e headwall, Ke= 0.500	• • • • •		
			Ini	et / Outle	t Invert= 2,209.00	$7/2,208.50^{\circ}$ S= 0.0050 7	Cc = 0.900		
#2	Primary	2 200	=וו אַר ו 'חח ב	0.020 C	Exfiltration over	Surface area			
#2	Device 1	2,20	4.50' 6.0)" Horiz.	Orifice/Grate C:	= 0.600			
		, I	Lir	nited to w	veir flow at low hea	ads			
#4	Primary	2,21	5.50' 25 He	.0' long ad (feet)	Iong x 1.0' breadth Broad-Crested Rectangular Weir Id (feet) 0.20 0.40 0.60 0.80 1.00 1.20 1.40 1.60 1.80 2.00				

08077_Proposed Prepared by The LA Group P.C. HydroCAD® 9.10 s/n 00439 © 2010 HydroCAD Software Solutions LLC

> 2.50 3.00 Coef. (English) 2.69 2.72 2.75 2.85 2.98 3.08 3.20 3.28 3.31 3.30 3.31 3.32

Primary OutFlow Max=11.89 cfs @ 12.06 hrs HW=2,215.79' (Free Discharge) 1=Culvert (Passes 1.07 cfs of 14.14 cfs potential flow) -3=Orifice/Grate (Orifice Controls 1.07 cfs @ 5.47 fps)

-2=Exfiltration (Exfiltration Controls 0.17 cfs)

-4=Broad-Crested Rectangular Weir (Weir Controls 10.65 cfs @ 1.46 fps)

Summary for Pond P11.1: P-1

Inflow Are	a =	24.870 ac, 1	8.86% Impervious,	Inflow Depth = 4	.49" for	100-Year event
Inflow	=	169.08 cfs @	11.98 hrs, Volume	e 9.302 af	:	
Outflow	=	142.88 cfs @	12.04 hrs, Volume	e 9.296 af	, Atten=	15%, Lag= 3.4 min
Primary	=	142.88 cfs @	12.04 hrs, Volume	e= 9.296 af	•	

Routing by Stor-Ind method, Time Span= 0.00-144.00 hrs, dt= 0.05 hrs Starting Elev= 2,296.75' Surf.Area= 6,846 sf Storage= 11,991 cf Peak Elev= 2,303.91' @ 12.03 hrs Surf.Area= 26,352 sf Storage= 124,094 cf (112,103 cf above start)

Plug-Flow detention time= 449.2 min calculated for 9.021 af (97% of inflow) Center-of-Mass det. time= 415.0 min (1,230.3 - 815.2)

Volume	Invert	Avail.Sto	rage	Storage	Description	
#1	2,294.00'	126,45	54 cf	Custom	Stage Data (Pr	ismatic)Listed below (Recalc)
Elovatio	~ ~ ~	urf Aroo	Ino	Store	Cum Store	
	n 5	un.Area	INC (auto)			
(tee	t)	(sq-tt)	(Cubio	c-reet)	(CUDIC-TEET)	
2,294.0	0	2,612		0	0	
2,296.0	0	4,954		7,566	7,566	
2,298.0	0	10,000	1	4,954	22,520	
2,300.0	0	13,679	2	3,679	46,199	
2,302.0	0	19,963	3	3,642	79,841	
2,304.0	0	26,650	4	6,613	126,454	
Device	Routing	Invert	Outle	et Devices	i	
#1	Primary	2,293.00'	24.0	" Round	Culvert	
	,	,	L= 6 Inlet n= 0	0.0' CPP / Outlet Ir .020 Corr	, square edge h wert= 2,293.00' ugated PE, cor	neadwall, Ke= 0.500 / 2,292.50' S= 0.0083 '/' Cc= 0.900 rugated interior
#2	Device 1	2,296.75'	2.0"	Vert. Orif	ice/Grate C=	0.600
#3	Device 1	2,300.25'	6.0"	Vert. Orif	ice/Grate C=	0.600
#4	Device 1	2,302.00'	24.0	" x 24.0"	Horiz. Orifice/0	Grate C= 0.600
			Limit	ed to weir	flow at low hea	ads
#5	Primary	2,303.00'	50.0 Head 2.50 Coef 2.85	long x 2 d (feet) 0. 3.00 3.5 . (English 3.07 3.2	2.0' breadth Bro 20 0.40 0.60 0) 2.54 2.61 2.0 0 3.32	Dad-Crested Rectangular Weir0.801.001.201.401.601.802.00612.602.662.702.772.892.88

Primary OutFlow Max=138.61 cfs @ 12.04 hrs HW=2,303.89' (Free Discharge)

-1=Culvert (Passes 28.49 cfs of 42.72 cfs potential flow)

2=Orifice/Grate (Orifice Controls 0.28 cfs @ 12.79 fps)

-3=Orifice/Grate (Orifice Controls 1.74 cfs @ 8.86 fps)

4=Orifice/Grate (Orifice Controls 26.47 cfs @ 6.62 fps)

-5=Broad-Crested Rectangular Weir (Weir Controls 110.12 cfs @ 2.48 fps)

Summary for Pond P11.10: DRY SWALE

Inflow Area	ι =	1.246 ac, 1	12.83% Impervious	, Inflow Depth =	4.71" for 10	0-Year event
Inflow	=	9.91 cfs @	11.97 hrs, Volum	e= 0.488	af	
Outflow	=	9.17 cfs @	12.00 hrs, Volum	e= 0.488	af, Atten= 7%,	Lag= 2.0 min
Primary	=	9.17 cfs @	12.00 hrs, Volum	e= 0.488	af	

Routing by Stor-Ind method, Time Span= 0.00-144.00 hrs, dt= 0.05 hrs Starting Elev= 2,192.00' Surf.Area= 3,150 sf Storage= 814 cf Peak Elev= 2,194.00' @ 12.00 hrs Surf.Area= 5,945 sf Storage= 5,701 cf (4,887 cf above start)

Plug-Flow detention time= 411.8 min calculated for 0.469 af (96% of inflow) Center-of-Mass det. time= 372.0 min (1,183.4 - 811.5)

Volume	Inve	ert Avail.S	torage	Storage [Description	
#1	2,188.5	50'	420 cf	gravel un 1,050 cf (n derdrain (Pri Overall x 40.09	smatic) Listed below (Recalc) % Voids
#2	2,189.5	50'	394 cf	filter me	dia (Prismatic Overall x 15.0°)Listed below (Recalc) % Voids
#3	2,192.0	00' 4,	900 cf	surface s	storage (Prisn	natic)Listed below (Recalc)
		5,	714 cf	Total Ava	ilable Storage	
Elevation		Surf.Area	Inc	.Store	Cum.Store	
(feet)		(sq-ft)	(cubio	c-feet)	(cubic-feet)	
2,188.50		1,050		0	0	
2,189.50		1,050		1,050	1,050	
Elevation		Surf.Area	Inc	.Store	Cum.Store	
(feet)		(sq-ft)	(cubio	c-feet)	(cubic-feet)	
2,189.50		1,050		0	0	
2,192.00		1,050		2,625	2,625	
Elevation		Surf.Area	Inc	.Store	Cum.Store	
(feet)		(sq-ft)	(cubio	c-feet)	(cubic-feet)	
2,192.00		1,050		0	0	
2,194.00		3,850		4,900	4,900	
Device I	Routing	Inver	t Outle	et Devices		
#1 I	Primary	2,192.00)' 0.50	0 in/hr Ex	filtration over	Surface area above 2,192.00'
#2 I	Primary	2,193.50	Exclu)' 10.0' Head 2.50	uded Surfa long x 2 d (feet) 0.1 3.00 3.5	ace area = 3,15 .0' breadth Br 20 0.40 0.60 0	50 sf oad-Crested Rectangular Weir 0.80 1.00 1.20 1.40 1.60 1.80 2.00

08077_Proposed *Ty* Prepared by The LA Group P.C. HydroCAD® 9.10 s/n 00439 © 2010 HydroCAD Software Solutions LLC

Coef. (English) 2.54 2.61 2.61 2.60 2.66 2.70 2.77 2.89 2.88 2.85 3.07 3.20 3.32

Primary OutFlow Max=9.12 cfs @ 12.00 hrs HW=2,194.00' (Free Discharge) 1=Exfiltration (Exfiltration Controls 0.03 cfs) 2=Broad-Crested Rectangular Weir (Weir Controls 9.09 cfs @ 1.84 fps)

Summary for Pond P11.11: DRY SWALE

Inflow Are	ea =	3.383 ac, 1	4.24% Impervious,	Inflow Depth = 4	.91" for 100-Year event
Inflow	=	25.28 cfs @	11.99 hrs, Volume	= 1.385 af	f
Outflow	=	26.23 cfs @	11.97 hrs, Volume	= 1.385 af	f, Atten= 0%, Lag= 0.0 min
Primary	=	26.23 cfs @	11.97 hrs, Volume	= 1.385 af	f

Routing by Stor-Ind method, Time Span= 0.00-144.00 hrs, dt= 0.05 hrs Peak Elev= 2,180.40' @ 11.97 hrs Surf.Area= 5,100 sf Storage= 4,898 cf

Plug-Flow detention time= 152.6 min calculated for 1.385 af (100% of inflow) Center-of-Mass det. time= 152.6 min (1,136.5 - 984.0)

Volume	Inve	ert Avai	I.Storage	Storag	e Description	
#1	2,174.5	50'	360 cf	gravel	underdrain (Pris	smatic) Listed below (Recalc)
#2	2,175.5	50'	338 cf	filter n	nedia (Prismatic))Listed below (Recalc)
#3	2 178 (יחו	4 200 cf	2,250 (of Overall x 15.0%	% Voids
#5	2,170.0		4,200 cl	Total A	vailable Storage	
			4,090 0	TULAT	Wallable Storage	
Elevation	1	Surf.Area	Inc	.Store	Cum.Store	
(feet)		(sq-ft)	(cubi	c-feet)	(cubic-feet)	
2,174.50)	900		0	0	
2,175.50)	900		900	900	
-		~		A /	a a /	
Elevation	1	Surf.Area	Inc	Store	Cum.Store	
(feet)		(sq-ft)	(CUDI	c-feet)	(cubic-feet)	
2,175.50)	900		0	0	
2,178.00)	900		2,250	2,250	
		Surf Aree	مما	Ctore	Cum Store	
	1	Sun Area	inc (oubi	.Slore	(cubic foot)	
		<u>(Sq-II)</u>	(Cubi			
2,178.00		900		4 200	4 200	
2,100.00)	3,300		4,200	4,200	
Device I	Routing	Inv	vert Outle	et Devic	es	
#1	Primary	2,174	.50' 0.50	0 in/hr I	Exfiltration over	Surface area
#2 l	Primary	2,179	.40' 10.0	'long >	2.0' breadth Bro	oad-Crested Rectangular Weir
			Head	d (feet)	0.20 0.40 0.60	0.80 1.00 1.20 1.40 1.60 1.80 2.00
			2.50	3.00 3	3.50	
			Coet	f. (Englis	sh) 2.54 2.61 2.	61 2.60 2.66 2.70 2.77 2.89 2.88
			2.85	3.07 3	3.20 3.32	

Primary OutFlow Max=24.31 cfs @ 11.97 hrs HW=2,180.34' (Free Discharge) 1=Exfiltration (Exfiltration Controls 0.06 cfs) 2=Broad-Crested Rectangular Weir (Weir Controls 24.25 cfs @ 2.57 fps)

Summary for Pond P11.2: BIORETENTION

Inflow Area =	9.625 ac, 2	29.34% Impervious,	Inflow Depth = 4.9	54" for 100-Year event
Inflow =	42.66 cfs @	11.97 hrs, Volume=	= 3.640 af	
Outflow =	41.78 cfs @	11.99 hrs, Volume=	= 3.638 af,	Atten= 2%, Lag= 1.2 min
Primary =	41.43 cfs @	11.99 hrs, Volume=	= 2.849 af	
Secondary =	0.34 cfs @	11.99 hrs, Volume=	= 0.790 af	

Routing by Stor-Ind method, Time Span= 0.00-144.00 hrs, dt= 0.05 hrs / 2 Peak Elev= 2,373.68' @ 11.99 hrs Surf.Area= 29,808 sf Storage= 26,534 cf

Plug-Flow detention time= 140.5 min calculated for 3.638 af (100% of inflow) Center-of-Mass det. time= 140.1 min (944.6 - 804.5)

Volume	Inve	ert Ava	il.Storag	e Stora	ge Description				
#1	2,367.0	00'	3,652 (of stone 9,131	e underdrain (Pris	smatic)Listed below (Recalc) % Voids			
#2	2,368.0	00'	5,479 (of filter	filter media (Prismatic)Listed below (Recalc)				
#3	2,372.0	00'	21,131	of surfa	ce storage (Prisn	natic)Listed below (Recalc)			
			30,262 (of Total	Available Storage				
Elevation	l	Surf.Area		Inc.Store	Cum.Store				
(feet)		(sq-ft)	(ต	ubic-feet)	(cubic-feet)				
2,367.00		9,131		0	0				
2,368.00		9,131		9,131	9,131				
Elevation	1	Surf.Area		Inc.Store	Cum.Store				
(feet)		(sq-ft)	(Cl	ubic-feet)	(cubic-feet)				
2,368.00)	9,131		0	0				
2,372.00		9,131		36,524	36,524				
Elevation	1	Surf.Area		Inc.Store	Cum.Store				
(feet)		(sq-ft)	(CI	ubic-feet)	(cubic-feet)				
2,372.00)	9,131		0	0				
2,374.00		12,000		21,131	21,131				
Device I	Routing	In	ivert O	utlet Devi	ces				
#1 I	Primary	2,367	7.00' 1 2	2.0" Rou	nd Culvert				
			Ŀ	= 50.0' C	PP, square edge	headwall, Ke= 0.500			
			In	let / Outle	t Invert= 2,367.00	0' / 2,366.00' S= 0.0200 '/' Cc= 0.900			
			n	= 0.020 C	Corrugated PE, col	rrugated interior			
#2 I	Device 1	2,372	2.50' 1 2	2.0" Horiz	. Orifice/Grate (C= 0.600 ads			
#3 I	Primary	2,373	3.25' 5 0 H	0.0' long ead (feet)	x 2.0' breadth Br 0.20 0.40 0.60	road-Crested Rectangular Weir 0.80 1.00 1.20 1.40 1.60 1.80 2.00)		

2.50 3.00 3.50 Coef. (English) 2.54 2.61 2.61 2.60 2.66 2.70 2.77 2.89 2.88 2.85 3.07 3.20 3.32 Secondary 2.367 00' 0.500 in/br Exfiltration over Surface area

#4 Secondary 2,367.00' **0.500 in/hr Exfiltration over Surface area**

Primary OutFlow Max=40.95 cfs @ 11.99 hrs HW=2,373.68' (Free Discharge) 1=Culvert (Passes 4.11 cfs of 7.13 cfs potential flow) 2=Orifice/Grate (Orifice Controls 4.11 cfs @ 5.23 fps) 3=Broad-Crested Rectangular Weir (Weir Controls 36.84 cfs @ 1.71 fps)

Secondary OutFlow Max=0.34 cfs @ 11.99 hrs HW=2,373.68' (Free Discharge) 4=Exfiltration (Exfiltration Controls 0.34 cfs)

Summary for Pond P11.4: DRY SWALE

Inflow Area	=	0.233 ac,	10.77% Impe	ervious,	Inflow Depth =	4.59"	for 100	-Year event
Inflow	=	1.81 cfs @	11.97 hrs,	Volume	= 0.089	af		
Outflow	=	1.78 cfs @	11.98 hrs,	Volume	= 0.089	af, Att	en= 2%,	Lag= 0.5 min
Primary	=	1.78 cfs @	11.98 hrs,	Volume	= 0.089	af		

Routing by Stor-Ind method, Time Span= 0.00-144.00 hrs, dt= 0.05 hrs / 2 Peak Elev= 2,475.76' @ 11.98 hrs Surf.Area= 652 sf Storage= 558 cf

Plug-Flow detention time= 174.5 min calculated for 0.089 af (100% of inflow) Center-of-Mass det. time= 176.8 min (990.5 - 813.7)

Volume	Invert	Avail.Storage	e Storag	ge Description	
#1	2,470.50'	60 c	f stone	underdrain (Pris	matic)Listed below (Recalc)
			150 cf	Overall x 40.0%	Voids
#2	2,471.50'	56 c	f filter r	nedia (Prismatic	Listed below (Recalc)
	0.474.00	500	, 375 cf	Overall x 15.0%	Voids
#3	2,474.00	530 C	surfac	ce storage (Prisn	natic)Listed below (Recalc)
		646 c	f Total /	Available Storage	
- :			01		
Elevation	Sur	Area II	nc.Store	Cum.Store	
(feet)		(sq-ft) (cu	bic-feet)	(cubic-feet)	
2,470.50		150	0	0	
2,471.50		150	150	150	
Elevation	Surf	Area lı	nc.Store	Cum.Store	
(feet)		(sq-ft) (cu	bic-feet)	(cubic-feet)	
2,471.50		150	0	0	
2,474.00		150	375	375	
Elevation	Surf	Area Iı	nc.Store	Cum.Store	
(feet)		(sq-ft) (cu	bic-feet)	(cubic-feet)	
2,474.00		150	0	0	
2.476.00		380	530	530	

Prepared by The LA Group P.C.

 Type II 24-hr 100-Year Rainfall=7.50"

 Printed 12/9/2011

 _C
 Page 79

HydroCAD® 9.10 s/n 00439 © 2010 HydroCAD Software Solutions LLC

Device	Routing	Invert	Outlet Devices
#1	Primary	2,470.50'	0.500 in/hr Exfiltration over Surface area
#2	Primary	2,475.50'	5.0' long x 1.0' breadth Broad-Crested Rectangular Weir
			Head (feet) 0.20 0.40 0.60 0.80 1.00 1.20 1.40 1.60 1.80 2.00
			2.50 3.00
			Coef. (English) 2.69 2.72 2.75 2.85 2.98 3.08 3.20 3.28 3.31
			3.30 3.31 3.32

Primary OutFlow Max=1.71 cfs @ 11.98 hrs HW=2,475.75' (Free Discharge) 1=Exfiltration (Exfiltration Controls 0.01 cfs) 2=Broad-Crested Rectangular Weir (Weir Controls 1.70 cfs @ 1.35 fps)

Summary for Pond P11.5: DRY SWALE

Inflow Area	=	0.116 ac, 2	7.15% Imperv	vious, Inflow De	pth = 5.04"	for 100-	Year event
Inflow	=	0.98 cfs @	11.97 hrs, V	olume=	0.049 af		
Outflow	=	0.96 cfs @	11.98 hrs, V	olume=	0.049 af, Att	ten= 2%, I	Lag= 0.7 min
Primary	=	0.96 cfs @	11.98 hrs, V	olume=	0.049 af		

Routing by Stor-Ind method, Time Span= 0.00-144.00 hrs, dt= 0.05 hrs / 2 Peak Elev= 2,479.67' @ 11.98 hrs Surf.Area= 605 sf Storage= 498 cf

Plug-Flow detention time= 304.1 min calculated for 0.049 af (100% of inflow) Center-of-Mass det. time= 302.2 min (1,106.8 - 804.6)

Volume	Inv	ert Avail.S	storage	Storage D	Description	
#1	2,474.5	50'	50 cf	stone un	derdrain (Pris	matic)Listed below (Recalc)
	0 475 4		4 7 6	125 cf Ov	erall x 40.0%	Voids
#2	2,475.5	50'	47 cf	312 of Ov	lia (Prismatic)	Listed below (Recalc)
#3	2.478.0	00'	525 cf	surface s	torage (Prism	natic)Listed below (Recalc)
			622 cf	Total Ava	ilable Storage	······································
					0	
Elevation	1 IIII	Surf.Area	Inc	.Store	Cum.Store	
(feet))	(sq-ft)	(cubi	c-feet)	(cubic-feet)	
2,474.50)	125		0	0	
2,475.50)	125		125	125	
Elevation	1 IIII	Surf.Area	Inc	.Store	Cum.Store	
(feet))	(sq-ft)	(cubi	c-feet)	(cubic-feet)	
2,475.50)	125		0	0	
2,478.00)	125		313	313	
Elevation	1	Surf.Area	Inc	.Store	Cum.Store	
(feet))	(sq-ft)	(cubi	c-feet)	(cubic-feet)	
2,478.00)	125		0	0	
2,480.00)	400		525	525	
. .						
Device	Routing	Inve	rt Outle	et Devices		
#1	Primary	2,474.50	D' 0.50	0 in/hr Exf	iltration over	Surface area
#2	Primary	2,479.50	D' 5.0'	long x 1.0	' breadth Bro	ad-Crested Rectangular Weir

Head (feet) 0.20 0.40 0.60 0.80 1.00 1.20 1.40 1.60 1.80 2.00 2.50 3.00 Coef. (English) 2.69 2.72 2.75 2.85 2.98 3.08 3.20 3.28 3.31 3.30 3.31 3.32

Primary OutFlow Max=0.92 cfs @ 11.98 hrs HW=2,479.67' (Free Discharge) 1=Exfiltration (Exfiltration Controls 0.01 cfs) 2=Broad-Crested Rectangular Weir (Weir Controls 0.91 cfs @ 1.10 fps)

Summary for Pond P11.6: DRY SWALE

Inflow Are	a =	3.304 ac,	4.07% Impervious,	Inflow Depth = 4	.37" for 100-Year event
Inflow	=	19.06 cfs @	12.06 hrs, Volume	= 1.203 af	
Outflow	=	18.82 cfs @	12.06 hrs, Volume	= 1.199 af	, Atten= 1%, Lag= 0.3 min
Primary	=	18.82 cfs @	12.06 hrs, Volume	= 1.199 af	

Routing by Stor-Ind method, Time Span= 0.00-144.00 hrs, dt= 0.05 hrs / 2 Peak Elev= 2,484.08' @ 12.07 hrs Surf.Area= 5,800 sf Storage= 5,539 cf

Plug-Flow detention time= 108.2 min calculated for 1.199 af (100% of inflow) Center-of-Mass det. time= 105.8 min (931.4 - 825.6)

Volume	Inve	ert Avail.S	torage	Storage D	escription	
#1	2,478.5	0'	464 cf	stone und	derdrain (Pris	matic)Listed below (Recalc) % Voids
#2	2,479.5	0'	435 cf	filter med	lia (Prismatic)	Listed below (Recalc) % Voids
#3	2,482.0	0' 4,	640 cf	surface s	torage (Prism	natic)Listed below (Recalc)
		5,	,539 cf	Total Avai	lable Storage	
Elevation		Surf.Area	Inc.	Store	Cum.Store	
(feet)		(sq-ft)	(cubic	c-feet)	(cubic-feet)	
2,478.50		1,160		0	0	
2,479.50		1,160		1,160	1,160	
Elevation		Surf.Area	Inc.	Store	Cum.Store	
(feet)		(sq-ft)	(cubic	c-feet)	(cubic-feet)	
2,479.50		1,160		0	0	
2,482.00		1,160		2,900	2,900	
Elevation		Surf.Area	Inc.	Store	Cum.Store	
(feet)		(sq-ft)	(cubic	c-feet)	(cubic-feet)	
2.482.00		1.160	•	0	0	
2,484.00		3,480		4,640	4,640	
Device F	Routing	Inver	t Outle	et Devices		
#1 F #2 F	Primary Primary	2,478.50 2,483.40	0' 0.500 0' 12.0' Head 2.50 Coef) in/hr Exf long x 1. I (feet) 0.2 3.00 . (English)	iltration over 0' breadth Bre 20 0.40 0.60 2.69 2.72 2.	Surface areaoad-Crested Rectangular Weir0.801.001.201.401.601.802.852.983.083.203.283.31

3.30 3.31 3.32

Primary OutFlow Max=18.28 cfs @ 12.06 hrs HW=2,484.07' (Free Discharge) 1=Exfiltration (Exfiltration Controls 0.07 cfs) 2=Broad-Crested Rectangular Weir (Weir Controls 18.21 cfs @ 2.27 fps)

Summary for Pond P11.7: BIORETENTION

Inflow Area	=	0.741 ac, 5	55.14% Imp	ervious,	Inflow Depth =	5.96"	for 100-	Year event
Inflow =	=	7.07 cfs @	11.96 hrs,	Volume	= 0.368	af		
Outflow =	=	0.70 cfs @	12.40 hrs,	Volume	= 0.368	af, Atte	en= 90%,	Lag= 25.9 min
Primary =	=	0.70 cfs @	12.40 hrs,	Volume	= 0.368	af		-

Routing by Stor-Ind method, Time Span= 0.00-144.00 hrs, dt= 0.05 hrs / 2 Peak Elev= 2,248.82' @ 12.40 hrs Surf.Area= 14,164 sf Storage= 8,501 cf

Plug-Flow detention time= 430.0 min calculated for 0.368 af (100% of inflow) Center-of-Mass det. time= 430.3 min (1,214.1 - 783.8)

Volume	Inve	ert Ava	il.Storage	Storag	ge Description		
#1	2,243.0)0'	1,820 cf	grave 4,550	l drainage layer (cf Overall x 40.0	(Prismatic) Listed below (Re % Voids	calc)
#2	2,244.00' 2,73		2,730 cf	filter media (Prismatic)Listed below (Recalc) 18 200 cf Overall x 15 0% Voids			
#3	2,248.0)0'	10,350 cf	surfa	ce storage (Prisn	natic) Listed below (Recalc)	
			14,900 cf	Total	Available Storage		
Elevation	ı	Surf.Area	Inc	.Store	Cum.Store		
(feet)		(sq-ft) (cub		c-feet)	(cubic-feet)		
2,243.00)	4,550		0	0		
2,244.00)	4,550		4,550	4,550		
Elevation		Surf.Area Ir		.Store	Cum.Store		
(feet)		(sq-ft)	(sq-ft) (cubi		(cubic-feet)		
2,244.00)	4,550		0	0		
2,248.00)	4,550		18,200	18,200		
Elevation		Surf.Area Iı		.Store	Cum.Store		
(feet)		(sq-ft)	<u>q-ft) (cubic</u>		(cubic-feet)		
2,248.00		4,550		0	0		
2,250.00		5,800		10,350	10,350		
Device	Routing	Ir	nvert Out	et Devi	ces		
#1	Primary 2,243.00' 18.0" Round Culvert L= 50.0' CPP, square edge headwall, Ke= 0.500 Inlet / Outlet Invert= 2,243.00' / 2,240.00' S= 0.0600 '/' Cc= 0.900 n= 0.020 Corrugated PE, corrugated interior						Cc= 0.900
#2	Device 1	vevice 1 2,243.00'		0.500 in/hr Exfiltration over Surface area			
#3	Device 1	2,248	3.50' 6.0" Limi	6.0" Horiz. Orifice/Grate C= 0.600 Limited to weir flow at low heads			
#4	Primary	2,249	249.00' 25.0' long x 2.0' breadth Broad-Crested Rectangular Weir				
Head (feet) 0.20 0.40 0.60 0.80 1.00 1.20 1.40 1.60 1.80 2.00 2.50 3.00 3.50 Coef. (English) 2.54 2.61 2.61 2.60 2.66 2.70 2.77 2.89 2.88 2.85 3.07 3.20 3.32

Primary OutFlow Max=0.70 cfs @ 12.40 hrs HW=2,248.82' (Free Discharge)

-1=Culvert (Passes 0.70 cfs of 19.16 cfs potential flow)

2=Exfiltration (Exfiltration Controls 0.16 cfs)

3=Orifice/Grate (Orifice Controls 0.54 cfs @ 2.73 fps)

-4=Broad-Crested Rectangular Weir (Controls 0.00 cfs)

Summary for Pond P11.8: BIORETENTION

Inflow Area	ι =	0.432 ac, 7	77.25% Imp	ervious,	Inflow Depth =	6.6	7" for	100-`	Year ev	/ent
Inflow	=	4.38 cfs @	11.96 hrs,	Volume	= 0.240	af				
Outflow	=	0.66 cfs @	12.19 hrs,	Volume	= 0.240	af, J	Atten= 8	35%,	Lag= 1	3.8 min
Primary	=	0.66 cfs @	12.19 hrs,	Volume	= 0.240	af			-	

Routing by Stor-Ind method, Time Span= 0.00-144.00 hrs, dt= 0.05 hrs / 2 Peak Elev= 2,260.85' @ 12.19 hrs Surf.Area= 8,868 sf Storage= 5,401 cf

Plug-Flow detention time= 409.8 min calculated for 0.240 af (100% of inflow) Center-of-Mass det. time= 409.8 min (1,173.2 - 763.3)

Volume	Invert Ava	ail.Storage	Storag	ge Description	
#1	2,255.00'	1,140 cf	grave	l underdrain (Pris	smatic)Listed below (Recalc)
<i>#</i> 0		1 710 05	2,850	cf Overall x 40.09	% Voids
#2	2,256.00	1,710 Cf	11 40	neola (Prismatic)	LISTED DEIOW (RECAIC)
#3	2,260.00'	6,450 cf	surfa	ce storage (Prism	natic)Listed below (Recalc)
		9,300 cf	Total	Available Storage	
Flowetien	Curf Area	laa	Ctore	Curra Store	
Elevation	Surr.Area		.Store	Cum.Store	
(feet)	(sq-ft)	(cubi	c-feet)	(cubic-feet)	
2,255.00	2,850		0	0	
2,256.00	2,850		2,850	2,850	
Elovation	Surf Aroo	Inc	Store	Cum Store	
	Sull.Alea	IIIC (oubi		(oubic feet)	
	(SQ-II)	(Cubi	c-ieel)		
2,256.00	2,850		0	0	
2,260.00	2,850	1	1,400	11,400	
Elevation	Surf Area	Inc	Store	Cum Store	
(feet)	(sq-ft)	(cubi	c-feet)	(cubic-feet)	
2,260.00	2,850	•	0	0	
2,262.00	3,600		6,450	6,450	

Type II 24-hr 100-Year Rainfall=7.50" Printed 12/9/2011

Page 83

Prepared by The LA Group P.C.

HydroCAD® 9.10 s/n 00439 © 2010 HydroCAD Software Solutions LLC

Routing	Invert	Outlet Devices
Primary	2,255.00'	12.0" Round Culvert
		L= 50.0' CPP, square edge headwall, Ke= 0.500
		Inlet / Outlet Invert= 2,255.00' / 2,254.50' S= 0.0100 '/' Cc= 0.900
		n= 0.020 Corrugated PE, corrugated interior
Device 1	2,255.00'	0.500 in/hr Exfiltration over Surface area
Device 1	2,260.50'	6.0" Horiz. Orifice/Grate C= 0.600
		Limited to weir flow at low heads
Primary	2,261.00'	15.0' long x 2.0' breadth Broad-Crested Rectangular Weir
		Head (feet) 0.20 0.40 0.60 0.80 1.00 1.20 1.40 1.60 1.80 2.00
		2.50 3.00 3.50
		Coef. (English) 2.54 2.61 2.61 2.60 2.66 2.70 2.77 2.89 2.88
		2.85 3.07 3.20 3.32
	Routing Primary Device 1 Device 1 Primary	RoutingInvertPrimary2,255.00'Device 12,255.00'Device 12,260.50'Primary2,261.00'

Primary OutFlow Max=0.66 cfs @ 12.19 hrs HW=2,260.85' (Free Discharge)

-1=Culvert (Passes 0.66 cfs of 6.38 cfs potential flow)

2=Exfiltration (Exfiltration Controls 0.10 cfs)

-3=Orifice/Grate (Orifice Controls 0.56 cfs @ 2.84 fps)

-4=Broad-Crested Rectangular Weir (Controls 0.00 cfs)

Summary for Pond P11.9: BIORETENTION

Inflow Area	ι =	0.575 ac, 2	2.45% Impe	rvious, Inflow D	epth = 5.04	" for 100	-Year event
Inflow	=	4.85 cfs @	11.97 hrs, \	Volume=	0.242 af		
Outflow	=	4.74 cfs @	11.99 hrs, \	Volume=	0.284 af, A	Atten= 2%,	Lag= 1.4 min
Primary	=	4.74 cfs @	11.99 hrs, \	Volume=	0.284 af		

Routing by Stor-Ind method, Time Span= 0.00-144.00 hrs, dt= 0.05 hrs Starting Elev= 2,219.00' Surf.Area= 5,520 sf Storage= 1,840 cf Peak Elev= 2,219.74' @ 11.99 hrs Surf.Area= 5,814 sf Storage= 3,303 cf (1,463 cf above start)

Plug-Flow detention time= 313.0 min calculated for 0.242 af (100% of inflow) Center-of-Mass det. time= 201.9 min (1,006.5 - 804.6)

Volume	Invert	Avai	I.Storage	Stora	ge Description	
#1	2,214.00'		736 cf	grave	el drainage layer ((Prismatic)Listed below (Recalc)
				1,840	cf Overall x 40.00	% Voids
#2	2,215.00'		1,104 cf	filter	media (Prismatic	Listed below (Recalc)
			· · · ·	7,360	cf Overall x 15.09	% Voids
#3	2,219.00'		2,040 cf	surfa	<u>ce storage (Prisn</u>	natic)Listed below (Recalc)
			3,880 cf	Total	Available Storage	
Elevation	Surf	.Area	Inc	.Store	Cum.Store	
(feet)		sq-ft)	(cubi	c-feet)	(cubic-feet)	
2,214.00		1,840		0	0	
2,215.00		1,840		1,840	1,840	
Elevation	Surf	.Area	Inc	.Store	Cum.Store	
(feet)	(sq-ft)	(cubi	c-feet)	(cubic-feet)	
2,215.00		1,840		0	0	
2,219.00		1.840		7.360	7,360	

 Type II 24-hr 100-Year Rainfall=7.50"

 Printed 12/9/2011

 _C
 Page 84

Prepared by The LA Group P.C. HydroCAD® 9.10 s/n 00439 © 2010 HydroCAD Software Solutions LLC

Elevatio (fee	on et)	Surf.Area (sq-ft)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)	
2,219.0	00	1,840	0	0	
2,220.0	00	2,239	2,040	2,040	
Device	Routing	Invert	Outlet Devices		
#1	Primary	2,214.00'	0.500 in/hr Exfi	Itration over	Surface area
#2	Primary	2,219.50'	15.0' long x 1.0)' breadth Bro	oad-Crested Rectangular Weir
			Head (feet) 0.2	0 0.40 0.60	0.80 1.00 1.20 1.40 1.60 1.80 2.00
			2.50 3.00		
			Coef. (English)	2.69 2.72 2.	75 2.85 2.98 3.08 3.20 3.28 3.31
			3.30 3.31 3.32		

Primary OutFlow Max=4.59 cfs @ 11.99 hrs HW=2,219.73' (Free Discharge)

1=Exfiltration (Exfiltration Controls 0.07 cfs)

2=Broad-Crested Rectangular Weir (Weir Controls 4.52 cfs @ 1.30 fps)

Summary for Pond P12.1: Pond 1.1

Inflow Area	a =	17.893 ac,	9.84% Impervious, Inflow E	Depth = 4.56"	for 100-Year event
Inflow	=	83.86 cfs @	12.14 hrs, Volume=	6.803 af	
Outflow	=	56.14 cfs @	12.31 hrs, Volume=	6.801 af, Atte	en= 33%, Lag= 10.3 min
Primary	=	56.14 cfs @	12.31 hrs, Volume=	6.801 af	

Routing by Stor-Ind method, Time Span= 0.00-144.00 hrs, dt= 0.05 hrs Starting Elev= 2,295.25' Surf.Area= 5,504 sf Storage= 5,359 cf Peak Elev= 2,302.34' @ 12.31 hrs Surf.Area= 23,017 sf Storage= 104,535 cf (99,176 cf above start)

Plug-Flow detention time= 373.1 min calculated for 6.676 af (98% of inflow) Center-of-Mass det. time= 354.7 min (1,180.8 - 826.1)

Volume	Inve	ert Avail.Sto	rage \$	Storage	Description	
#1	2,294.0	0' 120,0	48 cf	Custom	Stage Data (P	rismatic)Listed below (Recalc)
Elevatio	n	Surf.Area	Inc.S	Store	Cum.Store	
(feet	t)	(sq-ft)	(cubic-	feet)	(cubic-feet)	
2,294.0	0	3,070		0	0	
2,296.0	0	6,964	10	,034	10,034	
2,298.0	0	11,720	18	3,684	28,718	
2,300.0	0	16,919	28	3,639	57,357	
2,302.0	0	22,520	39	,439	96,796	
2,303.0	0	23,983	23	3,252	120,048	
Device	Routing	Invert	Outlet	Devices	5	
#1	Primary	2,294.00'	24.0"	Round	Culvert	
			L= 11: Inlet / n= 0.0	5.0' CP Outlet Ir)20 Cor	PP, square edge nvert= 2,294.00 rugated PE, cor	<pre>headwall, Ke= 0.500 ' / 2,293.25' S= 0.0065 '/' Cc= 0.900 rrugated interior</pre>
#2	Device 1	2,295.25'	2.0" V	ert. Ori	fice/Grate C=	0.600
#3	Device 1	2,298.50'	6.0" V	ert. Ori	fice/Grate C=	0.600
#4	Device 1	2,299.50'	24.0"	x 24.0"	Horiz. Orifice/0	Grate C= 0.600
			Limite	d to wei	r flow at low hea	ads

#5 Primary 2,302.00' **50.0' long x 2.0' breadth Broad-Crested Rectangular Weir** Head (feet) 0.20 0.40 0.60 0.80 1.00 1.20 1.40 1.60 1.80 2.00 2.50 3.00 3.50 Coef. (English) 2.54 2.61 2.61 2.60 2.66 2.70 2.77 2.89 2.88 2.85 3.07 3.20 3.32

Primary OutFlow Max=54.91 cfs @ 12.31 hrs HW=2,302.33' (Free Discharge)

-1=Culvert (Barrel Controls 30.33 cfs @ 9.65 fps)

2=Orifice/Grate (Passes < 0.28 cfs potential flow)

3=Orifice/Grate (Passes < 1.79 cfs potential flow)

4=Orifice/Grate (Passes < 32.40 cfs potential flow)

-5=Broad-Crested Rectangular Weir (Weir Controls 24.58 cfs @ 1.49 fps)

Summary for Pond P12.2: Dry Swale

Inflow Area	=	0.376 ac, 2	26.90% Impe	ervious,	Inflow Depth =	5.16	' for 100	-Year event
Inflow	=	3.23 cfs @	11.97 hrs,	Volume	= 0.162	2 af		
Outflow	=	3.09 cfs @	11.99 hrs,	Volume	= 0.162	2 af, A ^r	tten= 4%,	Lag= 1.7 min
Primary	=	3.09 cfs @	11.99 hrs,	Volume	= 0.162	2 af		

Routing by Stor-Ind method, Time Span= 0.00-144.00 hrs, dt= 0.05 hrs Peak Elev= 2,269.77' @ 11.99 hrs Surf.Area= 2,556 sf Storage= 1,680 cf

Plug-Flow detention time= 235.6 min calculated for 0.162 af (100% of inflow) Center-of-Mass det. time= 236.1 min (1,038.3 - 802.2)

Volume	Invert	Avail.Storage	Storage Description
#1	2,265.00'	160 cf	stone underdrain (Prismatic)Listed below (Recalc)
			400 cf Overall x 40.0% Voids
#2	2,266.00'	150 cf	filter media (Prismatic)Listed below (Recalc)
			1,000 cf Overall x 15.0% Voids
#3	2,268.50'	2,900 cf	surface storage (Prismatic)Listed below (Recalc)
		3,210 cf	Total Available Storage

Elevation (feet)	Surf.Area (sq-ft)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)
2,265.00	400	0	0
2,266.00	400	400	400
Elevation	Surf.Area	Inc.Store	Cum.Store
(feet)	(sq-ft)	(cubic-feet)	(cubic-feet)
2,266.00	400	0	0
2,268.50	400	1,000	1,000
Elevation	Surf.Area	Inc.Store	Cum.Store
(feet)	(sq-ft)	(cubic-feet)	(cubic-feet)
2,268.50	400	0	0
2,270.00	2,000	1,800	1,800
2,270.50	2,400	1,100	2,900

 Type II 24-hr 100-Year Rainfall=7.50"

 Printed 12/9/2011

 _C
 Page 86

Prepared by The LA Group P.C. HydroCAD® 9.10 s/n 00439 © 2010 HydroCAD Software Solutions LLC

Device	Routing	Invert	Outlet Devices
#1	Primary	2,269.50'	8.0' long x 1.0' breadth Broad-Crested Rectangular Weir Head (feet) 0.20 0.40 0.60 0.80 1.00 1.20 1.40 1.60 1.80 2.00 2.50 3.00 Coef. (English) 2.69 2.72 2.75 2.85 2.98 3.08 3.20 3.28 3.31 3.30 3.31 3.32 0 500 in/br Exfiltration over Surface area
π ∠	Timary	2,200.00	

Primary OutFlow Max=3.03 cfs @ 11.99 hrs HW=2,269.77' (Free Discharge) =Broad-Crested Rectangular Weir (Weir Controls 3.00 cfs @ 1.40 fps)

2=Exfiltration (Exfiltration Controls 0.03 cfs)

Summary for Pond P2.2: Dry Swale

Inflow Area	ι =	3.322 ac, 2	2.38% Impervious,	Inflow Depth =	5.04" for 1	00-Year event
Inflow	=	24.49 cfs @	12.02 hrs, Volume	€= 1.396	af	
Outflow	=	23.86 cfs @	12.05 hrs, Volume	€= 1.394	af, Atten= 3%	%, Lag= 2.3 min
Primary	=	23.86 cfs @	12.05 hrs, Volume	€= 1.394	af	

Routing by Stor-Ind method, Time Span= 0.00-144.00 hrs, dt= 0.05 hrs / 2 Peak Elev= 2,266.58' @ 12.06 hrs Surf.Area= 6,008 sf Storage= 7,368 cf

Plug-Flow detention time= 75.3 min calculated for 1.394 af (100% of inflow) Center-of-Mass det. time= 74.8 min (883.5 - 808.7)

Volume	Invert	Avai	I.Storage	Storag	ge Description	
#1	2,261.50'		420 cf	grave	l underdrain (Pri	smatic)Listed below (Recalc)
#2	2,262.50'		236 cf	1,050 Filter	Media (Prismatic cf Overall x 15.09	% Voids :)Listed below (Recalc) % Voids
#3	2,264.00'		8,400 cf	Surfa	ce Storage (Prisr	natic)Listed below (Recalc)
			9,056 cf	Total	Available Storage	
Elevation (feet)	Surf (.Area (sq-ft)	Inc (cubic	.Store c-feet)	Cum.Store (cubic-feet)	
2,261.50		1,050		0	0	
2,262.50		1,050		1,050	1,050	
Elevation (feet)	Surf (.Area (sq-ft)	Inc (cubic	.Store c-feet)	Cum.Store (cubic-feet)	
2,262.50		1,050		0	0	
2,264.00		1,050		1,575	1,575	
Elevation (feet)	Surf (.Area (sq-ft)	Inc (cubic	.Store	Cum.Store (cubic-feet)	
2.264.00		1.050	(000)	0	0	
2,266.00		3,500		4,550	4,550	
2,267.00	4	4,200		3,850	8,400	

 Type II 24-hr 100-Year Rainfall=7.50"

 Printed 12/9/2011

 C
 Page 87

Prepared by The LA Group P.C. HydroCAD® 9.10 s/n 00439 © 2010 HydroCAD Software Solutions LLC

Device	Routing	Invert	Outlet Devices
#1	Primary	2,265.25'	24.0" Horiz. Orifice/Grate C= 0.600
	-		Limited to weir flow at low heads
#2	Primary	2,266.50'	100.0' long x 50.0' breadth Broad-Crested Rectangular Weir
	-		Head (feet) 0.20 0.40 0.60 0.80 1.00 1.20 1.40 1.60
			Coef. (English) 2.68 2.70 2.70 2.64 2.63 2.64 2.64 2.63
#3	Primary	2,261.50'	0.500 in/hr Exfiltration over Surface area

Primary OutFlow Max=22.98 cfs @ 12.05 hrs HW=2,266.57' (Free Discharge)

1=Orifice/Grate (Orifice Controls 17.41 cfs @ 5.54 fps)

-2=Broad-Crested Rectangular Weir (Weir Controls 5.50 cfs @ 0.73 fps)

-3=Exfiltration (Exfiltration Controls 0.07 cfs)

Summary for Pond P2.3: BIORETENTION

Inflow Area	a =	5.821 ac, 2	4.98% Impervious,	, Inflow Depth =	5.07" for	100-Year event
Inflow	=	39.07 cfs @	12.05 hrs, Volume	e= 2.459	af	
Outflow	=	33.38 cfs @	12.11 hrs, Volume	e= 2.457	af, Atten=	15%, Lag= 3.8 min
Primary	=	33.38 cfs @	12.11 hrs, Volume	e= 2.457	af	

Routing by Stor-Ind method, Time Span= 0.00-144.00 hrs, dt= 0.05 hrs / 2 Peak Elev= 2,228.98' @ 12.11 hrs Surf.Area= 32,806 sf Storage= 32,586 cf

Plug-Flow detention time= 254.2 min calculated for 2.456 af (100% of inflow) Center-of-Mass det. time= 252.3 min (1,102.9 - 850.6)

Volume	Invert A	vail.Storage	Storage Descr	ription
#1	2,222.00'	4,142 cf	stone underd	drain (Prismatic)Listed below (Recalc)
			10,354 cf Over	erall x 40.0% Voids
#2	2,223.00'	6,212 cf	filter media (P	Prismatic)Listed below (Recalc)
			41,416 cf Over	erall x 15.0% Voids
#3	2,227.00'	22,469 cf	surface storage	age (Prismatic)Listed below (Recalc)
		32,823 cf	Total Available	e Storage
Elevation	Surf.Are	a Inc	Store Cu	um.Store
(feet)	(sq-f	t) (cubi	-feet) (cu	<u>ubic-feet)</u>
2.222.00	10.35	4	0	0

10,354	10,354	10,354	2,223.00
Cum.Store	Inc.Store	Surf.Area	Elevation
(cubic-feet)	(cubic-feet)	(sq-ft)	(feet)
0	0	10,354	2,223.00
41,416	41,416	10,354	2,227.00
Cum.Store	Inc.Store	Surf.Area	Elevation
(cubic-feet)	(cubic-feet)	(sq-ft)	(feet)
0	0	10,354	2,227.00
22,469	22,469	12,115	2,229.00

Type II 24-hr 100-Year Rainfall=7.50" Printed 12/9/2011

Prepared by The LA Group P.C. HydroCAD® 9.10 s/n 00439 © 2010 HydroCAD Software Solutions LLC

Device	Routing	Invert	Outlet Devices
#1	Primary	2,222.00'	18.0" Round Culvert
			L= 60.0° CPP, square edge headwall, Ke= 0.500
			Inlet / Outlet Invert= 2,222.00' / 2,221.40' S= 0.0100 '/' Cc= 0.900
			n= 0.013 Corrugated PE, smooth interior
#2	Primary	2,222.00'	0.500 in/hr Exfiltration over Surface area
#3	Device 1	2,227.50'	6.0" Horiz. Orifice/Grate C= 0.600
			Limited to weir flow at low heads
#4	Primary	2,228.50'	35.0' long x 1.0' breadth Broad-Crested Rectangular Weir
			Head (feet) 0.20 0.40 0.60 0.80 1.00 1.20 1.40 1.60 1.80 2.00
			2.50 3.00
			Coef (English) 2 69 2 72 2 75 2 85 2 98 3 08 3 20 3 28 3 31
			3 30 3 31 3 32
			0.00 0.01 0.02

Primary OutFlow Max=32.02 cfs @ 12.11 hrs HW=2,228.97' (Free Discharge)

-1=Culvert (Passes 1.15 cfs of 21.22 cfs potential flow) -3=Orifice/Grate (Orifice Controls 1.15 cfs @ 5.83 fps)

2=Exfiltration (Exfiltration Controls 0.38 cfs)

-4=Broad-Crested Rectangular Weir (Weir Controls 30.50 cfs @ 1.87 fps)

Summary for Pond P2.5: Pond 2.5

Inflow Area	=	36.326 ac, 1	17.04% Impe	rvious, Inflow	Depth =	4.78"	for 100-	Year event
Inflow	=	194.14 cfs @	12.00 hrs, \	Volume=	14.455	af		
Outflow	=	82.82 cfs @	12.27 hrs, \	Volume=	14.427	af, Atte	en= 57%,	Lag= 16.2 min
Primary	=	73.69 cfs @	12.27 hrs, \	Volume=	14.237	af		
Secondary	=	9.13 cfs @	12.27 hrs, \	Volume=	0.190	af		

Routing by Stor-Ind method, Time Span= 0.00-144.00 hrs, dt= 0.05 hrs / 2 Starting Elev= 2,161.00' Surf.Area= 7,652 sf Storage= 13,933 cf Peak Elev= 2,170.73' @ 12.27 hrs Surf.Area= 33,345 sf Storage= 207,709 cf (193,777 cf above start)

Plug-Flow detention time= 389.5 min calculated for 14.102 af (98% of inflow) Center-of-Mass det. time= 349.0 min (1,201.5 - 852.5)

Volume	Invert	Avail.	Storage	Storage	e Description		
#1	2,158.00'	216	6,744 cf	Custor	n Stage Data (Pr	ismatic)Listed below (Recalc)	
Elevation (feet)	Su	rf.Area (sq-ft)	Inc (cubio	.Store c-feet)	Cum.Store (cubic-feet)		
2,158.00		1,411		0	0		
2,160.00		5,797		7,208	7,208		
2,162.00		9,507	1	5,304	22,512		
2,164.00		14,282	2	3,789	46,301		
2,166.00		19,778	3	4,060	80,361		
2,168.00		25,755	4	5,533	125,894		
2,170.00	:	32,133	5	7,888	183,782		
2,171.00	;	33,791	3	2,962	216,744		

Type II 24-hr 100-Year Rainfall=7.50" Printed 12/9/2011

Page 89

Prepared by The LA Group P.C. HydroCAD® 9.10 s/n 00439 © 2010 HydroCAD Software Solutions LLC

Device	Routing	Invert	Outlet Devices
#1	Primary	2,158.00'	36.0" Round Culvert L= 300.0' CPP, square edge headwall, Ke= 0.500 Inlet / Outlet Invert= 2,158.00' / 2,156.50' S= 0.0050 '/' Cc= 0.900 n= 0.020 Corrugated PE, corrugated interior
#2 #3 #4 #5 #6	Device 1 Device 1 Device 1 Device 1 Secondary	2,161.00' 2,165.00' 2,166.50' 2,169.00' 2,170.25'	2.0" Vert. Orifice/Grate C= 0.600 30.0" W x 18.0" H Vert. Orifice/Grate C= 0.600 36.0" W x 30.0" H Vert. Orifice/Grate C= 0.600 48.0" W x 12.0" H Vert. Orifice/Grate C= 0.600 10.0' long x 1.0' breadth Broad-Crested Rectangular Weir Head (feet) 0.20 0.40 0.60 0.80 1.00 1.20 1.40 1.60 1.80 2.00 2.50 3.00 Coef. (English) 2.69 2.72 2.75 2.85 2.98 3.08 3.20 3.28 3.31 3.30 3.31 3.32

Primary OutFlow Max=73.67 cfs @ 12.27 hrs HW=2,170.72' (Free Discharge)

-1=Culvert (Barrel Controls 73.67 cfs @ 10.42 fps)

-2=Orifice/Grate (Passes < 0.33 cfs potential flow)

-3=Orifice/Grate (Passes < 40.23 cfs potential flow) -4=Orifice/Grate (Passes < 61.80 cfs potential flow)

-5=Orifice/Grate (Passes < 21.15 cfs potential flow)

Secondary OutFlow Max=8.91 cfs @ 12.27 hrs HW=2,170.72' (Free Discharge) G=Broad-Crested Rectangular Weir (Weir Controls 8.91 cfs @ 1.88 fps)

Summary for Pond P3.1: Dry Swale

Inflow Area	a =	10.077 ac, <i>1</i>	13.20% Impervic	ous, Inflow De	epth = 4.66	" for 100	-Year event
Inflow	=	68.80 cfs @	12.01 hrs, Vol	ume=	3.914 af		
Outflow	=	66.79 cfs @	12.04 hrs, Vol	ume=	3.914 af, A	tten= 3%,	Lag= 1.5 min
Primary	=	66.79 cfs @	12.04 hrs, Vol	ume=	3.914 af		

Routing by Stor-Ind method, Time Span= 0.00-144.00 hrs, dt= 0.05 hrs Peak Elev= 2,288.77' @ 12.03 hrs Surf.Area= 16,372 sf Storage= 17,622 cf

Plug-Flow detention time= 95.4 min calculated for 3.913 af (100% of inflow) Center-of-Mass det. time= 96.0 min (909.0 - 813.0)

Volume	Invert Ava	ail.Storage	Storage Description
#1	2,283.00'	1,086 cf	stone underdrain (Prismatic)Listed below (Recalc)
			2,715 cf Overall x 40.0% Voids
#2	2,284.00'	1,018 cf	filter media (Prismatic)Listed below (Recalc)
			6,788 cf Overall x 15.0% Voids
#3	2,286.50'	18,100 cf	surface storage (Prismatic)Listed below (Recalc)
		20,204 cf	Total Available Storage
Elevation	Surf Area	Inc	c Store Cum Store
(feet)	(sq-ft)	(cubi	ic-feet) (cubic-feet)
2,283.00	2,715		0 0
2,284.00	2,715		2,715 2,715

Type II 24-hr 100-Year Ra	infall=7.50"
Printe	d 12/9/2011
.C	Page 90

Prepared by Th	e LA Gro	up P.C.			
HydroCAD® 9.10	s/n 00439	© 2010 Hy	ydroCAD Sc	oftware Solu	utions LLC

Elevatio (fee	on et)	Surf.Area (sq-ft)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)			
2,284.0)0	2,715	0	0			
2,286.5	50	2,715	6,788	6,788			
Elevatio	n	Surf.Area	Inc.Store	Cum.Store			
(fee	et)	(sq-ft)	(cubic-feet)	(cubic-feet)			
2,286.5	50	2,715	0	0			
2,289.0	00	11,765	18,100	18,100			
Device	Routing	Invert	Outlet Devices				
#1	Primary	2,284.50'	48.0" Round C L= 50.0' CPP,	square edge l	headwall, Ke= 0.500		
			niet / Outlet inv	en= 2,284.50	/ 2,282.00 S= 0.0500 /	CC = 0.900	
#2	Device 1	2,288.00'	30.0 " x 30.0 " Horiz. Orifice/Grate X 3.00 C= 0.600 Limited to weir flow at low beads				
#3	Primary	2,283.00'	0.500 in/hr Exfiltration over Surface area				

Primary OutFlow Max=65.27 cfs @ 12.04 hrs HW=2,288.76' (Free Discharge)

-1=Culvert (Passes 65.08 cfs of 90.97 cfs potential flow) -2=Orifice/Grate (Weir Controls 65.08 cfs @ 2.85 fps)

-3=Exfiltration (Exfiltration Controls 0.19 cfs)

Summary for Pond P3.2: Dry Swale

Inflow Area	a =	7.881 ac, 2	0.98% Impervious,	Inflow Depth = 4	1.93" for 100-Year event
Inflow	=	60.63 cfs @	12.00 hrs, Volume	e= 3.238 a	f
Outflow	=	58.99 cfs @	12.02 hrs, Volume	e= 3.238 a	f, Atten= 3%, Lag= 1.0 min
Primary	=	58.99 cfs @	12.02 hrs, Volume	e= 3.238 a	f

Routing by Stor-Ind method, Time Span= 0.00-144.00 hrs, dt= 0.05 hrs Peak Elev= 2,203.71' @ 12.02 hrs Surf.Area= 11,332 sf Storage= 11,615 cf

Plug-Flow detention time= 76.3 min calculated for 3.237 af (100% of inflow) Center-of-Mass det. time= 76.9 min (886.4 - 809.4)

Volume	Invert A	vail.Storage	Storage Description
#1	2,199.00'	762 cf	stone underdrain (Prismatic)Listed below (Recalc)
			1,905 cf Overall x 40.0% Voids
#2	2,200.00'	429 cf	filter media (Prismatic)Listed below (Recalc)
			2,858 cf Overall x 15.0% Voids
#3	2,201.50'	12,700 cf	surface storage (Prismatic)Listed below (Recalc)
		13,891 cf	Total Available Storage
Elevation	Surf.Are	a Inc	c.Store Cum.Store
(feet)	(sq-f	t) (cubio	c-feet) (cubic-feet)
2,199.00	1,90	5	0 0
2,200.00	1,90	5	1,905 1,905

Type II 24-hr	100-Year Raii	nfall=7.50"
	Printed	12/9/2011
.C		Page 91

Prepared by Th	ie LA Gro	up P.C.		
HydroCAD® 9.10	s/n 00439	© 2010 H	droCAD Software	e Solutions LLC

Elevatio	on et)	Surf.Area (sq-ft)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)				
2,200.0	00	1,905	0	0				
2,201.5	50	1,905	2,858	2,858				
Elevatio	on	Surf.Area	Inc.Store	Cum.Store				
(fee	et)	(sq-ft)	(cubic-feet)	(cubic-feet)				
2,201.5	50	1,905	0	0				
2,204.0	00	8,255	12,700	12,700				
Device	Routing	Invert	Outlet Devices					
#1	Primary	2,198.00'	42.0" Round C L= 550.0' CPP Inlet / Outlet Inv n= 0.020 Corru	42.0" Round Culvert L= 550.0' CPP, square edge headwall, Ke= 0.500 Inlet / Outlet Invert= 2,198.00' / 2,192.50' S= 0.0100 '/' Cc= 0.900				
#2	Device 1	2,203.00'	30.0" x 30.0" Horiz. Orifice/Grate X 3.00 C= 0.600					
#3	Primary	2,199.00'	0.500 in/hr Exfiltration over Surface area					

Primary OutFlow Max=57.56 cfs @ 12.02 hrs HW=2,203.70' (Free Discharge)

-1=Culvert (Passes 57.43 cfs of 70.65 cfs potential flow) -2=Orifice/Grate (Weir Controls 57.43 cfs @ 2.74 fps)

-**3=Exfiltration** (Exfiltration Controls 0.13 cfs)

Summary for Pond P3.3: P-1

Inflow Area	a =	20.668 ac, 1	6.21% Impervious,	Inflow Depth = 4.7	8" for 100-Year event
Inflow	=	141.01 cfs @	12.02 hrs, Volume	= 8.240 af	
Outflow	=	81.63 cfs @	12.14 hrs, Volume	= 8.240 af,	Atten= 42%, Lag= 7.4 min
Primary	=	81.63 cfs @	12.14 hrs, Volume	= 8.240 af	

Routing by Stor-Ind method, Time Span= 0.00-144.00 hrs, dt= 0.05 hrs Starting Elev= 2,183.00' Surf.Area= 5,003 sf Storage= 5,563 cf Peak Elev= 2,190.73' @ 12.14 hrs Surf.Area= 22,239 sf Storage= 110,953 cf (105,390 cf above start)

Plug-Flow detention time= 381.0 min calculated for 8.112 af (98% of inflow) Center-of-Mass det. time= 344.1 min (1,232.0 - 887.9)

Volume	Invert	Avail	.Storage	Storage	e Description	
#1	2,181.00'	11	6,977 cf	Custor	n Stage Data (P	rismatic)Listed below (Recalc)
Elevation (feet)	Surf (.Area (sq-ft)	Inc (cubic	.Store c-feet)	Cum.Store (cubic-feet)	
2,181.00		300		0	0	
2,182.00	:	2,911		1,606	1,606	
2,184.00		7,095	1	0,006	11,612	
2,186.00	1	1,412	1	8,507	30,119	
2,188.00	1	6,132	2	7,544	57,663	
2,190.00	2	1,255	3	7,387	95,050	
2,191.00	2	2,600	2	1,928	116,977	

Type II 24-hr 100-Year Rainfall=7.50" Printed 12/9/2011

Page 92

Prepared by The LA Group P.C.

HydroCAD® 9.10 s/n 00439 © 2010 HydroCAD Software Solutions LLC

Device	Routing	Invert	Outlet Devices
#1	Primary	2,181.00'	30.0" Round Culvert L= 30.0' CPP, square edge headwall, Ke= 0.500
			Inlet / Outlet Invert= 2,181.00' / 2,180.85' S= 0.0050 '/' Cc= 0.900 n= 0.020 Corrugated PE, corrugated interior
#2	Device 1	2,183.00'	2.0" Vert. Orifice/Grate C= 0.600
#3	Device 1	2,186.50'	24.0" W x 6.0" H Vert. Orifice/Grate C= 0.600
#4	Device 1	2,187.50'	30.0" x 30.0" Horiz. Orifice/Grate C= 0.600 Limited to weir flow at low heads
#5	Primary	2,190.00'	10.0' long x 1.0' breadth Broad-Crested Rectangular Weir Head (feet) 0.20 0.40 0.60 0.80 1.00 1.20 1.40 1.60 1.80 2.00 2.50 3.00 Coef. (English) 2.69 2.72 2.75 2.85 2.98 3.08 3.20 3.28 3.31
			3.30 3.31 3.32

Primary OutFlow Max=81.02 cfs @ 12.14 hrs HW=2,190.72' (Free Discharge)

-1=Culvert (Passes 63.88 cfs of 68.78 cfs potential flow)

2=Orifice/Grate (Orifice Controls 0.29 cfs @ 13.31 fps)

-3=Orifice/Grate (Orifice Controls 9.59 cfs @ 9.59 fps)

4=Orifice/Grate (Orifice Controls 54.00 cfs @ 8.64 fps)

-5=Broad-Crested Rectangular Weir (Weir Controls 17.14 cfs @ 2.38 fps)

Summary for Pond P5.1: BIORETENTION

Inflow Area	I =	0.684 ac,	16.21% Imper	vious, Inflow	Depth = 4.	.82" for 10	0-Year event
Inflow	=	5.55 cfs @	11.97 hrs, V	/olume=	0.275 af		
Outflow	=	5.42 cfs @	11.98 hrs, V	/olume=	0.298 af,	, Atten= 2%,	Lag= 0.8 min
Primary	=	5.42 cfs @	11.98 hrs, V	/olume=	0.298 af		

Routing by Stor-Ind method, Time Span= 0.00-144.00 hrs, dt= 0.05 hrs / 2 Starting Elev= 1,808.00' Surf.Area= 2,961 sf Storage= 987 cf Peak Elev= 1,808.84' @ 11.98 hrs Surf.Area= 3,096 sf Storage= 1,873 cf (886 cf above start)

Plug-Flow detention time= 160.3 min calculated for 0.275 af (100% of inflow) Center-of-Mass det. time= 116.3 min (925.5 - 809.2)

Volume	Invert /	Avail.Storage	Storage De	torage Description				
#1	1,803.00'	395 cf	stone und	derdrain (Prismatic)Listed below (Recalc)				
			987 cf Ove	187 cf Overall x 40.0% Voids				
#2	1,804.00'	592 cf	filter med	dia (Prismatic)Listed below (Recalc)				
			3,948 cf Overall x 15.0% Voids					
#3	1,808.00'	2,295 cf	surface st	storage (Prismatic)Listed below (Recalc)				
		3,282 cf	Total Avail	ailable Storage				
Elevation	Surf.Ar	rea Inc	Store	Cum.Store				
(feet)	(sq	-ft) (cubi	c-feet)	(cubic-feet)				
1,803.00	9	87	0	0				
1,804.00	9	87	987	987				

Type II 24-hr 100-Year Rai	nfall=7.50"
Printed	12/9/2011
_C	Page 93

Prepared by The LA Gro	up P.C.
HydroCAD® 9.10 s/n 00439	© 2010 HydroCAD Software Solutions LLC

Elevation (feet)	Surf.Area (sq-ft)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)
1,804.00	987	0	0
1,808.00	967	3,940	3,940
Elevation	Surf.Area	Inc.Store	Cum.Store
(feet)	(SQ-TT)	(CUDIC-TEET)	(cubic-teet)
1,808.00	987	0	0
1,810.00	1,308	2,295	2,295

Device	Routing	Invert	Outlet Devices
#1	Primary	1,808.50'	10.0' long x 1.0' breadth Broad-Crested Rectangular Weir
	-		Head (feet) 0.20 0.40 0.60 0.80 1.00 1.20 1.40 1.60 1.80 2.00
			2.50 3.00
			Coef. (English) 2.69 2.72 2.75 2.85 2.98 3.08 3.20 3.28 3.31
			3.30 3.31 3.32
#2	Primary	1,803.00'	0.500 in/hr Exfiltration over Surface area

Primary OutFlow Max=5.21 cfs @ 11.98 hrs HW=1,808.83' (Free Discharge) 1=Broad-Crested Rectangular Weir (Weir Controls 5.17 cfs @ 1.56 fps) 2=Exfiltration (Exfiltration Controls 0.04 cfs)

Summary for Pond P6.1: BIORETENTION

Inflow Area	ι =	0.225 ac,	48.98% Impe	ervious,	Inflow De	pth =	5.85"	for	100-Y	'ear eve	ent
Inflow	=	2.12 cfs @	11.96 hrs,	Volume	=	0.110	af				
Outflow	=	1.96 cfs @	12.00 hrs,	Volume	=	0.110	af, Att	ten= 7	%, La	ag= 2.1	min
Primary	=	1.96 cfs @	12.00 hrs,	Volume	=	0.110	af				

Routing by Stor-Ind method, Time Span= 0.00-144.00 hrs, dt= 0.05 hrs / 2 Starting Elev= 0.01' Surf.Area= 0 sf Storage= 0 cf Peak Elev= 1,686.77' @ 12.00 hrs Surf.Area= 2,670 sf Storage= 1,522 cf

Plug-Flow detention time= 300.8 min calculated for 0.110 af (100% of inflow) Center-of-Mass det. time= 300.7 min (1,087.4 - 786.7)

Volume	Invert Av	ail.Storage	Storage Description				
#1	1,681.00'	320 cf	stone underdrain (Prismatic)Listed below (Recalc)				
			800 cf Overall x 40.0% Voids				
#2	1,682.00'	480 cf	filter media (Prismatic)Listed below (Recalc)				
			3,200 cf Overall x 15.0% Voids				
#3	1,686.00'	2,300 cf	surface storage (Prismatic)Listed below (Recalc)				
		3,100 cf	Total Available Storage				
Flowetien	Curf Area						
Elevation	Surr.Area		c.Store Cum.Store				
(feet)	(sq-ft) (cubi	ic-feet) (cubic-feet)				
1,681.00	800)	0 0				
1,682.00	800)	800 800				

Type II 24-hr	100-Year Rair	nfall=7.50"
	Printed	12/9/2011
.C		Page 94

Prepared by The LA Gro	up P.C.
HydroCAD® 9.10 s/n 00439	© 2010 HydroCAD Software Solutions LLC

Elevation	Surf.Area	Inc.Store	Cum.Store
(feet)	(sq-ft)	(cubic-feet)	(cubic-feet)
1,682.00	800	0	0
1,686.00	800	3,200	3,200
Elevation	Surf.Area	Inc.Store	Cum.Store
(feet)	(sq-ft)	(cubic-feet)	(cubic-feet)
1,686.00	800	0	0
1,688.00	1,500	2,300	2,300

Device	Routing	Invert	Outlet Devices
#1	Primary	1,686.50'	5.0' long x 1.0' breadth Broad-Crested Rectangular Weir Head (feet) 0.20 0.40 0.60 0.80 1.00 1.20 1.40 1.60 1.80 2.00
#2	Primary	1,681.00'	2.50 3.00 ² Coef. (English) 2.69 2.72 2.75 2.85 2.98 3.08 3.20 3.28 3.31 3.30 3.31 3.32 0.500 in/hr Exfiltration over Surface area

Primary OutFlow Max=1.95 cfs @ 12.00 hrs HW=1,686.77' (Free Discharge) 1=Broad-Crested Rectangular Weir (Weir Controls 1.92 cfs @ 1.41 fps) 2=Exfiltration (Exfiltration Controls 0.03 cfs)

Summary for Pond P6.2: BIORETENTION

Inflow Area	=	0.249 ac, 4	4.31% Impe	rvious, l	nflow Depth	n = 5.	73" for	100-	Year event
Inflow	=	2.31 cfs @	11.96 hrs, \	Volume=	. 0.1	19 af			
Outflow	=	2.17 cfs @	11.99 hrs, \	Volume=	. 0.1	19 af,	, Atten= 6	5%, L	_ag= 1.8 min
Primary	=	2.17 cfs @	11.99 hrs, \	√olume=	. 0.1	19 af			

Routing by Stor-Ind method, Time Span= 0.00-144.00 hrs, dt= 0.05 hrs / 2 Starting Elev= 0.01' Surf.Area= 0 sf Storage= 0 cf Peak Elev= 1,686.79' @ 11.99 hrs Surf.Area= 2,677 sf Storage= 1,543 cf

Plug-Flow detention time= 283.6 min calculated for 0.119 af (100% of inflow) Center-of-Mass det. time= 284.6 min (1,074.1 - 789.5)

Volume	Invert A	Avail.Storage	Storage Description
#1	1,681.00'	320 cf	stone underdrain (Prismatic)Listed below (Recalc)
			800 cf Overall x 40.0% Voids
#2	1,682.00'	480 cf	filter media (Prismatic)Listed below (Recalc)
			3,200 cf Overall x 15.0% Voids
#3	1,686.00'	2,300 cf	surface storage (Prismatic)Listed below (Recalc)
		3,100 cf	Total Available Storage
Elevation	Surf.Ar	ea Inc	nc.Store Cum.Store
(feet)	(sq-	ft) (cubi	bic-feet) (cubic-feet)
1,681.00	8	00	0 0
1,682.00	8	00	800 800

Type II 24-hr 10	00-Year Rair	nfall=7.50"
	Printed	12/9/2011
.C		Page 95

Prepared by The LA Gro	up P.C.
HydroCAD® 9.10 s/n 00439	© 2010 HydroCAD Software Solutions LLC

Elevation (feet)	Surf.Area (sq-ft)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)
1,682.00	800	0	0
1,686.00	800	3,200	3,200
Elevation	Surf.Area	Inc.Store	Cum.Store
(feet)	(sq-ft)	(cubic-feet)	(cubic-feet)
1,686.00	800	0	0
1,688.00	1,500	2,300	2,300

Device	Routing	Invert	Outlet Devices
#1	Primary	1,686.50'	5.0' long x 1.0' breadth Broad-Crested Rectangular Weir
			Head (leet) 0.20 0.40 0.80 1.00 1.20 1.40 1.80 2.00 2.50 3.00
			Coef. (English) 2.69 2.72 2.75 2.85 2.98 3.08 3.20 3.28 3.31
			3.30 3.31 3.32
#2	Primary	1,681.00'	0.500 in/hr Exfiltration over Surface area

Primary OutFlow Max=2.12 cfs @ 11.99 hrs HW=1,686.79' (Free Discharge) 1=Broad-Crested Rectangular Weir (Weir Controls 2.09 cfs @ 1.45 fps) 2=Exfiltration (Exfiltration Controls 0.03 cfs)

Summary for Pond P7.1: P-1

Inflow Are	ea =	2.973 ac, 3	39.49% Impervious,	Inflow Depth = 5	.50" for 100-Ye	ear event
Inflow	=	26.83 cfs @	11.97 hrs, Volume	= 1.363 at	:	
Outflow	=	19.30 cfs @	12.04 hrs, Volume	e 1.365 at	, Atten= 28%, La	ag= 4.3 min
Primary	=	19.30 cfs @	12.04 hrs, Volume	e= 1.365 at	:	

Routing by Stor-Ind method, Time Span= 0.00-144.00 hrs, dt= 0.05 hrs / 2 Starting Elev= 1,676.00' Surf.Area= 2,800 sf Storage= 3,265 cf Peak Elev= 1,680.17' @ 12.04 hrs Surf.Area= 8,830 sf Storage= 27,314 cf (24,049 cf above start)

Plug-Flow detention time= 489.5 min calculated for 1.289 af (95% of inflow) Center-of-Mass det. time= 428.6 min (1,223.4 - 794.8)

Volume	Invert Ava	ail.Storage	Storage	Description	
#1	1,674.00'	34,944 cf	Custom	Stage Data (Pr	ismatic)Listed below (Recalc)
Elevation	Surf.Area	Inc. (cubic	Store	Cum.Store	
1,674.00	465	(00010	0	0	
1,676.00	2,800		3,265	3,265	
1,678.00	5,541	1	8,341 4 227	11,606 25,833	
1,681.00	9,535	I	9,111	34,944	

Type II 24-hr 100-Year Rainfall=7.50" Printed 12/9/2011

Page 96

Prepared by The LA Group P.C. HydroCAD® 9.10 s/n 00439 © 2010 HydroCAD Software Solutions LLC

Device	Routing	Invert	Outlet Devices
#1	Primary	1,674.00'	24.0" Round Culvert
			L= 74.0' CPP, square edge headwall, Ke= 0.500
			Inlet / Outlet Invert= 1,674.00' / 1,673.63' S= 0.0050 '/' Cc= 0.900
			n= 0.020 Corrugated PE, corrugated interior
#2	Device 1	1,676.00'	1.7" Vert. Orifice/Grate C= 0.600
#3	Device 1	1,678.50'	6.0" Vert. Orifice/Grate C= 0.600
#4	Device 1	1,679.50'	24.0" x 24.0" Horiz. Orifice/Grate C= 0.600
			Limited to weir flow at low heads
#5	Primary	1,680.00'	20.0' long x 1.0' breadth Broad-Crested Rectangular Weir
	-		Head (feet) 0.20 0.40 0.60 0.80 1.00 1.20 1.40 1.60 1.80 2.00
			2.50 3.00
			Coef. (English) 2.69 2.72 2.75 2.85 2.98 3.08 3.20 3.28 3.31
			3.30 3.31 3.32

Primary OutFlow Max=18.56 cfs @ 12.04 hrs HW=1,680.16' (Free Discharge)

1=Culvert (Passes 15.21 cfs of 27.95 cfs potential flow)

2=Orifice/Grate (Orifice Controls 0.15 cfs @ 9.73 fps)

-3=Orifice/Grate (Orifice Controls 1.12 cfs @ 5.71 fps)

4=Orifice/Grate (Weir Controls 13.94 cfs @ 2.65 fps)

-5=Broad-Crested Rectangular Weir (Weir Controls 3.35 cfs @ 1.07 fps)

Summary for Pond P8.1: DRY SWALE

Inflow Area	a =	2.715 ac, 2	28.55% Imperv	ious, Inflow D	Depth = 3	5.16" for	100-Year event
Inflow	=	18.68 cfs @	12.05 hrs, Vo	olume=	1.167 a	af	
Outflow	=	17.85 cfs @	12.08 hrs, Vo	olume=	1.167 a	af, Atten= 4	1%, Lag= 1.6 min
Primary	=	17.85 cfs @	12.08 hrs, Vo	olume=	1.167 a	af	

Routing by Stor-Ind method, Time Span= 0.00-144.00 hrs, dt= 0.05 hrs / 2 Peak Elev= 2,309.99' @ 12.08 hrs Surf.Area= 6,269 sf Storage= 5,981 cf

Plug-Flow detention time= 102.3 min calculated for 1.167 af (100% of inflow) Center-of-Mass det. time= 102.9 min (911.9 - 809.0)

Volume	Invert	Avai	il.Storage	Stora	ge Description	
#1	2,304.50'		444 cf	stone	e underdrain (Pris	matic)Listed below (Recalc)
				1,110	cf Overall x 40.0%	% Voids
#2	2,305.50'		416 cf	filter	media (Prismatic)	Listed below (Recalc)
				2,775	cf Overall x 15.0%	% Voids
#3	2,308.00		5,180 cf	surta	ce storage (Prism	atic)Listed below (Recalc)
			6,040 cf	Total	Available Storage	
Elevation	Sur	f.Area	Inc	Store	Cum.Store	
(feet)		(sq-ft)	(cubi	c-feet)	(cubic-feet)	
2,304.50		1,110		0	0	
2,305.50		1,110		1,110	1,110	
Elevation	Sur	f.Area	Inc	.Store	Cum.Store	
(feet)		(sq-ft)	(cubi	c-feet)	(cubic-feet)	
2,305.50		1,110		0	0	
2,308.00		1,110		2,775	2,775	

i iopaioa by i		up i .0.		
HydroCAD® 9.10) s/n 00439	© 2010 HydroCAE	Software Solv	utions LLC

Elevation	Surf.Area	Inc.Store	Cum.Store
(feet)	(sq-ft)	(cubic-feet)	(cubic-feet)
2,308.00	1,110	0	0
2,310.00	4,070	5,180	5,180

<u>Device</u>	Routing	Invert	Outlet Devices
#1	Primary	2,309.25'	10.0' long x 1.0' breadth Broad-Crested Rectangular Weir
			Head (feet) 0.20 0.40 0.60 0.80 1.00 1.20 1.40 1.60 1.80 2.00 2.50 3.00
			Coef. (English) 2.69 2.72 2.75 2.85 2.98 3.08 3.20 3.28 3.31
			3.30 3.31 3.32
#2	Primary	2,304.50'	0.500 in/hr Exfiltration over Surface area

Primary OutFlow Max=17.50 cfs @ 12.08 hrs HW=2,309.98' (Free Discharge) 1=Broad-Crested Rectangular Weir (Weir Controls 17.43 cfs @ 2.40 fps) 2=Exfiltration (Exfiltration Controls 0.07 cfs)

Summary for Pond P8.2: P-1

Inflow Are	ea =	27.190 ac, 2	2.39% Imperviou	is, Inflow Depth =	= 4.59"	for 100-'	Year event
Inflow	=	138.10 cfs @	12.01 hrs, Volu	me= 10.39)7 af		
Outflow	=	132.31 cfs @	12.05 hrs, Volu	me= 10.39	6 af, Atte	n= 4%, L	.ag= 2.3 min
Primary	=	132.31 cfs @	12.05 hrs, Volu	me= 10.39)6 af		

Routing by Stor-Ind method, Time Span= 0.00-144.00 hrs, dt= 0.05 hrs Starting Elev= 1,675.75' Surf.Area= 4,839 sf Storage= 10,231 cf Peak Elev= 1,683.93' @ 12.05 hrs Surf.Area= 19,369 sf Storage= 104,775 cf (94,544 cf above start)

Plug-Flow detention time= 403.5 min calculated for 10.161 af (98% of inflow) Center-of-Mass det. time= 368.0 min (1,206.2 - 838.3)

Volume	Inve	rt Avail.Sto	rage Storage	e Description	
#1	1,672.00	0' 106,08	30 cf Custor	n Stage Data (Pı	rismatic)Listed below (Recalc)
Elevatio	on s	Surf.Area	Inc.Store	Cum.Store	
(fee	et)	(sq-ft)	(cubic-feet)	(cubic-feet)	
1,672.0	0	1,000	0	0	
1,674.0	0	2,665	3,665	3,665	
1,676.0	0	5,150	7,815	11,480	
1,678.0	0	8,130	13,280	24,760	
1,680.0	0	11,525	19,655	44,415	
1,682.0	0	15,315	26,840	71,255	
1,684.0	0	19,510	34,825	106,080	
Device	Routing	Invert	Outlet Device	es	
#1	Primary	1,672.00'	24.0" Roun	d Culvert	
			L= 93.0' CP	P, square edge ł	neadwall, Ke= 0.500
			Inlet / Outlet	Invert= 1,672.00'	/ 1,671.54' S= 0.0049 '/' Cc= 0.900
			n= 0.020 Co	prrugated PE, cor	rugated interior
#2	Device 1	1,675.75	2.0" Vert. Or	ritice/Grate C=	0.600
#3	Device 1	1,681.00'	24.0" W x 6.	0" H Vert. Orific	e/Grate C= 0.600

08077 Proposed Type II 24-hr 100-Year Rainfall=7.50" Prepared by The LA Group P.C. HydroCAD® 9.10 s/n 00439 © 2010 HydroCAD Software Solutions LLC

Printed 12/9/2011 Page 98

#4	Device 1	1,682.00'	36.0" x 36.0" Horiz. Orifice/Grate C= 0.600 Limited to weir flow at low heads
#5	Primary	1,683.00'	35.0' long x 1.0' breadth Broad-Crested Rectangular Weir Head (feet) 0.20 0.40 0.60 0.80 1.00 1.20 1.40 1.60 1.80 2.00 2.50 3.00 Coef. (English) 2.69 2.72 2.75 2.85 2.98 3.08 3.20 3.28 3.31 3.30 3.31 3.32

Primary OutFlow Max=131.72 cfs @ 12.05 hrs HW=1,683.93' (Free Discharge)

1=Culvert (Barrel Controls 39.45 cfs @ 12.56 fps)

-2=Orifice/Grate (Passes < 0.30 cfs potential flow)

-3=Orifice/Grate (Passes < 7.88 cfs potential flow)

-4=Orifice/Grate (Passes < 60.22 cfs potential flow)

5=Broad-Crested Rectangular Weir (Weir Controls 92.26 cfs @ 2.83 fps)

Summary for Pond P8.3: DRY SWALE

Inflow Area	a =	1.145 ac,	16.92% Impe	rvious, In	flow Depth =	4.93" fo	or 100-Y	ear event
Inflow	=	9.48 cfs @	11.97 hrs, \	Volume=	0.471	af		
Outflow	=	8.85 cfs @	12.00 hrs, `	Volume=	0.471	af, Atten:	= 7%, La	g= 1.7 min
Primary	=	8.85 cfs @	12.00 hrs, `	Volume=	0.471	af		-

Routing by Stor-Ind method, Time Span= 0.00-144.00 hrs, dt= 0.05 hrs / 2 Peak Elev= 1,757.09' @ 12.00 hrs Surf.Area= 3,991 sf Storage= 4,059 cf

Plug-Flow detention time= 193.5 min calculated for 0.470 af (100% of inflow) Center-of-Mass det. time= 194.1 min (1.001.1 - 806.9)

Volume	Invert	Avail.Storage	Storage Description
#1	1,751.50'	264 cf	stone underdrain (Prismatic)Listed below (Recalc)
			660 cf Overall x 40.0% Voids
#2	1,752.50'	248 cf	filter media (Prismatic)Listed below (Recalc)
			1,650 cf Overall x 15.0% Voids
#3	1,755.00'	6,105 cf	surface storage (Prismatic)Listed below (Recalc)
		6,617 cf	Total Available Storage

Elevation (feet)	Surf.Area (sq-ft)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)
1,751.50	660	0	0
1,752.50	660	660	660
Elevation	Surf.Area	Inc.Store	Cum.Store
(feet)	(sq-ft)	(cubic-feet)	(cubic-feet)
1,752.50	660	0	0
1,755.00	660	1,650	1,650
Elevation	Surf.Area	Inc.Store	Cum.Store
(feet)	(sq-ft)	(cubic-feet)	(cubic-feet)
1,755.00	660	0	0
1,757.00	2,640	3,300	3,300
1,758.00	2,970	2,805	6,105

Prepared by The LA Group P.C.

 Type II 24-hr 100-Year Rainfall=7.50"

 Printed 12/9/2011

 _C
 Page 99

HydroCAD® 9.10 s/n 00439 © 2010 HydroCAD Software Solutions LLC

Device	Routing	Invert	Outlet Devices
#1	Primary	1,756.50'	7.0' long x 1.0' breadth Broad-Crested Rectangular Weir Head (feet) 0.20 0.40 0.60 0.80 1.00 1.20 1.40 1.60 1.80 2.00 2.50 3.00
#2	Primary	1,751.50'	Coef. (English) 2.69 2.72 2.75 2.85 2.98 3.08 3.20 3.28 3.31 3.30 3.31 3.32 0.500 in/hr Exfiltration over Surface area

Primary OutFlow Max=8.73 cfs @ 12.00 hrs HW=1,757.09' (Free Discharge) 1=Broad-Crested Rectangular Weir (Weir Controls 8.69 cfs @ 2.11 fps)

2=Exfiltration (Exfiltration Controls 0.05 cfs)

Summary for Pond P9.1: DRY SWALE

Inflow Area	a =	4.151 ac, 2	1.51% Impervio	us, Inflow De	pth = 4.9	3" for 100	-Year event
Inflow	=	26.69 cfs @	12.06 hrs, Volu	ime=	1.706 af		
Outflow	=	25.35 cfs @	12.10 hrs, Volu	ime=	1.706 af,	Atten= 5%,	Lag= 2.4 min
Primary	=	25.35 cfs @	12.10 hrs, Volu	ime=	1.706 af		

Routing by Stor-Ind method, Time Span= 0.00-144.00 hrs, dt= 0.05 hrs Peak Elev= 1,819.91' @ 12.10 hrs Surf.Area= 9,687 sf Storage= 10,989 cf

Plug-Flow detention time= 127.1 min calculated for 1.706 af (100% of inflow) Center-of-Mass det. time= 127.0 min (941.5 - 814.5)

Volume	Inve	ert Ava	il.Storage	Storag	e Description	
#1	1,814.0)0'	624 cf	stone	underdrain (Pris	matic)Listed below (Recalc)
#2	1,815.0)0'	585 cf	1,560 filter r 3,900	cf Overall x 40.09 nedia (Prismatic) cf Overall x 15.09	% Voids)Listed below (Recalc) % Voids
#3	1,817.5	50'	10,400 cf	surfac	e storage (Prism	natic)Listed below (Recalc)
			11,609 cf	Total A	Available Storage	
Elevation (feet)		Surf.Area (sq-ft)	Inc (cubi	:.Store c-feet)	Cum.Store (cubic-feet)	
1,814.00		1,560	•	0	0	
1,815.00		1,560		1,560	1,560	
Elevation (feet)		Surf.Area (sq-ft)	Inc (cubi	:.Store c-feet)	Cum.Store (cubic-feet)	
1,815.00		1,560		0	0	
1,817.50		1,560		3,900	3,900	
Elevation (feet)		Surf.Area (sq-ft)	Inc (cubi	:.Store c-feet)	Cum.Store (cubic-feet)	
1,817.50		1,560		0	0	
1,820.00		6,760		10,400	10,400	
Device F	Routing	Ir	nvert Outl	et Devid	ces	
#1 F #2 F	Primary Primary	1,814 1,819	4.00' 0.50 9.00' 10.0	0 in/hr ' long ː	Exfiltration over x 1.0' breadth Br	Surface area oad-Crested Rectangular Weir

Head (feet) 0.20 0.40 0.60 0.80 1.00 1.20 1.40 1.60 1.80 2.00 2.50 3.00 Coef. (English) 2.69 2.72 2.75 2.85 2.98 3.08 3.20 3.28 3.31 3.30 3.31 3.32

Primary OutFlow Max=25.26 cfs @ 12.10 hrs HW=1,819.91' (Free Discharge) 1=Exfiltration (Exfiltration Controls 0.11 cfs) 2=Broad-Crested Rectangular Weir (Weir Controls 25.15 cfs @ 2.78 fps)

Summary for Pond P9.2: Pond 9.2

Inflow Area	a =	19.480 ac, 2	1.84% Impervious,	Inflow Depth = 5	5.49" for '	100-Year event
Inflow	=	176.20 cfs @	12.00 hrs, Volume	≔ 8.913 a	f	
Outflow	=	118.58 cfs @	12.11 hrs, Volume	≔ 8.911 a	f, Atten= 33	3%, Lag= 6.4 min
Primary	=	118.58 cfs @	12.11 hrs, Volume	≔ 8.911 a	f	

Routing by Stor-Ind method, Time Span= 0.00-144.00 hrs, dt= 0.05 hrs Starting Elev= 1,667.00' Surf.Area= 3,838 sf Storage= 6,979 cf Peak Elev= 1,676.26' @ 12.11 hrs Surf.Area= 29,571 sf Storage= 162,762 cf (155,783 cf above start)

Plug-Flow detention time= 792.2 min calculated for 8.747 af (98% of inflow) Center-of-Mass det. time= 755.1 min (1,581.2 - 826.1)

Inver	t Avail.Sto	rage Storage	Description	
1,664.00)' 169,8 <i>°</i>	13 cf Custom	Stage Data (Pi	rismatic)Listed below (Recalc)
n S	Surf.Area	Inc.Store	Cum.Store	
.)	(54-11)			
0	433	0	0	
0	3,085	3,518	3,518	
0	4,590	7,675	11,193	
0	13,607	18,197	29,390	
0	18,274	31,881	61,271	
0	23,344	41,618	102,889	
0	28,815	52,159	155,048	
0	30,246	14,765	169,813	
Routing	Invert	Outlet Device	S	
Primary	1,653.00'	24.0" Round	l Culvert	
2		L= 300.0' CF	PP, square edge	e headwall, Ke= 0.500
		Inlet / Outlet I	nvert= 1,653.00	'/1,651.50' S= 0.0050 '/' Cc= 0.900
		n= 0.020 Cor	rugated PE, cor	rugated interior
Device 1	1,667.00'	2.0" Vert. Ori	fice/Grate C=	0.600
Device 1	1,671.75'	6.0" Vert. Ori	fice/Grate C=	0.600
Device 1	1,675.00'	24.0" x 24.0"	Horiz. Orifice/0	Grate C= 0.600
		Limited to wei	ir flow at low hea	ads
Primary	1,675.50'	50.0' long x	1.0' breadth Bro	oad-Crested Rectangular Weir
-		Head (feet) 0	.20 0.40 0.60	0.80 1.00 1.20 1.40 1.60 1.80 2.00
		2.50 3.00		
		Coef. (English	n) 2.69 2.72 2.	75 2.85 2.98 3.08 3.20 3.28 3.31
		3.30 3.31 3.3	32	
	Inver 1,664.00 n S t) 0 0 0 0 0 0 0 0 0 0 0 0 0	Invert Avail.Sto 1,664.00' 169,8' n Surf.Area t) (sq-ft) 0 433 0 3,085 0 4,590 0 13,607 0 18,274 0 23,344 0 28,815 0 30,246 Routing Invert Primary 1,653.00' Device 1 1,671.75' Device 1 1,675.00' Primary 1,675.50'	Invert Avail.Storage Storage 1,664.00' 169,813 cf Custom n Surf.Area Inc.Store (sq-ft) (cubic-feet) 0 433 0 0 3,085 3,518 0 4,590 7,675 0 13,607 18,197 0 23,344 41,618 0 28,815 52,159 0 30,246 14,765 Routing Invert Outlet Device Primary 1,653.00' 24.0" Round L= 300.0' CF Inlet / Outlet I n= 0.020 Device 1 1,671.75' 6.0" Vert. Ori Device 1 1,675.00' 24.0" x 24.0" Limited to wei Limited to wei Head (feet) Primary 1,675.50' 50.0' long x Head (feet) 0 2.50 3.00 Coef. (English 3.30 3.31 3.30	Invert Avail.Storage Storage Description 1,664.00' 169,813 cf Custom Stage Data (P n Surf.Area Inc.Store Cum.Store i) (sq-ft) (cubic-feet) (cubic-feet) 0 433 0 0 0 3,085 3,518 3,518 0 4,590 7,675 11,193 0 13,607 18,197 29,390 0 13,607 18,197 29,390 0 23,344 41,618 102,889 0 28,815 52,159 155,048 0 30,246 14,765 169,813 Routing Invert Outlet Devices Primary 1,653.00' 24.0" Round Culvert L= 300.0' CPP, square edge Inlet / Outlet Invert= 1,653.00 n= 0.020 Corrugated PE, corr Device 1 1,675.00' 20" Vert. Orifice/Grate C= Device 1 1,675.00' 24.0" x 24.0" Horiz. Orifice/O Limited to weir flow at low hea

Primary OutFlow Max=115.22 cfs @ 12.11 hrs HW=1,676.25' (Free Discharge) 1=Culvert (Passes 23.79 cfs of 37.38 cfs potential flow) 2=Orifice/Grate (Orifice Controls 0.32 cfs @ 14.58 fps) -3=Orifice/Grate (Orifice Controls 1.95 cfs @ 9.92 fps)

4=Orifice/Grate (Orifice Controls 21.52 cfs @ 5.38 fps)

-5=Broad-Crested Rectangular Weir (Weir Controls 91.43 cfs @ 2.44 fps)

Summary for Pond P9.3: BIORETENTION

Inflow Area	a =	1.347 ac, 3	35.43% Impervious,	Inflow Depth =	5.50" for 100-Y	ear event
Inflow	=	12.16 cfs @	11.97 hrs, Volume	;= 0.618 a	af	
Outflow	=	8.01 cfs @	12.05 hrs, Volume	;= 0.618 a	af, Atten= 34%, L	.ag= 5.4 min
Primary	=	8.01 cfs @	12.05 hrs, Volume	;= 0.618 a	af	

Routing by Stor-Ind method, Time Span= 0.00-144.00 hrs, dt= 0.05 hrs / 2 Peak Elev= 1,659.72' @ 12.06 hrs Surf.Area= 12,610 sf Storage= 11,374 cf

Plug-Flow detention time= 291.7 min calculated for 0.618 af (100% of inflow) Center-of-Mass det. time= 293.1 min (1,087.8 - 794.8)

Volume	Inve	rt Avail.Sto	orage	Storage De	escription				
#1	1,653.00	D' 1,5	46 cf	stone und 3,864 cf O ^r	erdrain (Pris	matic) Listed below (Recalc) % Voids			
#2	1,654.00	O' 2,3	18 cf	filter media (Prismatic)Listed below (Recalc)					
				15,456 cf (Overall x 15.0	0% Voids			
#3	1,658.00	<u>)'</u> 8,9	14 cf	surface st	orage (Prism	natic)Listed below (Recalc)			
		12,7	78 cf	Total Avail	able Storage				
Elevation	Ś	Surf.Area	Inc.S	Store	Cum.Store				
(feet)		(sq-ft)	(cubic-	-feet)	(cubic-feet)				
1,653.00		3,864		0	0				
1,654.00		3,864	3	3,864	3,864				
				_					
Elevation	e e	Surf.Area	Inc.S	Store	Cum.Store				
(feet)		(sq-ft)	(cubic-	-feet)	(cubic-feet)				
1,654.00		3,864		0	0				
1,658.00		3,864	15	5,456	15,456				
Elevation	ç	Surf.Area	Inc.S	Store	Cum.Store				
(feet)		(sq-ft)	(cubic-	-feet)	(cubic-feet)				
1.658.00		3.864		0	0				
1,660.00		5,050	8	3,914	8,914				
Device F	Routing	Invert	Outlet	t Devices					
#1 F	Primary	1,653.00'	12.0"	Round C	ulvert				
	-		L= 80 Inlet / n= 0.0	80.0' CPP, square edge headwall, Ke= 0.500 et / Outlet Invert= 1,653.00' / 1,652.60' S= 0.0050 '/' Cc= 0.900 0.020 Corrugated PE, corrugated interior					
#2 [Device 1	1,653.00'	0.500	.500 in/hr Exfiltration over Surface area					
#3 L	Jevice 1	1,658.50'	6.0" H	0" Horiz. Orifice/Grate C= 0.600					

08077 Proposed Type II 24-hr 100-Year Rainfall=7.50" Prepared by The LA Group P.C. HydroCAD® 9.10 s/n 00439 © 2010 HydroCAD Software Solutions LLC

#4	Primary	1,659.50'	Limited to weir flow at low heads 25.0' long x 1.0' breadth Broad-Crested Rectangular Weir Head (feet) 0.20 0.40 0.60 0.80 1.00 1.20 1.40 1.60 1.80 2.00 2.50 3.00 Coef. (English) 2.69 2.72 2.75 2.85 2.98 3.08 3.20 3.28 3.31 3.30 3.31 3.32
			3.30 3.31 3.32

Primary OutFlow Max=7.72 cfs @ 12.05 hrs HW=1,659.71' (Free Discharge)

-1=Culvert (Passes 1.19 cfs of 5.71 cfs potential flow)

2=Exfiltration (Exfiltration Controls 0.15 cfs) **3=Orifice/Grate** (Orifice Controls 1.04 cfs @ 5.30 fps)

-4=Broad-Crested Rectangular Weir (Weir Controls 6.54 cfs @ 1.24 fps)

Summary for Pond P9.ex: Existing Pond

Inflow Area	a =	2.870 ac,	4.48% Impervious,	Inflow Depth = 4	.48" for 100-Year event
Inflow	=	21.62 cfs @	11.98 hrs, Volume	= 1.072 af	<u>.</u>
Outflow	=	20.45 cfs @	11.98 hrs, Volume	= 0.946 af	, Atten= 5%, Lag= 0.0 min
Primary	=	20.45 cfs @	11.98 hrs, Volume	= 0.946 af	

Routing by Stor-Ind method, Time Span= 0.00-144.00 hrs, dt= 0.05 hrs / 2 Peak Elev= 1,672.65' @ 11.98 hrs Surf.Area= 3,000 sf Storage= 6,300 cf

Plug-Flow detention time= 82.9 min calculated for 0.946 af (88% of inflow) Center-of-Mass det. time= 25.2 min (841.7 - 816.6)

Volume	Inve	ert Avail.St	orage St	orage D	escription	
#1	1,668.5	6,3	300 cf C	ustom S	Stage Data (Pr	ismatic)Listed below (Recalc)
Elevatior (feet	ר)	Surf.Area (sq-ft)	Inc.St (cubic-fe	ore et)	Cum.Store (cubic-feet)	
1,668.50 1,672.50)	150 3,000	6,3	0 300	0 6,300	
Device	Routing	Invert	Outlet [Devices		
#1	Primary	1,672.00'	15.0' lo Head (f 2.50 3. Coef. (f 2.85 3.	ng x 2.0 eet) 0.2 00 3.50 English) 07 3.20	0' breadth Bro 0 0.40 0.60 2.54 2.61 2.0 3.32	Dad-Crested Rectangular Weir 0.80 1.00 1.20 1.40 1.60 1.80 2.00 61 2.60 2.66 2.70 2.77 2.89 2.88

Primary OutFlow Max=19.63 cfs @ 11.98 hrs HW=1,672.63' (Free Discharge) **1=Broad-Crested Rectangular Weir** (Weir Controls 19.63 cfs @ 2.07 fps)

Design Point Summary 1-yr Storm Event Design Point Totals 10 & 100-yr Storm Events

Summary for Reach DP-1: Design Point-1

Inflow .	Area	I =	80.534 ac,	2.74% Impervi	ous, Inflow De	epth = 0.88	8" for 1-Y	ear event
Inflow		=	43.56 cfs @	12.26 hrs, Vo	lume=	5.888 af		
Outflow	N	=	43.56 cfs @	12.26 hrs, Vo	lume=	5.888 af, 1	Atten= 0%,	Lag= 0.0 min

Routing by Stor-Ind+Trans method, Time Span= 0.00-144.00 hrs, dt= 0.05 hrs

Summary for Reach DP-11: Design Point-11

Inflow /	Area	a =	168.947 ac,	5.75% Impervious, I	nflow Depth = 0.9	0" for 1-Year event
Inflow		=	75.52 cfs @	12.37 hrs, Volume=	12.698 af	
Outflov	N	=	75.52 cfs @	12.37 hrs, Volume=	12.698 af,	Atten= 0%, Lag= 0.0 min

Routing by Stor-Ind+Trans method, Time Span= 0.00-144.00 hrs, dt= 0.05 hrs

Summary for Reach DP-2: Design Point-2

Inflow A	Area =	46.065 ac,	16.76% Impervi	ous, Inflow De	epth > 1.0	3" for 1-Y	ear event
Inflow	=	5.28 cfs @	12.08 hrs, Vo	lume=	3.938 af		
Outflow	/ =	5.28 cfs @	12.08 hrs, Vo	lume=	3.938 af,	Atten= 0%,	Lag= 0.0 min

Routing by Stor-Ind+Trans method, Time Span= 0.00-144.00 hrs, dt= 0.05 hrs

Summary for Reach DP-2a: Design Point-2a

Inflow Are	ea =	1.800 ac,	0.00% Impervious,	Inflow Depth = 0.8	31" for 1-Year event
Inflow	=	2.15 cfs @	12.02 hrs, Volume	= 0.121 af	
Outflow	=	2.15 cfs @	12.02 hrs, Volume	= 0.121 af,	Atten= 0%, Lag= 0.0 min

Routing by Stor-Ind+Trans method, Time Span= 0.00-144.00 hrs, dt= 0.05 hrs

Summary for Reach DP-2b: Design Point-2b

Inflow /	Area =	=	4.268 ac,	0.00% Impervious,	Inflow Depth = $1.$	55" for 1-Year event
Inflow	=	:	5.41 cfs @	12.01 hrs, Volume	= 0.552 af	
Outflow	v =	:	5.41 cfs @	12.01 hrs, Volume	= 0.552 af,	Atten= 0%, Lag= 0.0 min

Routing by Stor-Ind+Trans method, Time Span= 0.00-144.00 hrs, dt= 0.05 hrs

Summary for Reach DP-3: Design Point-3

Inflow .	Area	=	26.617 ac, 1	12.59% Impervious,	Inflow Depth > 1	.01" for 1-Year event
Inflow	=	=	8.18 cfs @	11.98 hrs, Volume)⇒ 2.241 af	f
Outflow	N =	=	8.18 cfs @	11.98 hrs, Volume)= 2.241 af	f, Atten= 0%, Lag= 0.0 min

Routing by Stor-Ind+Trans method, Time Span= 0.00-144.00 hrs, dt= 0.05 hrs

Summary for Reach DP-4P: Design Point-4

Inflow /	Area	I =	3.572 ac,	0.00% Impervi	ious, Inflow D	epth = 0.8	1" for 1-Y	ear event
Inflow		=	4.06 cfs @	12.02 hrs, Vo	olume=	0.241 af		
Outflov	v	=	4.06 cfs @	12.02 hrs, Vo	olume=	0.241 af, 1	Atten= 0%,	Lag= 0.0 min

Routing by Stor-Ind+Trans method, Time Span= 0.00-144.00 hrs, dt= 0.05 hrs

Summary for Reach DP-5: Design Point-5

Inflow A	Area =	24.147 ac,	1.52% Impervious,	Inflow Depth = 0.8	36" for 1-Year event
Inflow	=	23.81 cfs @	12.07 hrs, Volume=	= 1.724 af	
Outflow	v =	23.81 cfs @	12.07 hrs, Volume=	= 1.724 af,	Atten= 0%, Lag= 0.0 min

Routing by Stor-Ind+Trans method, Time Span= 0.00-144.00 hrs, dt= 0.05 hrs

Summary for Reach DP-6: Design Point 6

Inflow Ar	rea =	2.000 ac, 1	11.02% Impe	ervious,	Inflow Dept	h = 1.0)0" for 1-ነ	ear event
Inflow	=	2.12 cfs @	11.98 hrs,	Volume	= 0.	167 af		
Outflow	=	2.12 cfs @	11.98 hrs,	Volume	= 0.	167 af,	Atten= 0%,	Lag= 0.0 min

Routing by Stor-Ind+Trans method, Time Span= 0.00-144.00 hrs, dt= 0.05 hrs

Summary for Reach DP-7: Design Point 7

Inflow A	rea =	4.917 ac, 2	23.87% Impe	ervious,	Inflow Depth =	1.1	8" for 1-Y	ear event
Inflow	=	2.56 cfs @	11.98 hrs,	Volume	= 0.482	af		
Outflow	=	2.56 cfs @	11.98 hrs,	Volume	= 0.482	af,	Atten= 0%,	Lag= 0.0 min

Routing by Stor-Ind+Trans method, Time Span= 0.00-144.00 hrs, dt= 0.05 hrs

Summary for Reach DP-8: Design Point-8

Inflow /	Area	=	52.819 ac,	12.05% Imp	ervious,	Inflow Depth >	1.0)0" for 1-ነ	ear event
Inflow		=	12.88 cfs @	12.38 hrs,	Volume	= 4.389	af		
Outflov	N	=	12.88 cfs @	12.38 hrs,	Volume	= 4.389	af,	Atten= 0%,	Lag= 0.0 min

Routing by Stor-Ind+Trans method, Time Span= 0.00-144.00 hrs, dt= 0.05 hrs

Summary for Reach DP-9: Design Point-9

Inflow .	Area =	24.723 ac,	, 20.09% Impervious	, Inflow Depth >	1.08" for 1-Y	ear event
Inflow	=	1.93 cfs @	11.98 hrs, Volum	e= 2.217 a	af	
Outflow	N =	1.93 cfs @	11.98 hrs, Volum	e= 2.217 a	af, Atten= 0% ,	Lag= 0.0 min

Routing by Stor-Ind+Trans method, Time Span= 0.00-144.00 hrs, dt= 0.05 hrs

Summary for Reach DP12: Design Point-12

Inflow A	rea =	40.214 ac,	4.63% Impervious,	Inflow Depth = 0.8	38" for 1-Year event
Inflow	=	16.53 cfs @	12.18 hrs, Volume=	= 2.950 af	
Outflow	=	16.53 cfs @	12.18 hrs, Volume=	= 2.950 af,	Atten= 0%, Lag= 0.0 min

Routing by Stor-Ind+Trans method, Time Span= 0.00-144.00 hrs, dt= 0.05 hrs

08077_ProposedType II 24-hPrepared by The LA Group P.C.HydroCAD® 9.10 s/n 00439 © 2010 HydroCAD Software Solutions LLC

 Type II 24-hr 10-Year Rainfall=5.00"

 Printed 12/9/2011

 C
 Page 1

Time span=0.00-144.00 hrs, dt=0.05 hrs, 2881 points Runoff by SCS TR-20 method, UH=SCS Reach routing by Stor-Ind+Trans method - Pond routing by Stor-Ind method

Reach DP-1: Design Point-1	Inflow=133.35 cfs 15.477 af Outflow=133.35 cfs 15.477 af
Reach DP-11: Design Point-11	Inflow=252.53 cfs 32.946 af
	Outflow=252.53 cfs 32.946 af
Reach DP-2: Design Point-2	Inflow=47.14 cfs 9.911 af
	Outflow=47.14 cfs 9.911 af
Reach DP-2a: Design Point-2a	Inflow=6.16 cfs 0.330 af
	Outflow=6.16 cfs 0.330 af
Reach DP-2b: Design Point-2b	Inflow=15.25 cfs 1.058 af
-	Outflow=15.25 cfs 1.058 af
Reach DP-3: Design Point-3	Inflow=23.18 cfs 5.172 af
	Outflow=23.18 cfs 5.172 af
Reach DP-4P: Design Point-4	Inflow=19.81 cfs 1.058 af
-	Outflow=19.81 cfs 1.058 af
Reach DP-5: Design Point-5	Inflow=74.02 cfs 4.568 af
-	Outflow=74.02 cfs 4.568 af
Reach DP-6: Design Point 6	Inflow=5.83 cfs 0.414 af
-	Outflow=5.83 cfs 0.414 af
Reach DP-7: Design Point 7	Inflow=7.41 cfs 1.129 af
-	Outflow=7.41 cfs 1.129 af
Reach DP-8: Design Point-8	Inflow=84.96 cfs 10.769 af
U	Outflow=84.96 cfs 10.769 af
Reach DP-9: Design Point-9	Inflow=15.30 cfs 5.662 af
	Outflow=15.30 cfs 5.662 af
Reach DP12: Design Point-12	Inflow=50.57 cfs 7.738 af
	Outflow=50.57 cfs 7.738 af

08077_ProposedType II 24Prepared by The LA Group P.C.HydroCAD® 9.10 s/n 00439 © 2010 HydroCAD Software Solutions LLC

 Type II 24-hr 100-Year Rainfall=7.50"

 Printed 12/9/2011

 LC
 Page 2

Time span=0.00-144.00 hrs, dt=0.05 hrs, 2881 points Runoff by SCS TR-20 method, UH=SCS Reach routing by Stor-Ind+Trans method - Pond routing by Stor-Ind method

Reach DP-1: Design Point-1	Inflow=297.42 cfs 29.713 af
	Outflow=297.42 cfs 29.713 af
Reach DP-11: Design Point-11	Inflow=521.68 cfs 62.197 af
	Outflow=521.68 cfs 62.197 af
Reach DP-2: Design Point-2	Inflow=121.42 cfs 18.230 af
	Outflow=121.42 cfs 18.230 af
Reach DP-2a: Design Point-2a	Inflow=11.88 cfs 0.639 af
	Outflow=11.88 cfs 0.639 af
Reach DP-2b: Design Point-2b	Inflow=29.25 cfs 1.805 af
	Outflow=29.25 cfs 1.805 af
Reach DP-3: Design Point-3	Inflow=66.38 cfs 8.505 af
	Outflow=66.38 cfs 8.505 af
Reach DP-4P: Design Point-4	Inflow=50.51 cfs 3.113 af
	Outflow=50.51 cfs 3.113 af
Reach DP-5: Design Point-5	Inflow=144.59 cfs 8.754 af
	Outflow=144.59 cfs 8.754 at
Reach DP-6: Design Point 6	Inflow=15.17 cfs 0.770 af
	Outflow=15.17 cfs 0.770 at
Reach DP-7: Design Point 7	Inflow=30.25 cfs 2.037 af
	Outflow=30.25 cts 2.037 at
Reach DP-8: Design Point-8	Inflow=192.96 cfs 19.550 af
	Outflow=192.96 cfs 19.550 at
Reach DP-9: Design Point-9	Inflow=131.91 cfs 10.875 af
	Outflow=131.91 cfs 10.875 af
Reach DP12: Design Point-12	Inflow=124.22 cfs 14.751 af
	Outflow=124.22 cts 14.751 af

APPENDIX E

Soil Test Pit Logs

Windham Mo	untain Sportin	g Club							
Test Pit Summ	nary								
Date Performed	Performed By	TP #	Series	Boundary Condition Depth (in)	Boundary Type	Perc Rate	Depth of Perc (in)	HSG	Notes
Oct-08	RJC	1	Lewbeach	25	hardpan			С	
Oct-08	RJC	2	Lewbeach	31	hardpan			С	
Oct-08	RJC	3	Halcott	19	bedrock			C/D	
Oct-08	RJC	4	Vly	26	bedrock			С	
Oct-08	RJC	5	Vly	31	bedrock			С	
Oct-08	RJC	6	Vly	36	bedrock			С	
Oct-08	RJC	7	Vly	30	bedrock			С	
Oct-08	RJC	8	Vly	22	bedrock			С	
Oct-08	RJC	9	Vly	40	bedrock			С	
Oct-08	RJC	10	Onteora	16	hardpan			С	Hydric Soil
Oct-08	RJC	11	Halcott	15	bedrock			C/D	
Oct-08	RJC	12	Elka	51	bedrock			С	
Oct-08	RJC	13	Elka	57	bedrock			С	
Oct-08	RJC	14	Elka	60	bedrock			С	
Oct-08	RJC	15	Vly	40	bedrock			С	
Oct-08	RJC	16	Vly	34	bedrock			С	
Oct-08	RJC	17	Vly	29	bedrock			С	
Oct-08	RJC	18	Lewbeach	29	hardpan			С	
Oct-08	RJC	19	Elka	51	bedrock			С	
Oct-08	RJC	20	Willowemoc	20	SHWT			С	
Oct-08	RJC	21	Halcott	14	bedrock			C/D	
Oct-08	RJC	22	Vly	30	bedrock			С	
Oct-08	RJC	23	Lewbeach	26	hardpan			С	
Oct-08	RJC	24	Halcott	12	bedrock			C/D	
Oct-08	RJC	25	Vly	38	bedrock			С	
Oct-08	RJC	26	Lewbeach	25	hardpan			C	
Oct-08	RJC	27	Lewbeach	29	hardpan			C	
Oct-08	RJC	28	Vly	26	bedrock			C	
Oct-08	RJC	29	Lewbeach	25	hardpan				
Oct-08	RJC	30	Halcott	12	bedrock			C/D	
0ct-08	RJC	31	VIV	34	bedrock			U C	
0ct-08	RJC	32	VIY	29	Dedrock			L C	
0ct-08	RJC	33	Lewbeach	26	hardpan				
0ct-08	RJC	34 25	Lewbeach	25	hadrock				
		55 N/A	Tor	ъõ	Deurock				
	RIC	N/A	Tunkhannock					~	
Dec-10		36 (1)		67	СН/// Т	36	24	A C	
Dec-10	W/SB	37 (2)		507 500	None	30 //5	24		
Dec-10	WSB	37 (2)	Lewbeach	76		4J 47	24		
Dec-10	WSR	39 (4)	Vlv	26	bedrock	none	24	c c	
Dec-10	WSB	40 (5)	Vlv	20	bedrock/SHW/T	none		c c	
000 10		10 (0)		- 7		none		ç	
L	1		1	I	1				1

THE LA GROUP 40 Long Alley, Saratoga Springs, New York 12866

To: Kevin Franke

From: Roger J. Case, Soil Scientist

Re: Deep Soil Test pits @ Windham Resort (revised 12/17/2009)

On October 2008 the following deep soil test pits were observed.

Test pit #1:0 to 4 inches, dark reddish brown silt loam
4 to 25 inches, yellowish red gravelly silt loam
25 to 70+ inches, very firm, reddish gray gravelly fine sandy loam

Soil type: Lewbeach silt loam Boundary condition @ 25 inches, restrictive layer

Test pit #2:0 to 4 inches, dark reddish brown silt loam
4 to 31 inches, yellowish red gravelly silt loam
31 to 70+ inches, very firm, reddish gray gravelly fine sandy loam

Soil type: Lewbeach silt loam Boundary condition @ 31 inches, restrictive layer

Test pit #3: 0 to 4 inches, dark reddish brown silt loam 4 to 19 inches, yellowish red gravelly silt loam 19 inches, hard bedrock ledge

Soil type: Halcott silt loam Boundary condition @ 19 inches, impervious layer

Test pit #4: 0 to 4 inches, dark reddish brown silt loam 4 to 26 inches, yellowish red gravelly silt loam 26 inches, hard bedrock ledge

Soil type: Vly silt loam Boundary condition @ 26 inches, impervious layer

Test pit #5:	0 to 5 inches, dark reddish brown silt loam 5 to 31 inches, reddish brown very gravelly silt loam 31 inches, rippable red shale bedrock
Soil type:	Vly silt loam
Boundary cond	dition @ 31 inches, impervious layer
Test pit #6:	0 to 5 inches, dark reddish brown silt loam 5 to 36 inches, reddish brown very gravelly silt loam 36 inches, rippable red shale bedrock
Soil type:	Vly silt loam
Boundary cond	dition @ 36 inches, impervious layer
Test pit #7:	0 to 5 inches, dark reddish brown silt loam 5 to 30 inches, reddish brown, silty clay loam 30 inches, hard red shale bedrock
Soil type:	Vly silt loam
Boundary cond	dition @ 30 inches, impervious layer
Test pit #8:	0 to 5 inches, dark reddish brown silt loam 5 to 22 inches, reddish brown, gravelly silt loam 22 inches, hard bedrock
Soil type:	Vly silt loam
Boundary cond	dition @ 22 inches, impervious layer
Test pit #9:	0 to 5 inches, dark reddish brown silt loam 5 to 40 inches, reddish brown, gravelly silt loam 40 inches, hard red shale bedrock
Soil type:	Vly silt loam
Boundary cond	dition @ 40 inches, impervious layer

Test pit #10:	0 to 5 inches, dark reddish brown silt loam
	5 to 16 inches, reddish brown, gravelly silt loam
	16 to 36 inches, mottled reddish brown, gravelly silt loam
	Refusal

Soil type: Onteora silt loam Boundary condition @ 16 inches, seasonal high water table

Test pit #11: 0 to 4 inches, dark reddish brown silt loam 4 to 15 inches, yellowish red gravelly silt loam 15 inches, hard bedrock ledge

Soil type: Halcott silt loam Boundary condition @ 15 inches, impervious layer

Test pit #12: 0 to 5 inches, dark reddish brown, gravelly (channery) silt loam 5 to 36 inches, reddish brown, very channery silt loam 36 to 51 inches, reddish brown, slightly firm, unconsolidated shale fragments
51 inches, reddish brown shale bedrock

Soil type: Elka channery silt loam Boundary condition @ 51 inches, impervious layer

Test pit #13: 0 to 5 inches, dark reddish brown, gravelly (channery) silt loam 5 to 40 inches, reddish brown, very channery silt loam 40 to 57 inches, reddish brown, slightly firm, unconsolidated shale fragments
57 inches, reddish brown shale bedrock

Soil type: Elka channery silt loam Boundary condition @ 57 inches, impervious layer

Test pit #14: 0 to 5 inches, dark reddish brown, gravelly (channery) silt loam
5 to 36 inches, reddish brown, very channery silt loam
36 to 60 inches, reddish brown, firm, unconsolidated shale fragments
60+ inches, reddish brown shale bedrock

Soil type: Elka channery silt loam Boundary condition @ 60 inches, impervious layer

Test pit #15:	0 to 5 inches, dark reddish brown silt loam
	5 to 25 inches, reddish brown, gravelly silt loam
	25 to 40 inches, angular very gravelly aggregate
	40 inches, hard bedrock

Soil type: Vly silt loam Boundary condition @ 40 inches, impervious layer

Test pit #16: 0 to 5 inches, dark reddish brown silt loam 5 to 34 inches, reddish brown, gravelly silt loam 34 inches, hard red shale bedrock

Soil type: Vly silt loam Boundary condition @ 34 inches, impervious layer

Test pit #17: 0 to 5 inches, dark reddish brown silt loam 5 to 29 inches, reddish brown, gravelly silt loam 29 inches, hard red shale bedrock

Soil type: Vly silt loam Boundary condition @ 29 inches, impervious layer

Test pit #18:0 to 4 inches, dark reddish brown silt loam
4 to 29 inches, yellowish red gravelly silt loam
29 to 70+ inches, very firm, reddish gray gravelly fine sandy loam

Soil type: Lewbeach silt loam Boundary condition @ 29 inches, restrictive layer

Test pit #19: 0 to 5 inches, dark reddish brown, gravelly (channery) silt loam 5 to 45 inches, reddish brown, very channery silt loam 45 to 51 inches, reddish brown, slightly firm, unconsolidated shale fragments with strong seeps in the upper part 51 inches, reddish brown shale bedrock

Soil type: Elka channery silt loam Boundary condition @ 45 inches, seasonal high water table Test pit #20: 0 to 4 inches, dark reddish brown silt loam
4 to 20 inches, yellowish red gravelly silt loam
20 to 29 inches, mottled, reddish brown gravelly fine sandy loam
29 to 72+ inches, reddish brown gravelly silt loam

Soil type: Willowemoc silt loam Boundary condition @ 20 inches, seasonal high water table

Test pit #21: 0 to 4 inches, dark reddish brown silt loam 4 to 14 inches, yellowish red gravelly silt loam 14 inches, hard bedrock ledge

Soil type: Halcott silt loam Boundary condition @ 14 inches, impervious layer

Test pit #22: 0 to 5 inches, dark reddish brown silt loam 5 to 30 inches, reddish brown, gravelly silt loam 30 inches, hard red shale bedrock

Soil type: Vly silt loam

Boundary condition @ 30 inches, impervious layer

Test pit #23:0 to 4 inches, dark reddish brown silt loam
4 to 26 inches, yellowish red gravelly silt loam
26 to 70+ inches, very firm, reddish gray gravelly fine sandy loam

Soil type: Lewbeach silt loam

Boundary condition @ 26 inches, restrictive layer

Test pit #24: 0 to 4 inches, dark reddish brown silt loam 4 to 12 inches, yellowish red gravelly silt loam 12 inches, hard bedrock ledge

Soil type: Halcott silt loam Boundary condition @ 12 inches, impervious layer

Test pit #25: 0 to 5 inches, dark reddish brown silt loam 5 to 38 inches, reddish brown, gravelly silt loam 38 inches, hard red shale bedrock

Soil type: Vly silt loam

Boundary condition @ 38 inches, impervious layer

Test pit #26: 0 to 4 inches, dark reddish brown silt loam 4 to 25 inches, yellowish red gravelly silt loam 25 to 70+ inches, very firm, reddish gray gravelly fine sandy loam

Soil type: Lewbeach silt loam Boundary condition @ 25 inches, restrictive layer

- Test pit #27:0 to 4 inches, dark reddish brown silt loam
4 to 29 inches, yellowish red gravelly silt loam
29 to 70+ inches, very firm, reddish gray gravelly fine sandy loam
- Soil type: Lewbeach silt loam Boundary condition @ 29 inches, restrictive layer
- Test pit #28: 0 to 5 inches, dark reddish brown silt loam 5 to 26 inches, reddish brown, gravelly silt loam 26 inches, hard red shale bedrock

Soil type: Vly silt loam

Boundary condition @ 26 inches, impervious layer

- Test pit #29:0 to 4 inches, dark reddish brown silt loam
4 to 25 inches, yellowish red gravelly silt loam
25 to 70+ inches, very firm, reddish gray gravelly fine sandy loam
- Soil type: Lewbeach silt loam Boundary condition @ 25 inches, restrictive layer
- Test pit #30 0 to 4 inches, dark reddish brown silt loam 4 to 12 inches, yellowish red gravelly silt loam 12 inches, hard bedrock ledge

Soil type: Halcott silt loam Boundary condition @ 12 inches, impervious layer

Test pit #31: 0 to 5 inches, dark reddish brown silt loam 5 to 34 inches, reddish brown, gravelly silt loam 34 inches, hard red shale bedrock

Soil type: Vly silt loam

Boundary condition @ 34 inches, impervious layer

Test pit #32:	0 to 5 inches, dark reddish brown silt loam
	5 to 29 inches, reddish brown, gravelly silt loam
	29 inches, fractured bedrock

Soil type: Vly silt loam Boundary condition @ 29 inches, impervious layer

Test pit #33:0 to 4 inches, dark reddish brown silt loam
4 to 26 inches, yellowish red gravelly silt loam
26 to 70+ inches, very firm, reddish gray gravelly fine sandy loam

Soil type: Lewbeach silt loam Boundary condition @ 26 inches, restrictive layer

Test pit #34:0 to 5 inches, dark reddish brown silt loam5 to 25 inches, yellowish red gravelly silt loam25 to 70+ inches, very firm, reddish gray gravelly fine sandy loam

Soil type: Lewbeach silt loam Boundary condition @ 25 inches, restrictive layer

Test pit #35: 0 to 5 inches, dark reddish brown silt loam 5 to 38 inches, reddish brown, gravelly silt loam 38 inches, hard red shale bedrock

Soil type: Vly silt loam Boundary condition @ 38 inches, impervious layer

Every test pit witnessed at the property had a boundary condition. Where the boundary condition is bedrock it is described as an impervious layer. The restrictive layer is used to indicate the upper limits of a hardpan in a deep soil and seasonal high water table indicates mottling or seeps.
<u>MEMO</u>

TO: Kevin Franke, Mark Taber

FROM: Will Buetow

DATE: December 13, 2010

RE: Windham Test Pit and Percolation Tests Results

On December 10, 2010, I went to the Windham site to evaluate deep hole test pits and perform percolation tests for stormwater suitability determinations. The locations of five deep hole test pits were determined in the office and loaded onto a GPS unit so they could be located in the field. Five deep hole test pits were evaluated and three percolation tests were performed and GPS points were collected at each location. John from Katterskill was also present and performed all of the other percolation tests. The results from the deep hole test pits are as follows:

TP1-12/10/10

This site is located to the west of Trail Side Road close to the road edge. The slope at this location is approximately 12%.

- A 0"-7" (5YR 3/4)dark red brown, gravelly silt loam, strong, fine, granular structure, friable.
- B 7"-32" (5YR 4/3) red brown, gravelly fine silt loam, moderate, fine subangular blocky structure, friable.
- B/Cd 32"-48" (2.5YR 4/3) red brown, gravelly silt loam, weak, fine subangular blocky structure, moderately firm.

This pit was dug to 8' with no bedrock encountered. A fast flowing seep was observed at 67" which is representative of the water table. A percolation test was performed at a 24" depth resulting in a stabilized percolation rate of 36 minutes per inch of fall. This soil is most like the Lewbeach soil series.

TP2-12/10/2010

This site is located just off of a dirt road onsite in the northern most portion of the site and immediately south of an offsite house. The slope at this location is approximately 12%.

- A 0"-7" (5YR 3/4) dark red brown, gravelly silt loam, strong, fine, granular structure, friable, many large rocks at the soil surface.
- B 7"-32" (5YR 4/3) red brown, gravelly fine silt loam, moderate, fine subangular blocky structure, friable.
- B/Cd 32"-48" (2.5YR 5/3) red brown, gravelly silt loam, weak, fine subangular blocky structure, moderately firm.

This pit was dug to 9' with no bedrock indication of groundwater. A percolation test was performed at a 24" depth resulting in a stabilized percolation rate of 45 minutes per inch of fall. This soil is most like the Lewbeech soil series.

TP3-12/10/10

This pit is located in the northern portion of the site just to the west of a switchback onsite. The slope at this location is approximately 17%.

- A 0"-5" (5YR 3/4) dark red brown, gravelly silt loam, strong, fine, granular structure, friable, many large pieces of shale at the soil surface.
- B 5"-29" (5YR 4/3) red brown, gravelly fine silt loam, strong, fine subangular blocky structure, friable.
- B/Cd 32"-48" (2.5YR 5/3) red brown, gravelly silt loam, very weak, fine subangular blocky structure, moderately firm.

This pit was dug to 8' with no bedrock encountered. Flowing seeps were observed at 76" depth which are indicative of groundwater. A percolation test performed at a 24" depth resulted in a stabilized percolation rate of 47 minutes per inch of fall. This soil is most like the Lewbeach soil series.

TP4-12/10/10

This pit is located in the central portion of the site just to the east of the Wanderer Ski Slope. The slope at this location is approximately 8%. This area is a terrace which has bedrock exposed throughout the terrace face. This pit was dug to 26" and rippable shale was encountered. At 28" depth, hard bedrock was encountered. No percolation test was performed. This soil is most like the Vly soil series.

TP5-12/10/10

This pit is located in the southeastern portion of the property close to the eastern property boundary. The slope at this location is approximately 10%. Bedrock ledge and flowing seeps were encountered at a 24" depth. Numerous other pits were dug in the area with similar results. No percolation test were performed at this location. This soil is most like the Halcott and Vly soil series.

Exhibit C

SWPPP Inspection Form

Windham Mountain Sporting Club Phase 1 of Construction WEEKLY SWPPP INSPECTION REPORT

Inspector Name:	Date:
Signature (required):	Time:
Weather:	Inspection #:
Soil Conditions (dry, saturated, etc):	

Note: Digital photos, with date stamp required for all practices requiring corrective action, before and after, to be attached to the inspection report.

	YES	NO	N/A			
1.				Routine Inspection.	Date of last inspection:	
2.				Inspection following rain event.	Date/time of storm ending:	
					Rainfall amount:	
					Recorded by:	
3.				Is this a final site inspection?		
4.				Has site undergone final stabiliz	ation?	
				\Box If so, have all temporary erosion and sediment controls been removed?		
Site	Distu	rban	ce (Indicate Locations on Plan)		
	YES	NO	N/A			
1.				Areas previously disturbed, but have not undergone active site work in the last 14 days?		
2.] Areas disturbed within last 14 days?		
3.				Areas expected to be disturbed	in next 14 days?	
4.				Do areas of steep slopes or con If "YES" explain:	plex stabilization issues exist?	
5.				Are there currently more than 5 approval letter from NYS DEC.	acres of disturbed soil at the site? If so make sure there is an	
Addit	tional	Com	mer	its:		

Inspec	tion of Erosion and Sedime Type of Control Device	ent Control Devices Accumulation (if any) in %	Repairs/Maintenance Needed
1.			
2.			
3.			
4.			
5.			
6.			

Stabilization/Runoff

YES NO N/A

- **1.** \Box \Box Are all existing disturbed areas contained by control devices? Type of devices:
- **2.** \Box \Box Are there areas that require stabilization within the next 14 days? Specify Area:
- 3.
 Have stabilization measures been initiated in inactive areas?
- 4. Is there current snow cover or frozen ground conditions?
- **5.** \Box \Box Rills or gullies?
- 7.
 Loss of vegetation?
- **8.** \Box \Box Lack of germination?
- **9.** \Box \Box Loss of mulching?

Receiving Structures/Water Bodies (Indicate locations where runoff leaves the project site on the site plan) YES NO N/A

- Image: Surface water swale or natural surface waterbody?
 If natural waterbody:
 Is waterbody located in onsite, or in adjacent to property boundary?
 Description of condition:
- **a.** \Box \Box Rills or gullies?
- **b.** \Box \Box Slumping/deposition?
- **d.** \Box \Box Undermining of structures?
- e.
 □ □ Was there a discharge into the receiving water on the day of inspection?
- f. \Box Is there evidence of turbidity, sedimentation, or oil in the receiving waters?

Additional Comments:

Inspection of Post-Construction Stormwater Management Control Devices Type of Control Device Phase of Construction Repairs/Maintenance Needed 1. 2. 3. 4.

General Site Condition

YES NO N/A
1.

Have action items from previous reports been addressed?

2.

Does routine maintenance of protection components occur on a regular basis?

3.

Does cleaning and/or sweeping affected roadways occur, at minimum, daily?

4.

Is debris and litter removed on a monthly basis, or as necessary?

5.

Is the site maintained in an orderly manner?

Describe the condition of all natural waterbodies within or adjacent to the Project that receive runoff from the site:

Contractors progress over last 7 days:

Anticipated work to be begun in the next 7 days:

Additional Comments:

 All erosion and sediment control measures have been installed/constructed? All erosion and sediment control measures are being maintained properly? SUMMARY OF ACTION ITEMS TO REPAIR/REPLACE/MAINTAIN/CORRECT DEFICIENCIES 		
2. All erosion and sediment control measures are being maintained properly? SUMMARY OF ACTION ITEMS TO REPAIR/REPLACE/MAINTAIN/CORRECT DEFICIENCIES		
SUMMARY OF ACTION ITEMS TO REPAIR/REPLACE/MAINTAIN/CORRECT DEFICIENCIES		
SUMMARY OF ACTION ITEMS TO REPAIR/REPLACE/MAINTAIN/CORRECT DEFICIENCIES		

Action Reported To (no signature required):

Company:

Exhibit D

Other SWPPP Forms

Construction Sequence SWPPP Plan Changes Spill Response Form Stormwater Management Practice Maintenance Log The operator shall prepare a summary of construction status using the Construction Sequence Form below once every month. Significant deviations to the sequence and reasons for those deviations (i.e. weather, subcontractor availability, etc.), shall be noted by the contractor. The schedule shall be used to record the dates for initiation of construction, implementation of erosion control measures, stabilization, etc. A copy of this table will be maintained at the construction site and updated in addition to the individual Inspection Reports completed for each inspection.

Construction Sequence Form

Construction Activities (Identify name of planned practices)	Date Complete
1.	
2.	
3.	
4.	
5.	
6.	
7.	
8.	
9.	
10.	
11.	
12.	

STORM WATER POLLUTION PREVENTION PLAN PLAN CHANGES, AUTHORIZATION, AND CHANGE CERTIFICATION

CHANGES REQUIRED TO THE POLLUTION PREVENTION PLAN:

REASONS FOR CH	ANGES:		
REQUESTED BY:		_	
DATE:		-	
AUTHORIZED BY:		_	
DATE:		-	

CERTIFICATION OF CHANGES:

I certify under penalty of law that this document and all attachments were prepared under my direction or supervision in accordance with a system designed to assure that qualified personnel properly gathered and evaluated the information submitted. Based on my inquiry of the person or persons who manage the system, or those persons directly responsible for gathering the information, the information submitted is, to the best of my knowledge and belief, true, accurate, and complete. I am aware that false statements made herein are punishable as a Class A misdemeanor pursuant to Section 210.45 of the penal code.

SIGNATURE:

DATE: _____

Please note that any changes to this SWPPP need to be approved by the NYCDEP prior to their implementation onsite.

SPILL RESPONSE REPORT

Within 1 hour of a spill discovery less than 2 gallons in volume the following must be notified:

Mr. Thomas Wilcock (203) 258-6747

Within 1 hour of a spill discovery greater than 2 gallons the following must be notified: Mr. Thomas Wilcock NYSDEC Spill Response Hotline 1-800-457-7362 Spill Response Contractor

Material Spilled:

Approximate Volume:

Location:

Distance to nearest down gradient drainage:

Distance to nearest down gradient open water:

Temporary control measures in place:

Stormwater Pond/Wetland Operation, Maintenance and Management Inspection Checklist

Project	
Site Status:	
Date:	
lime:	
Inspector:	

Maintenance Item	Satisfactory/ Unsatisfactory	Comments
1. Embankment and emergency spillway (Annual, After	Major Storms)	
1. Vegetation and ground cover adequate		
2. Embankment erosion		
3. Animal burrows		
4. Unauthorized planting		
5. Cracking, bulging, or sliding of dam		
a. Upstream face		
b. Downstream face		
c. At or beyond toe		
downstream		
upstream		
d. Emergency spillway		
6.Pond, toe & chimney drains clear and functioning		
7.Seeps/leaks on downstream face		
8.Slope protection or riprap failure		
9. Vertical/horizontal alignment of top of dam "As-Built"		

Maintenance Item	Satisfactory/ Unsatisfactory	Comments	
3. Permanent Pool (Wet Ponds) (monthly)		
1. Undesirable vegetative growth			
2. Floating or floatable debris removal required			
3. Visible pollution			
4. Shoreline problem			
5. Other (specify)			
4. Sediment Forebays			
1.Sedimentation noted			
2. Sediment cleanout when depth < 50% design depth			
5. Dry Pond Areas			
1. Vegetation adequate			
2. Undesirable vegetative growth			
3. Undesirable woody vegetation			
4. Low flow channels clear of obstructions			
5. Standing water or wet spots			
6. Sediment and / or trash accumulation			
7. Other (specify)			
6. Condition of Outfalls (Annual , After Major Storms)			
1. Riprap failures			
2. Slope erosion			
3. Storm drain pipes			
4.Endwalls / Headwalls			
5. Other (specify)			
7. Other (Monthly)			
1. Encroachment on pond, wetland or easement area			

Maintenance Item	Satisfactory/ Unsatisfactory	Comments
10. Emergency spillway clear of obstructions and debris		
11. Other (specify)		
2. Riser and principal spillway (Annual)		
Type: Reinforced concrete Corrugated pipe Masonry 1. Low flow orifice obstructed		
 Low flow trash rack. a. Debris removal necessary 		
b. Corrosion control		
 Weir trash rack maintenance Debris removal necessary 		
b. corrosion control		
4. Excessive sediment accumulation insider riser		
 Concrete/masonry condition riser and barrels cracks or displacement 		
b. Minor spalling (<1")		
c. Major spalling (rebars exposed)		
d. Joint failures		
e. Water tightness		
6. Metal pipe condition		
7. Control valve a. Operational/exercised		
b. Chained and locked		
8. Pond drain valve a. Operational/exercised		
b. Chained and locked		
9. Outfall channels functioning		
10. Other (specify)		

Bioretention Operation, Maintenance and Management Inspection Checklist

Project: Location: Site Status:

Date:

Time:

Inspector:

MAINTENANCE ITEM	SATISFACTORY / UNSATISFACTORY	Comments	
1. Debris Cleanout (Monthly)			
Bioretention and contributing areas clean of debris			
No dumping of yard wastes into practice			
Litter (branches, etc.) have been removed			
2. Vegetation (Monthly)			
Plant height not less than design water depth			
Fertilized per specifications			
Plant composition according to approved plans			
No placement of inappropriate plants			
Grass height not greater than 6 inches			
No evidence of erosion			
3. Check Dams/Energy Dissipaters/Sumps (Annual, After Major Storms)			
No evidence of sediment buildup			

MAINTENANCE ITEM	SATISFACTORY / UNSATISFACTORY	Comments		
Sumps should not be more than 50% full of sediment				
No evidence of erosion at downstream toe of drop structure				
4. Dewatering (Monthly)				
Dewaters between storms				
No evidence of standing water				
5. Sediment Deposition (Annual)				
Swale clean of sediments				
Sediments should not be > 20% of swale design depth				
6. Outlet/Overflow Spillway (Annual, After Major Storms)				
Good condition, no need for repair				
No evidence of erosion				
No evidence of any blockages				
7. Integrity of Filter Bed (Annual)				
Filter bed has not been blocked or filled inappropriately				

Comments:

Actions to be Taken:

Open Channel Operation, Maintenance, and Management Inspection Checklist

Project: Location: Site Status:

Date:

Time:

Inspector:

MAINTENANCE ITEM	SATISFACTORY/ UNSATISFACTORY	Comments		
1. Debris Cleanout (Monthly))			
Contributing areas clean of debris				
2. Check Dams or Energy Dissipators (Annual, After Major Storms)				
No evidence of flow going around structures				
No evidence of erosion at downstream toe				
Soil permeability				
Groundwater / bedrock				
3. Vegetation (Monthly)				
Mowing done when needed				
Minimum mowing depth not exceeded				
No evidence of erosion				
Fertilized per specification				
4. Dewatering (Monthly)				
Dewaters between storms				

MAINTENANCE ITEM	Satisfactory/ Unsatisfactory	Comments		
5. Sediment deposition (Annual)				
Clean of sediment				
6. Outlet/Overflow Spillway (Annual)				
Good condition, no need for repairs				
No evidence of erosion				

Comments:

Actions to be Taken:

<u>Exhibit E</u>

SPDES General Permit GP-0-10-001

•

NEW YORK STATE DEPARTMENT OF ENVIRONMENTAL CONSERVATION

SPDES GENERAL PERMIT FOR STORMWATER DISCHARGES

from

CONSTRUCTION ACTIVITY

Permit No. GP-0-10-001

Issued Pursuant to Article 17, Titles 7, 8 and Article 70 of the Environmental Conservation Law

Date

1

Effective Date: January 29, 2010

Expiration Date: January 28, 2015

January 28, 2010

William R. Adriance Chief Permit Administrator

Authorized Signature

NYS DEC

Address:

Div. Environmental Permits 625 Broadway, 4th Floor Albany, N.Y. 12233-1750

PREFACE

Pursuant to Section 402 of the Clean Water Act ("CWA"), stormwater discharges from certain construction activities are unlawful unless they are authorized by a National Pollutant Discharge Elimination System ("NPDES") permit or by a state permit program. New York's State Pollutant Discharge Elimination System ("SPDES") is a NPDES-approved program with permits issued in accordance with the Environmental Conservation Law ("ECL").

This general permit ("permit") is issued pursuant to Article 17, Titles 7, 8 and Article 70 of the ECL. An *owner or operator* may obtain coverage under this permit by submitting a Notice of Intent ("NOI") to the Department. Copies of this permit and the NOI for New York are available by calling (518) 402-8109 or at any New York State Department of Environmental Conservation ("the Department") regional office (see Appendix G). They are also available on the Department's website at:

http://www.dec.ny.gov/

An owner or operator of a construction activity that is eligible for coverage under this permit must obtain coverage prior to the *commencement of construction activity*. Activities that fit the definition of "*construction activity*", as defined under 40 CFR 122.26(b)(14)(x), (15)(i), and (15)(ii), constitute construction of a point source and therefore, pursuant to Article 17-0505 of the ECL, the owner or operator must have coverage under a SPDES permit prior to *commencing construction activity*. They cannot wait until there is an actual *discharge* from the construction site to obtain permit coverage.

*Note: The italicized words/phrases within this permit are defined in Appendix A.

NEW YORK STATE DEPARTMENT OF ENVIRONMENTAL CONSERVATION SPDES GENERAL PERMIT FOR STORMWATER DISCHARGES

FROM CONSTRUCTION ACTIVITIES

TABLE OF CONTENTS

Part I. PERMIT COVERAGE AND LIMITATIONS	5
A. Permit Application	5
B. Maintaining Water Quality	5
C. Eligibility Under This General Permit	5
D. Activities Which Are Ineligible for Coverage Under This General Permit	6
Part II. OBTAINING PERMIT COVERAGE	7
A. Notice of Intent (NOI) Submittal	7
B. Permit Authorization	8
C. General Requirements For Owners or Operators With Permit Coverage	9
D. Permit Coverage for Discharges Authorized Under GP-0-08-001	11
E. Change of Owner or Operator	11
Part III. STORMWATER POLLUTION PREVENTION PLAN (SWPPP)	11
A. General SWPPP Requirements	11
B. Required SWPPP Contents	14
C. Required SWPPP Components by Project Type	18
Part IV. INSPECTION AND MAINTENANCE REQUIREMENTS	18
A. General Construction Site Inspection and Maintenance Requirements	18
B. Owner or Operator Maintenance Inspection Requirements	18
C. Qualified Inspector Inspection Requirements	19
Part V. TERMINATION OF PERMIT COVERAGE	22
A. Termination of Permit Coverage	22
Part VI. REPORTING AND RETENTION OF RECORDS	24
A. Record Retention	24
B. Addresses	24
Part VII. STANDARD PERMIT CONDITIONS	24
A. Duty to Comply	24
B. Continuation of the Expired General Permit	25
C. Enforcement	25
D. Need to Halt or Reduce Activity Not a Defense	25
E. Duty to Mitigate	25
F. Duty to Provide Information	25
G. Other Information	25
H. Signatory Requirements	26
I. Property Rights	27
J. Severability	27
K. Denial of Coverage Under This Permit	28
L. Proper Operation and Maintenance	28
M. Inspection and Entry	28
N. Permit Actions	29
O. Definitions	29

P. Re-Opener Clause	
Q. Penalties for Falsification of Forms and Reports	
R. Other Permits	
APPENDIX A	
APPENDIX B	
APPENDIX C	
APPENDIX D	
APPENDIX E	
APPENDIX F	

Part I. PERMIT COVERAGE AND LIMITATIONS

A. <u>Permit Application</u> - This permit authorizes stormwater *discharges* to *surface waters of the State* from the following *construction activities* identified within 40 CFR Parts 122.26(b)(14)(x), 122.26(b)(15)(i) and 122.26(b)(15)(ii), provided all of the eligibility provisions of this permit are met:

- Construction activities involving soil disturbances of one (1) or more acres; including disturbances of less than one acre that are part of a *larger common plan of development or sale* that will ultimately disturb one or more acres of land; excluding *routine maintenance activity* that is performed to maintain the original line and grade, hydraulic capacity or original purpose of a facility;
- Construction activities involving soil disturbances of less than one (1) acre where the Department has determined that a SPDES permit is required for stormwater discharges based on the potential for contribution to a violation of a water quality standard or for significant contribution of pollutants to surface waters of the State.
- 3. *Construction activities* located in the watershed(s) identified in Appendix D that involve soil disturbances between five thousand (5000) square feet and one (1) acre of land.

B. <u>Maintaining Water Quality</u> - It shall be a violation of this permit and the *ECL* for any *discharge* to either cause or contribute to a violation of *water quality standards* as contained in Parts 700 through 705 of Title 6 of the Official Compilation of Codes, Rules and Regulations of the State of New York, such as:

- 1. There shall be no increase in turbidity that will cause a substantial visible contrast to natural conditions;
- There shall be no increase in suspended, colloidal or settleable solids that will cause deposition or impair the waters for their best usages; and
- 3. There shall be no residue from oil and floating substances, nor visible oil film, nor globules of grease.

C. Eligibility Under This General Permit

- 1. This permit may authorize all *discharges* of stormwater from *construction activity* to *surface waters of the State* and *groundwaters* except for ineligible *discharges* identified under subparagraph D. of this Part.
- Except for non-stormwater discharges explicitly listed in the next paragraph, this permit only authorizes stormwater discharges from construction activities.

(Part I. C)

3. Notwithstanding paragraphs C.1 and C.2 above, the following non-stormwater *discharges* may be authorized by this permit: discharges from fire fighting activities; fire hydrant flushings; waters to which cleansers or other components have not been added that are used to wash vehicles or control dust in accordance with the SWPPP, routine external building washdown which does not use detergents; pavement washwaters where spills or leaks of toxic or hazardous materials have not occurred (unless all spilled material has been removed) and where detergents are not used; air conditioning condensate; uncontaminated groundwater or spring water; uncontaminated discharges from construction site de-watering operations; and foundation or footing drains where flows are not contaminated with process materials such as solvents. For those entities required to obtain coverage under this permit, and who discharge as noted in this paragraph, and with the exception of flows from fire fighting activities, these discharges must be identified in the SWPPP. Under all circumstances, the *owner or operator* must still comply with water quality standards in Part I.B.

D. <u>Activities Which Are Ineligible for Coverage Under This General Permit</u> - All of the following are **not** authorized by this permit:

- 1. *Discharges* after *construction activities* have been completed and the site has undergone *final stabilization*;
- 2. *Discharges* that are mixed with sources of non-stormwater other than those expressly authorized under subsection C.3. of this Part and identified in the SWPPP required by this permit;
- Discharges that are required to obtain an individual SPDES permit or another SPDES general permit pursuant to Part VII, subparagraph K of this permit;
- Discharges from construction activities that adversely affect a listed, or proposed to be listed, endangered or threatened species, or its critical habitat;
- Discharges which either cause or contribute to a violation of water quality standards adopted pursuant to the ECL and its accompanying regulations;
- 6. *Construction activities* for residential, commercial and institutional projects that:
 - a. are tributary to waters of the state classified as AA or AA-s; and

(Part I. D. 6)

- b. disturb one or more acres of land with no existing impervious cover and where the Soil Slope Phase is identified as an E or F on the USDA Soil Survey for the County in which the disturbance will occur.
- Construction activities for linear transportation projects and linear utility projects that:
 - a. are tributary to waters of the state classified as AA or AA-s; and
 - b. disturb two or more acres of land with no existing impervious cover and where the Soil Slope Phase is identified as an E or F on the USDA Soil Survey for the County in which the disturbance will occur.
- 8. Construction activities that adversely affect a property that is listed or is eligible for listing on the State or National Register of Historic Places (Note: includes Archeological sites), unless there are written agreements in place with the NYS Office of Parks, Recreation and Historic Preservation (OPRHP) or other governmental agencies to mitigate the effects, or there are local land use approvals evidencing the same.

Part II. OBTAINING PERMIT COVERAGE

A. Notice of Intent (NOI) Submittal

 An owner or operator of a construction activity that is <u>not</u> subject to the requirements of a regulated, traditional land use control MS4 must first develop a SWPPP in accordance with all applicable requirements of this permit and then submit a completed NOI form to the address below in order to be authorized to discharge under this permit. The NOI form shall be one which is associated with this permit, signed in accordance with Part VII.H. of this permit.

NOTICE OF INTENT NYS DEC, Bureau of Water Permits 625 Broadway, 4th Floor Albany, New York 12233-3505

2. An owner or operator of a construction activity that is subject to the requirements of a regulated, traditional land use control MS4 must first develop a SWPPP in accordance with all applicable requirements of this permit and then have its SWPPP reviewed and accepted by the MS4 prior to submitting the NOI to the Department. The owner or operator shall have the "MS4 SWPPP Acceptance" form signed by the principal executive officer or ranking elected official from the regulated, traditional land use control MS4, or by a duly authorized representative of that person, and then submit that form along with the NOI to the address referenced under "Notice of Intent (NOI) Submittal".

(Part II. A)

- 3. This requirement does not apply to an *owner or operator* that is obtaining permit coverage in accordance with the requirements in Part II.E. (Change of Owner or Operator).
- 4. The *owner or operator* shall have the SWPPP preparer sign the "SWPPP Preparer Certification" statement on the NOI prior to submitting the form to the Department.
- 5. As of the date the NOI is submitted to the Department, the *owner or operator* shall make the NOI and SWPPP available for review and copying in accordance with the requirements in Part VII.F. of this permit.

B. Permit Authorization

- 1. An owner or operator shall not commence construction activity until their authorization to discharge under this permit goes into effect.
- 2. Authorization to *discharge* under this permit will be effective when the *owner* or operator has satisfied <u>all</u> of the following criteria:
 - a. project review pursuant to the State Environmental Quality Review Act (SEQRA) have been satisfied, when SEQRA is applicable,
 - b. where required, all necessary Department permits subject to the Uniform Procedures Act (UPA) (see 6 NYCRR Part 621) have been obtained, unless otherwise notified by the Department pursuant to 6 NYCRR 621.3(a)(4). Owners or operators of construction activities that are required to obtain UPA permits must submit a preliminary SWPPP to the appropriate DEC Regional Office in Appendix F at the time all other necessary UPA permit applications are submitted. The preliminary SWPPP must include sufficient information to demonstrate that the construction activity qualifies for authorization under this permit,
 - c. the final SWPPP has been prepared, and
 - d. an NOI has been submitted to the Department in accordance with the requirements of this permit.
- An owner or operator that has satisfied the requirements of Part II.B.2 above will be authorized to discharge stormwater from their construction activity in accordance with the following schedule:

(Part II. B. 3)

- For construction activities that are <u>not</u> subject to the requirements of a regulated, traditional land use control MS4;
 - i. Five (5) business days from the date the Department receives a complete NOI for *construction activities* with a SWPPP that has been prepared in conformance with the technical standards referenced in Parts III.B.1, 2 and/or 3, or
 - Sixty (60) business days from the date the Department receives a complete NOI for *construction activities* with a SWPPP that has <u>not</u> been prepared in conformance with the technical standards referenced in Parts III.B.1, 2 or 3.
- b. For *construction activities* that are subject to the requirements of a *regulated, traditional land use control MS4*:
 - Five (5) business days from the date the Department receives a complete NOI and signed "MS4 SWPPP Acceptance" form,
- The Department may suspend or deny an *owner's or operator's* coverage under this permit if the Department determines that the SWPPP does not meet the permit requirements.
- 5. Coverage under this permit authorizes stormwater *discharges* from only those areas of disturbance that are identified in the NOI. If an *owner or operator* wishes to have stormwater *discharges* from future or additional areas of disturbance authorized, they must submit a new NOI that addresses that phase of the development, unless otherwise notified by the Department.

C. General Requirements For Owners or Operators With Permit Coverage

- The owner or operator shall ensure that the provisions of the SWPPP are implemented from the commencement of construction activity until all areas of disturbance have achieved *final stabilization* and the Notice of Termination (NOT) has been submitted to the Department in accordance with Part V. of this permit. This includes any changes made to the SWPPP pursuant to Part III.A.4.
- The owner or operator shall maintain a copy of the General Permit (GP-0-10-001), NOI, NOI Acknowledgment Letter, SWPPP, MS4 SWPPP Acceptance form and inspection reports at the construction site until all disturbed areas have achieved *final stabilization* and the NOT has been submitted to the Department.

(Part II. C. 2)

The documents must be maintained in a secure location, such as a job trailer, on-site construction office, or mailbox with lock. The secure location must be accessible during normal business hours to an individual performing a compliance inspection.

- 3. The owner or operator of a construction activity shall not disturb greater than five (5) acres of soil at any one time without prior written authorization from the Department or, in areas under the jurisdiction of a *regulated, traditional land use control MS4*, the MS4 (provided the MS4 is not the owner or operator of the construction activity). At a minimum, the owner or operator must comply with the following requirements in order to be authorized to disturb greater than five (5) acres of soil at any one time:
 - a. The *owner or operator* shall have a *qualified inspector* conduct **at least** two (2) site inspections in accordance with Part IV.C. every seven (7) calendar days, for as long as greater than five (5) acres of soil remain disturbed. The two (2) inspections shall be separated by a minimum of two (2) full calendar days.
 - b. In areas where soil disturbance activity has been temporarily or permanently ceased, temporary and/or permanent soil stabilization measures shall be installed and/or implemented within seven (7) days from the date the soil disturbance activity ceased. The soil stabilization measures selected shall be in conformance with the most current version of the technical standard, New York State Standards and Specifications for Erosion and Sediment Control.
 - c. The owner or operator shall prepare a phasing plan that defines maximum disturbed area per phase and shows required cuts and fills.
 - d. The *owner or operator* shall install any additional site specific practices needed to protect water quality.
 - e. The *owner or operator* shall include the requirements above in their SWPPP.
- 4. The Department may suspend or revoke an *owner's or operator's* coverage under this permit at any time if the Department determines that the SWPPP does not meet the permit requirements.

(Part II. C)

5. For construction activities that are subject to the requirements of a regulated, traditional land use control MS4, the owner or operator shall notify the MS4 in writing of any planned amendments or modifications to the post-construction stormwater management practice component of the SWPPP required by Part III.A. 4. and 5. of this permit. Unless otherwise notified by the MS4, the owner or operator shall have the SWPPP amendments or modifications reviewed and accepted by the MS4 prior to commencing construction of the post-construction stormwater management practice.

D. Permit Coverage for Discharges Authorized Under GP-0-08-001

 Upon renewal of SPDES General Permit for Stormwater Discharges from Construction Activity (Permit No. GP-0-08-001), an owner or operator of construction activity with coverage under GP-0-08-001, as of the effective date of GP-0-10-001, shall be authorized to discharge in accordance with GP-0-10-001 unless otherwise notified by the Department.

E. Change of Owner or Operator

1. When property ownership changes or when there is a change in operational control over the construction plans and specifications, the original owner or operator must notify the new owner or operator, in writing, of the requirement to obtain permit coverage by submitting a NOI with the Department. Once the new owner or operator obtains permit coverage, the original owner or operator shall then submit a completed NOT with the name and permit identification number of the new owner or operator to the Department at the address in Part II.A.1.. If the original owner or operator maintains ownership of a portion of the construction activity and will disturb soil, they must maintain their coverage under the permit.

Permit coverage for the new *owner or operator* will be effective as of the date the Department receives a complete NOI, provided the original *owner or operator* was not subject to a sixty (60) business day authorization period that has not expired as of the date the Department receives the NOI from the new *owner or operator*.

Part III. STORMWATER POLLUTION PREVENTION PLAN (SWPPP)

A. General SWPPP Requirements

1. The SWPPP shall be prepared prior to the submittal of the NOI. The NOI shall be submitted to the Department prior to the *commencement of construction activity*.

(Part III. A)

- 2. The SWPPP shall describe the erosion and sediment control practices and where required, post-construction stormwater management practices that will be used and/or constructed to reduce the pollutants in stormwater discharges and to assure compliance with the terms and conditions of this permit. In addition, the SWPPP shall identify potential sources of pollution which may reasonably be expected to affect the quality of stormwater *discharges*.
- 3. All SWPPPs that require the post-construction stormwater management practice component shall be prepared by a *qualified professional* that is knowledgeable in the principles and practices of stormwater management and treatment.
- 4. The *owner or operator* must keep the SWPPP current so that it at all times accurately documents the erosion and sediment controls practices that are being used or will be used during construction, and all post-construction stormwater management practices that will be constructed on the site. At a minimum, the *owner or operator* shall amend the SWPPP:
 - a. whenever the current provisions prove to be ineffective in minimizing pollutants in stormwater *discharges* from the site;
 - b. whenever there is a change in design, construction, or operation at the construction site that has or could have an effect on the discharge of pollutants; and
 - c. to address issues or deficiencies identified during an inspection by the *qualified inspector*, the Department or other regulatory authority.
- 5. The Department may notify the owner or operator at any time that the SWPPP does not meet one or more of the minimum requirements of this permit. The notification shall be in writing and identify the provisions of the SWPPP that require modification. Within fourteen (14) calendar days of such notification, or as otherwise indicated by the Department, the owner or operator shall make the required changes to the SWPPP and submit written notification to the Department that the changes have been made. If the owner or operator does not respond to the Department's comments in the specified time frame, the Department may suspend the owner's or operator's coverage under this permit.
- 6. Prior to the commencement of construction activity, the owner or operator must identify the contractor(s) and subcontractor(s) that will be responsible for installing, constructing, replacing, inspecting and maintaining the erosion and sediment control practices included in the SWPPP; and the contractor(s) and subcontractor(s) that will be responsible for constructing the post-construction stormwater management practices included in the SWPPP.

(Part III. A. 6)

The owner or operator shall have each of the contractors and subcontractors identify at least one person from their company that will be responsible for implementation of the SWPPP. This person shall be known as the *trained contractor*. The owner or operator shall ensure that at least one *trained contractor* is on site on a daily basis when soil disturbance activities are being performed.

The *owner or operator* shall have each of the contractors and subcontractors identified above sign a copy of the following certification statement below before they commence any *construction activity*:

"I hereby certify that I understand and agree to comply with the terms and conditions of the SWPPP and agree to implement any corrective actions identified by the *qualified inspector* during a site inspection. I also understand that the *owner or operator* must comply with the terms and conditions of the most current version of the New York State Pollutant Discharge Elimination System ("SPDES") general permit for stormwater discharges from construction activities and that it is unlawful for any person to cause or contribute to a violation of water quality standards. Furthermore, I understand that certifying false, incorrect or inaccurate information is a violation of the referenced permit and the laws of the State of New York and could subject me to criminal, civil and/or administrative proceedings."

In addition to providing the certification statement above, the certification page must also identify the specific elements of the SWPPP that each contractor and subcontractor will be responsible for and include the name and title of the person providing the signature; the name and title of the *trained contractor* responsible for SWPPP implementation; the name, address and telephone number of the contracting firm; the address (or other identifying description) of the site; and the date the certification statement is signed. The *owner or operator* shall attach the construction site. If new or additional contractors are hired to implement measures identified in the SWPPP after construction has commenced, they must also sign the certification statement and provide the information listed above.

- For projects where the Department requests a copy of the SWPPP or inspection reports, the *owner or operator* shall submit the documents in both electronic (PDF only) and paper format within five (5) business days, unless otherwise notified by the Department.
- The SWPPP must include documentation supporting the determination of permit eligibility with regard to Part I.D.8. (Historic Places or Archeological Resource). At a minimum, the supporting documentation shall include the following:

(Part III. A. 8)

- Information on whether the stormwater discharge or *construction* activities would have an effect on a property (historic or archeological resource) that is listed or eligible for listing on the State or National Register of Historic Places;
- b. Results of historic resources screening determinations conducted. Information regarding the location of historic places listed, or eligible for listing, on the State or National Registers of Historic Places and areas of archeological sensitivity that may indicate the need for a survey can be obtained online by viewing the New York State Office of Parks, Recreation and Historic Places (OPRHP) online resources located on their web site at: <u>http://nysparks.state.ny.us/shpp/online-tools/</u> (using The Geographic Information System for Archeology and National Register). OPRHP can also be contacted at: NYS OPRHP, State Historic Preservation Office, Peebles Island Resources Center, P.O. Box 189, Waterford, NY 12188-0189, phone: 518-237-8643;
- c. A description of measures necessary to avoid or minimize adverse impacts on places listed, or eligible for listing, on the State or National Register of Historic Places. If the *owner or operator* fails to describe and implement such measures, the stormwater *discharge* is ineligible for coverage under this permit; and
- d. Where adverse effects may occur, any written agreements in place with OPRHP or other governmental agency to mitigate those effects, or local land use approvals evidencing the same.

B. Required SWPPP Contents

- Erosion and sediment control component All SWPPPs prepared pursuant to this permit shall include erosion and sediment control practices designed in conformance with the most current version of the technical standard, New York State Standards and Specifications for Erosion and Sediment Control. Where erosion and sediment control practices are not designed in conformance with this technical standard, the *owner or operator* must demonstrate equivalence to the technical standard. At a minimum, the erosion and sediment control component of the SWPPP shall include the following:
 - a. Background information about the scope of the project, including the location, type and size of project;

(Part III. B. 1)

- b. A site map/construction drawing(s) for the project, including a general location map. At a minimum, the site map shall show the total site area; all improvements; areas of disturbance; areas that will not be disturbed; existing vegetation; on-site and adjacent off-site surface water(s), wetlands and drainage patterns that could be affected by the construction activity; existing and final slopes; locations of different soil types with boundaries; material, waste, borrow or equipment storage areas located on adjacent properties; and location(s) of the stormwater discharge(s);
- A description of the soil(s) present at the site, including an identification of the Hydrologic Soil Group (HSG);
- d. A construction phasing plan and sequence of operations describing the intended order of construction activities, including clearing and grubbing, excavation and grading, utility and infrastructure installation and any other activity at the site that results in soil disturbance;
- e. A description of the minimum erosion and sediment control practices to be installed or implemented for each construction activity that will result in soil disturbance. Include a schedule that identifies the timing of initial placement or implementation of each erosion and sediment control practice and the minimum time frames that each practice should remain in place or be implemented;
- f. A temporary and permanent soil stabilization plan that meets the requirements of the most current version of the technical standard, New York State Standards and Specifications for Erosion and Sediment Control, for each stage of the project, including initial land clearing and grubbing to project completion and achievement of final stabilization;
- g. A site map/construction drawing(s) showing the specific location(s), size(s), and length(s) of each erosion and sediment control practice;
- h. The dimensions, material specifications, installation details, and operation and maintenance requirements for all erosion and sediment control practices. Include the location and sizing of any temporary sediment basins and structural practices that will be used to divert flows from exposed soils;

(Part III. B. 1)

- A maintenance inspection schedule for the contractor(s) identified in Part III.A.6., to ensure continuous and effective operation of the erosion and sediment control practices. The maintenance inspection schedule shall be in accordance with the requirements in the most current version of the technical standard, New York State Standards and Specifications for Erosion and Sediment Control;
- j. A description of the pollution prevention measures that will be used to control litter, construction chemicals and construction debris from becoming a pollutant source in the stormwater *discharges*;
- k. A description and location of any stormwater *discharges* associated with industrial activity other than construction at the site, including, but not limited to, stormwater *discharges* from asphalt plants and concrete plants located on the construction site; and
- Identification of any elements of the design that are not in conformance with the requirements in the most current version of the technical standard, New York State Standards and Specifications for Erosion and Sediment Control. Include the reason for the deviation or alternative design and provide information which demonstrates that the deviation or alternative design is equivalent to the technical standards.
- 2. Post-construction stormwater management practice component All construction projects identified in Table 2 of Appendix B as needing post-construction stormwater management practices shall prepare a SWPPP that includes practices designed in conformance with the most current version of the technical standard, New York State Stormwater Management Design Manual ("Design Manual"). If the Design Manual is revised during the term of this permit, an *owner or operator* must begin using the revised version of the Design Manual to prepare their SWPPP six (6) months from the final revision date of the Design Manual.

Where post-construction stormwater management practices are not designed in conformance with this technical standard, the *owner or operator* must demonstrate equivalence to the technical standard.

At a minimum, the post-construction stormwater management practice component of the SWPPP shall include the following:

 Identification of all post-construction stormwater management practices to be constructed as part of the project;

(Part III. B. 2)

- b. A site map/construction drawing(s) showing the specific location and size of each post-construction stormwater management practice;
- c. The dimensions, material specifications and installation details for each post-construction stormwater management practice;
- d. Identification of any elements of the design that are not in conformance with the Design Manual. Include the reason for the deviation or alternative design and provide information which demonstrates that the deviation or alternative design is equivalent to the technical standards;
- e. A hydrologic and hydraulic analysis for all structural components of the stormwater management control system;
- f. A detailed summary (including calculations) of the sizing criteria that was used to design all post-construction stormwater management practices. At a minimum, the summary shall address the required design criteria from the applicable chapter of the Design Manual; including the identification of and justification for any deviations from the Design Manual, and identification of any design criteria that are not required based on the design criteria or waiver criteria included in the Design Manual; and
- g. An operations and maintenance plan that includes inspection and maintenance schedules and actions to ensure continuous and effective operation of each post-construction stormwater management practice. The plan shall identify the entity that will be responsible for the long term operation and maintenance of each practice.
- 3. Enhanced Phosphorus Removal Standards All construction projects identified in Table 2 of Appendix B that are located in the watersheds identified in Appendix C shall prepare a SWPPP that includes post-construction stormwater management practices designed in conformance with the Enhanced Phosphorus Removal Standards included in the Design Manual. At a minimum, the postconstruction stormwater management practice component of the SWPPP shall include items 2.a - 2.g. above.

(Part III. C)

C. <u>Required SWPPP Components by Project Type</u> - Unless otherwise notified by the Department, *owners or operators* of *construction activities* identified in Table 1 of Appendix B are required to prepare a SWPPP that only includes erosion and sediment control practices designed in conformance with Part III.B.1. *Owners or operators* of the *construction activities* identified in Table 2 of Appendix B shall prepare a SWPPP that also includes post-construction stormwater management practices designed in conformance with Part III.B.2 or 3.

Part IV. INSPECTION AND MAINTENANCE REQUIREMENTS

A. General Construction Site Inspection and Maintenance Requirements

- The owner or operator must ensure that all erosion and sediment control practices and all post-construction stormwater management practices identified in the SWPPP are maintained in effective operating condition at all times.
- 2. The terms of this permit shall not be construed to prohibit the State of New York from exercising any authority pursuant to the ECL, common law or federal law, or prohibit New York State from taking any measures, whether civil or criminal, to prevent violations of the laws of the State of New York, or protect the public health and safety and/or the environment.

B. Owner or Operator Maintenance Inspection Requirements

- The owner or operator shall inspect, in accordance with the requirements in the most current version of the technical standard, New York State Standards and Specifications for Erosion and Sediment Control, the erosion and sediment controls identified in the SWPPP to ensure that they are being maintained in effective operating condition at all times.
- 2. For construction sites where soil disturbance activities have been temporarily suspended (e.g. winter shutdown) and temporary stabilization measures have been applied to all disturbed areas, the *owner or operator* can stop conducting the maintenance inspections. The *owner or operator* shall begin conducting the maintenance inspections in accordance with Part IV.B.1. as soon as soil disturbance activities resume.
- 3. For construction sites where soil disturbance activities have been shut down with partial project completion, the *owner or operator* can stop conducting the maintenance inspections if all areas disturbed as of the project shutdown date have achieved *final stabilization* and all post-construction stormwater management practices required for the completed portion of the project have been constructed in conformance with the SWPPP and are operational.

(Part IV. C)

C. <u>**Qualified Inspector Inspection Requirements**</u> - The *owner or operator* shall have a *qualified inspector* conduct site inspections in conformance with the following requirements:

[Note: The *trained contractor* identified in Part III.A.6. **cannot** conduct the *qualified inspector* site inspections unless they meet the *qualified inspector* qualifications included in Appendix A. In order to perform these inspections, the *trained contractor* would have to be a:

- Licensed Professional Engineer,
- Certified Professional in Erosion and Sediment Control (CPESC),
- Registered Landscape Architect, or

• Someone working under the direct supervision of, and at the same company as, the licensed Professional Engineer or Registered Landscape Architect, provided they have received four (4) hours of Department endorsed training in proper erosion and sediment control principles from a Soil and Water Conservation District, or other Department endorsed entity].

- 1. A *qualified inspector* shall conduct site inspections for all *construction activities* identified in Tables 1 and 2 of Appendix B, with the exception of:
 - a. the construction of a single family residential subdivision with 25% or less impervious cover at total site build-out that involves a soil disturbance of one (1) or more acres of land but less than five (5) acres and is <u>not</u> located in one of the watersheds listed in Appendix C and <u>not</u> directly discharging to one of the 303(d) segments listed in Appendix E;
 - b. the construction of a single family home that involves a soil disturbance of one (1) or more acres of land but less than five (5) acres and is <u>not</u> located in one of the watersheds listed in Appendix C and <u>not</u> directly discharging to one of the 303(d) segments listed in Appendix E;
 - c. construction on agricultural property that involves a soil disturbance of one (1) or more acres of land but less than five (5) acres; and
 - d. construction activities located in the watersheds identified in Appendix D that involve soil disturbances between five thousand (5000) square feet and one (1) acre of land.
- 2. Unless otherwise notified by the Department, the *qualified inspector* shall conduct site inspections in accordance with the following timetable:
 - a. For construction sites where soil disturbance activities are on-going, the *qualified inspector* shall conduct a site inspection at least once every seven (7) calendar days.

(Part IV. C. 2)

- b. For construction sites where soil disturbance activities are on-going and the owner or operator has received authorization in accordance with Part II.C.3 to disturb greater than five (5) acres of soil at any one time, the qualified inspector shall conduct at least two (2) site inspections every seven (7) calendar days. The two (2) inspections shall be separated by a minimum of two (2) full calendar days.
- c. For construction sites where soil disturbance activities have been temporarily suspended (e.g. winter shutdown) and temporary stabilization measures have been applied to all disturbed areas, the *qualified inspector* shall conduct a site inspection at least once every thirty (30) calendar days. The *owner or operator* shall notify the Regional Office stormwater contact person (see contact information in Appendix F) or, in areas under the jurisdiction of a *regulated, traditional land use control MS4*, the MS4 (provided the MS4 is not the *owner or operator* of the construction activity) in writing prior to reducing the frequency of inspections.
- d. For construction sites where soil disturbance activities have been shut down with partial project completion, the qualified inspector can stop conducting inspections if all areas disturbed as of the project shutdown date have achieved final stabilization and all post-construction stormwater management practices required for the completed portion of the project have been constructed in conformance with the SWPPP and are operational. The owner or operator shall notify the Regional Office stormwater contact person (see contact information in Appendix F) or, in areas under the jurisdiction of a regulated, traditional land use control MS4, the MS4 (provided the MS4 is not the owner or operator of the construction activity). in writing prior to the shutdown. If soil disturbance activities are not resumed within 2 years from the date of shutdown, the owner or operator shall have the qualified inspector perform a final inspection and certify that all disturbed areas have achieved *final stabilization*, and all temporary, structural erosion and sediment control measures have been removed; and that all postconstruction stormwater management practices have been constructed in conformance with the SWPPP by signing the "Final Stabilization" and "Post-Construction Stormwater Management Practice" certification statements on the NOT. The owner or operator shall then submit the completed NOT form to the address in Part II.A.1..

(Part IV. C. 3)

- 3. At a minimum, the *qualified inspector* shall inspect all erosion and sediment control practices to ensure integrity and effectiveness, all post-construction stormwater management practices under construction to ensure that they are constructed in conformance with the SWPPP, all areas of disturbance that have not achieved *final stabilization*, all points of discharge to natural surface waterbodies located within, or immediately adjacent to, the property boundaries of the construction site, and all points of discharge from the construction site.
- 4. The *qualified inspector* shall prepare an inspection report subsequent to each and every inspection. At a minimum, the inspection report shall include and/or address the following:
 - a. Date and time of inspection;
 - b. Name and title of person(s) performing inspection;
 - c. A description of the weather and soil conditions (e.g. dry, wet, saturated) at the time of the inspection;
 - d. A description of the condition of the runoff at all points of discharge from the construction site. This shall include identification of any *discharges* of sediment from the construction site. Include *discharges* from conveyance systems (i.e. pipes, culverts, ditches, etc.) and overland flow;
 - e. A description of the condition of all natural surface waterbodies located within, or immediately adjacent to, the property boundaries of the construction site which receive runoff from disturbed areas. This shall include identification of any *discharges* of sediment to the surface waterbody;
 - f. Identification of all erosion and sediment control practices that need repair or maintenance;
 - Identification of all erosion and sediment control practices that were not installed properly or are not functioning as designed and need to be reinstalled or replaced;
 - Description and sketch of areas that are disturbed at the time of the inspection and areas that have been stabilized (temporary and/or final) since the last inspection;

(Part IV. C 4)

- i. Current phase of construction of all post-construction stormwater management practices and identification of all construction that is not in conformance with the SWPPP and technical standards;
- j. Corrective action(s) that must be taken to install, repair, replace or maintain erosion and sediment control practices; and to correct deficiencies identified with the construction of the post-construction stormwater management practice(s); and
- k. Digital photographs, with date stamp, that clearly show the condition of all practices that have been identified as needing corrective actions. The *qualified inspector* shall attach paper color copies of the digital photographs to the inspection report being maintained onsite within seven (7) calendar days of the date of the inspection. The *qualified inspector* shall also take digital photographs, with date stamp, that clearly show the condition of the practice(s) after the corrective action has been completed. The *qualified inspector* shall attach paper color copies of the digital photographs to the inspection report that documents the completion of the corrective action work within seven (7) calendar days of that inspection.
- 5. Within one business day of the completion of an inspection, the *qualified inspector* shall notify the *owner or operator* and appropriate contractor or subcontractor identified in Part III.A.6. of any corrective actions that need to be taken. The contractor or subcontractor shall begin implementing the corrective actions within one business day of this notification and shall complete the corrective actions in a reasonable time frame.
- All inspection reports shall be signed by the *qualified inspector*. Pursuant to Part II.C.2., the inspection reports shall be maintained on site with the SWPPP.

Part V. TERMINATION OF PERMIT COVERAGE

A. Termination of Permit Coverage

- An owner or operator that is eligible to terminate coverage under this permit must submit a completed NOT form to the address in Part II.A.1. The NOT form shall be one which is associated with this general permit, signed in accordance with Part VII.H.
- 2. An *owner or operator* may terminate coverage when one or more the following conditions have been met:

(Part V. A. 2)

- a. Total project completion All construction activity identified in the SWPPP has been completed; <u>and</u> all areas of disturbance have achieved *final stabilization*; <u>and</u> all temporary, structural erosion and sediment control measures have been removed; <u>and</u> all post-construction stormwater management practices have been constructed in conformance with the SWPPP and are operational;
- b. Planned shutdown with partial project completion All soil disturbance activities have ceased; <u>and</u> all areas disturbed as of the project shutdown date have achieved *final stabilization*; <u>and</u> all temporary, structural erosion and sediment control measures have been removed; <u>and</u> all post-construction stormwater management practices required for the completed portion of the project have been constructed in conformance with the SWPPP and are operational;
- c. A new *owner or operator* has obtained coverage under this permit in accordance with Part II.E.
- 3. For construction activities meeting subdivision 2a. or 2b. of this Part, the owner or operator shall have the qualified inspector perform a final site inspection prior to submitting the NOT. The qualified inspector shall, by signing the "Final Stabilization" and "Post-Construction Stormwater Management Practice" certification statements on the NOT, certify that all disturbed areas have achieved *final stabilization*; and all temporary, structural erosion and sediment control measures have been removed; and that all post-construction stormwater management practices have been constructed in conformance with the SWPPP.
- 4. For construction activities that are subject to the requirements of a regulated, traditional land use control MS4 and meet subdivision 2a. or 2b. of this Part, the owner or operator shall also have the MS4 sign the "MS4 Acceptance" statement on the NOT. The owner or operator shall have the principal executive officer, ranking elected official, or duly authorized representative from the regulated, traditional land use control MS4, sign the "MS4 Acceptance" statement. The MS4 official, by signing this statement, has determined that it is acceptable for the owner or operator to submit the NOT in accordance with the requirements of this Part. The MS4 can make this determination by performing a final site inspection themselves or by accepting the qualified inspector's final site inspection certification(s) required in Part V.3.
- For construction activities that require post-construction stormwater management practices and meet subdivision 2a. of this Part, the owner or operator must, prior to submitting the NOT, ensure one of the following:

(Part V. A. 5)

- a. the post-construction stormwater management practice(s) and any rightof-way(s) needed to maintain such practice(s) have been deeded to the municipality in which the practice(s) is located,
- b. an executed maintenance agreement is in place with the municipality that will maintain the post-construction stormwater management practice(s),
- c. for post-construction stormwater management practices that are privately owned, the *owner or operator* has modified their deed of record to include a deed covenant that requires operation and maintenance of the practice(s) in accordance with the operation and maintenance plan,
- d. for post-construction stormwater management practices that are owned by a public or private institution (e.g. school, college, university), or government agency or authority, the *owner or operator* has policy and procedures in place that ensures operation and maintenance of the practices in accordance with the operation and maintenance plan.

Part VI. <u>REPORTING AND RETENTION OF RECORDS</u>

A. <u>Record Retention</u> - The *owner or operator* shall retain a copy of the NOI, NOI Acknowledgment Letter, SWPPP, MS4 SWPPP Acceptance form and any inspection reports that were prepared in conjunction with this permit for a period of at least five (5) years from the date that the site achieves *final stabilization*. This period may be extended by the Department, in its sole discretion, at any time upon written notification.

B. <u>Addresses</u> - With the exception of the NOI, NOT, and MS4 SWPPP Acceptance form (which must be submitted to the address referenced in Part II.A.1), all written correspondence requested by the Department, including individual permit applications, shall be sent to the address of the appropriate Department Regional Office listed in Appendix F.

Part VII. STANDARD PERMIT CONDITIONS

A. <u>Duty to Comply</u> - The owner or operator must comply with all conditions of this permit. All contractors and subcontractors associated with the project must comply with the terms of the SWPPP. Any non-compliance with this permit constitutes a violation of the Clean Water Act (CWA) and the ECL and is grounds for an enforcement action against the owner or operator and/or the contractor/subcontractor; permit revocation, suspension or modification; or denial of a permit renewal applicable SWPPP, the Department may order an immediate stop to all construction activity at the site until the non-compliance is remedied.

(Part VII. A)

The stop work order shall be in writing, shall describe the non-compliance in detail, and shall be sent to the *owner or operator*.

B. <u>Continuation of the Expired General Permit</u> - This permit expires five (5) years from the effective date. However, coverage may be obtained under the expired general permit, which will continue in force and effect, until a new general permit is issued. Unless otherwise notified by the Department in writing, an *owner or operator* seeking authorization under the new general permit must submit a new NOI in accordance with the terms of such new general permit.

C. <u>Enforcement</u> - Failure of the *owner or operator*, its contractors, subcontractors, agents and/or assigns to strictly adhere to any of the permit requirements contained herein shall constitute a violation of this permit. There are substantial criminal, civil, and administrative penalties associated with violating the provisions of this permit. Fines of up to \$37,500 per day for each violation and imprisonment for up to fifteen (15) years may be assessed depending upon the nature and degree of the offense.

D. <u>Need to Halt or Reduce Activity Not a Defense</u> - It shall not be a defense for an *owner* or operator in an enforcement action that it would have been necessary to halt or reduce the *construction activity* in order to maintain compliance with the conditions of this permit.

E. <u>Duty to Mitigate</u> - The *owner or operator* and its contractors and subcontractors shall take all reasonable steps to minimize or prevent any *discharge* in violation of this permit which has a reasonable likelihood of adversely affecting human health or the environment.

F. <u>Duty to Provide Information</u> - The owner or operator shall make available to the Department for review and copying or furnish to the Department within five (5) business days of receipt of a Department request for such information, any information requested for the purpose of determining compliance with this permit. This can include, but is not limited to, the NOI, NOI Acknowledgment Letter, SWPPP, MS4 SWPPP Acceptance form, executed maintenance agreement, and inspection reports. Failure to provide information requested by the Department within the request timeframe shall be a violation of this permit.

The NOI, SWPPP and inspection reports required by this permit are public documents that the *owner or operator* must make available for review and copying by any person within five (5) business days of the *owner or operator* receiving a written request by any such person to review the NOI, SWPPP or inspection reports. Copying of documents will be done at the requester's expense.

G. <u>Other Information</u> - When the *owner or operator* becomes aware that they failed to submit any relevant facts, or submitted incorrect information in the NOI or in any other report, or have made substantive revisions to the SWPPP (e.g. the scope of the project changes significantly, the type of post-construction stormwater management practice(s)

25

(Part VII. G)

changes, there is a reduction in the sizing of the post-construction stormwater management practice, or there is an increase in the disturbance area or impervious area), which were not reflected in the original NOI submitted to the Department, they shall promptly submit such facts or information to the Department. Failure of the *owner or operator* to correct or supplement any relevant facts within five (5) business days of becoming aware of the deficiency shall constitute a violation of this permit.

H. Signatory Requirements

- 1. All NOIs and NOTs shall be signed as follows:
 - For a corporation these forms shall be signed by a responsible corporate officer. For the purpose of this section, a responsible corporate officer means:
 - a president, secretary, treasurer, or vice-president of the corporation in charge of a principal business function, or any other person who performs similar policy or decision-making functions for the corporation; or
 - ii. the manager of one or more manufacturing, production or operating facilities, provided the manager is authorized to make management decisions which govern the operation of the regulated facility including having the explicit or implicit duty of making major capital investment recommendations, and initiating and directing other comprehensive measures to assure long term environmental compliance with environmental laws and regulations; the manager can ensure that the necessary systems are established or actions taken to gather complete and accurate information for permit application requirements; and where authority to sign documents has been assigned or delegated to the manager in accordance with corporate procedures;
 - b. For a partnership or sole proprietorship these forms shall be signed by a general partner or the proprietor, respectively; or
 - c. For a municipality, State, Federal, or other public agency these forms shall be signed by either a principal executive officer or ranking elected official. For purposes of this section, a principal executive officer of a Federal agency includes:
 - i. the chief executive officer of the agency, or

(Part VII. H. 1. c)

- a senior executive officer having responsibility for the overall operations of a principal geographic unit of the agency (e.g., Regional Administrators of EPA).
- 2. The SWPPP and other information requested by the Department shall be signed by a person described in Part VII.H.1. or by a duly authorized representative of that person. A person is a duly authorized representative only if:
 - a. The authorization is made in writing by a person described in Part VII.H.1.;
 - b. The authorization specifies either an individual or a position having responsibility for the overall operation of the regulated facility or activity, such as the position of plant manager, operator of a well or a well field, superintendent, position of equivalent responsibility, or an individual or position having overall responsibility for environmental matters for the company. (A duly authorized representative may thus be either a named individual or any individual occupying a named position) and,
 - c. The written authorization shall include the name, title and signature of the authorized representative and be attached to the SWPPP.
- 3. All inspection reports shall be signed by the *qualified inspector* that performs the inspection.
- 4. The MS4 SWPPP Acceptance form shall be signed by the principal executive officer or ranking elected official from the *regulated, traditional land use control MS4*, or by a duly authorized representative of that person.

It shall constitute a permit violation if an incorrect and/or improper signatory authorizes any required forms, SWPPP and/or inspection reports.

I. <u>Property Rights</u> - The issuance of this permit does not convey any property rights of any sort, nor any exclusive privileges, nor does it authorize any injury to private property nor any invasion of personal rights, nor any infringement of Federal, State or local laws or regulations. *Owners or operators* must obtain any applicable conveyances, easements, licenses and/or access to real property prior to *commencing construction activity*.

J. <u>Severability</u> - The provisions of this permit are severable, and if any provision of this permit, or the application of any provision of this permit to any circumstance, is held invalid, the application of such provision to other circumstances, and the remainder of this permit shall not be affected thereby.

(Part VII. K) K. <u>Denial of Coverage Under This Permit</u>

- At its sole discretion, the Department may require any owner or operator authorized by this permit to apply for and/or obtain either an individual SPDES permit or another SPDES general permit. When the Department requires any discharger authorized by a general permit to apply for an individual SPDES permit, it shall notify the discharger in writing that a permit application is required. This notice shall include a brief statement of the reasons for this decision, an application form, a statement setting a time frame for the owner or operator to file the application for an individual SPDES permit, and a deadline, not sooner than 180 days from owner or operator receipt of the notification letter, whereby the authorization to discharge under this general permit shall be terminated. Applications must be submitted to the appropriate Regional Office. The Department may grant additional time upon demonstration, to the satisfaction of the Regional Water Engineer, that additional time to apply for an alternative authorization is necessary or where the Department has not provided a permit determination in accordance with Part 621 of this Title.
- 2. Any owner or operator authorized by this permit may request to be excluded from the coverage under this permit by applying for an individual permit or another general permit. In such cases, the owner or operator shall submit an individual application or an alternative general permit application in accordance with the requirements of this general permit, 40 CFR 122.26(c)(1)(ii) and 6 NYCRR Part 621, with reasons supporting the request, to the Department at the address for the appropriate Department Office (see addresses in Appendix F). The request may be granted by issuance of an individual permit or another general permit at the discretion of the Department.
- 3. When an individual SPDES permit is issued to a discharger authorized to discharge under a general SPDES permit for the same discharge(s), the general permit authorization for outfalls authorized under the individual SPDES permit is automatically terminated on the effective date of the individual permit unless termination is earlier in accordance with 6 NYCRR Part 750.

L. <u>Proper Operation and Maintenance</u> - The *owner or operator* shall at all times properly operate and maintain all facilities and systems of treatment and control (and related appurtenances) which are installed or used by the *owner or operator* to achieve compliance with the conditions of this permit and with the requirements of the SWPPP.

M. <u>Inspection and Entry</u> - The *owner or operator* shall allow the Department or an authorized representative of EPA, the State, or, in the case of a construction site which discharges through an *MS4*, an authorized representative of the *MS4* receiving the discharge, upon the presentation of credentials and other documents as may be required by law, to:

(Part VII. M)

- 1. Enter upon the *owner's or operator's* premises where a regulated facility or activity is located or conducted or where records must be kept under the conditions of this permit;
- 2. Have access to and copy at reasonable times, any records that must be kept under the conditions of this permit; and
- 3. Inspect at reasonable times any facilities or equipment (including monitoring and control equipment).

N. <u>Permit Actions</u> - At the Department's sole discretion, this permit may, at any time, be modified, suspended, revoked, or renewed. The filing of a request by the *owner or operator* for a permit modification, revocation and reissuance, termination, a notification of planned changes or anticipated noncompliance does not limit, diminish and/or stay compliance with any terms of this permit.

O. Definitions - Definitions of key terms are included in Appendix A of this permit.

P. Re-Opener Clause

- If there is evidence indicating potential or realized impacts on water quality due to any stormwater discharge associated with *construction activity* covered by this permit, the *owner or operator* of such discharge may be required to obtain an individual permit or alternative general permit in accordance with Part VII.K. of this permit or the permit may be modified to include different limitations and/or requirements.
- Permit modification, suspension or revocation will be conducted in accordance with 6 NYCRR Part 621, 6 NYCRR 750-1.18, and 6 NYCRR 750-1.20.

Q. <u>Penalties for Falsification of Forms and Reports</u> – Article 17 of the ECL provides for a civil penalty of \$37,500 per day per violation of this permit. Articles 175 and 210 of the New York State Penal Law provide for a criminal penalty of a fine and/or imprisonment for falsifying forms and reports required by this permit.

R. <u>Other Permits</u> – Nothing in this permit relieves the *owner or operator* from a requirement to obtain any other permits required by law.

APPENDIX A

Definitions

Alter Hydrology from Pre to Post-Development Conditions - means the post-development peak flow rate(s) has increased by more than 5% of the pre-developed condition for the design storm of interest (e.g. 10 yr and 100 yr).

Combined Sewer - means a sewer that is designed to collect and convey both "sewage" and "stormwater".

Commence (Commencement of) Construction Activities - means the initial disturbance of soils associated with clearing, grading or excavation activities; or other construction related activities that disturb or expose soils such as demolition, stockpiling of fill material, and the initial installation of erosion and sediment control practices required in the SWPPP. See definition for "Construction Activity(ies)" also.

Construction Activity(ies) - means any clearing, grading, excavation, filling, demolition or stockpiling activities that result in soil disturbance. Clearing activities can include, but are not limited to, logging equipment operation, the cutting and skidding of trees, stump removal and/or brush root removal. Construction activity does not include routine maintenance that is performed to maintain the original line and grade, hydraulic capacity, or original purpose of a facility.

Direct Discharge (to a specific surface waterbody) - means that runoff flows from a construction site by overland flow and the first point of discharge is the specific surface waterbody, or runoff flows from a construction site to a separate storm sewer system and the first point of discharge from the separate storm sewer system is the specific surface waterbody.

Discharge(s) - means any addition of any pollutant to waters of the State through an outlet or point source.

Environmental Conservation Law (ECL) - means chapter 43-B of the Consolidated Laws of the State of New York, entitled the Environmental Conservation Law.

Final Stabilization - means that all soil disturbance activities have ceased and a uniform, perennial vegetative cover with a density of eighty (80) percent over the entire pervious surface has been established; or other equivalent stabilization measures, such as permanent landscape mulches, rock rip-rap or washed/crushed stone have been applied on all disturbed areas that are not covered by permanent structures, concrete or pavement.

General SPDES permit - means a SPDES permit issued pursuant to 6 NYCRR Part 750-1.21 authorizing a category of discharges.

Groundwater - means waters in the saturated zone. The saturated zone is a subsurface zone in

which all the interstices are filled with water under pressure greater than that of the atmosphere. Although the zone may contain gas-filled interstices or interstices filled with fluids other than water, it is still considered saturated.

Impervious Area (Cover) - means all impermeable surfaces that cannot effectively infiltrate rainfall. This includes paved, concrete and gravel surfaces (i.e. parking lots, driveways, roads, runways and sidewalks); building rooftops and miscellaneous impermeable structures such as patios, pools, and sheds.

Larger Common Plan of Development or Sale - means a contiguous area where multiple separate and distinct construction activities are occurring, or will occur, under one plan. The term "plan" in "larger common plan of development or sale" is broadly defined as any announcement or piece of documentation (including a sign, public notice or hearing, marketing plan, advertisement, drawing, permit application, State Environmental Quality Review Act (SEQRA) application, zoning request, computer design, etc.) or physical demarcation (including boundary signs, lot stakes, surveyor markings, etc.) indicating that construction activities may occur on a specific plot.

For discrete construction projects that are located within a larger common plan of development or sale that are at least 1/4 mile apart, each project can be treated as a separate plan of development or sale provided any interconnecting road, pipeline or utility project that is part of the same "common plan" is not concurrently being disturbed.

Municipal Separate Storm Sewer (MS4) - a conveyance or system of conveyances (including roads with drainage systems, municipal streets, catch basins, curbs, gutters, ditches, man-made channels, or storm drains):

- i. Owned or operated by a State, city, town, borough, county, parish, district, association, or other public body (created by or pursuant to State law) having jurisdiction over disposal of sewage, industrial wastes, stormwater, or other wastes, including special districts under State law such as a sewer district, flood control district or drainage district, or similar entity, or an Indian tribe or an authorized Indian tribal organization, or a designated and approved management agency under section 208 of the CWA that discharges to surface waters of the State;
- ii. Designed or used for collecting or conveying stormwater;
- iii. Which is not a combined sewer; and
- iv. Which is not part of a Publicly Owned Treatment Works (POTW) as defined at 40 CFR 122.2.

National Pollutant Discharge Elimination System (NPDES) - means the national system for the issuance of wastewater and stormwater permits under the Federal Water Pollution Control Act (Clean Water Act).

NOI Acknowledgment Letter - means the letter that the Department sends to an owner or operator to acknowledge the Department's receipt and acceptance of a complete Notice of Intent. This letter documents the owner's or operator's authorization to discharge in accordance with the general permit for stormwater discharges from construction activity.

Owner or Operator - means the person, persons or legal entity which owns or leases the property on which the construction activity is occurring; and/or an entity that has operational control over the construction plans and specifications, including the ability to make modifications to the plans and specifications.

Pollutant - means dredged spoil, filter backwash, solid waste, incinerator residue, sewage, garbage, sewage sludge, munitions, chemical wastes, biological materials, radioactive materials, heat, wrecked or discarded equipment, rock, sand and industrial, municipal, agricultural waste and ballast discharged into water; which may cause or might reasonably be expected to cause pollution of the waters of the state in contravention of the standards or guidance values adopted as provided in Parts 700 et seq of this Title.

Qualified Inspector - means a person that is knowledgeable in the principles and practices of erosion and sediment control, such as a licensed Professional Engineer, Certified Professional in Erosion and Sediment Control (CPESC), Registered Landscape Architect, or other Department endorsed individual(s).

It can also mean someone working under the direct supervision of, and at the same company as, the licensed Professional Engineer or Registered Landscape Architect, provided that person has training in the principles and practices of erosion and sediment control. Training in the principles and practices of erosion and sediment control means that the individual working under the direct supervision of the licensed Professional Engineer or Registered Landscape Architect has received four (4) hours of Department endorsed training in proper erosion and sediment control principles from a Soil and Water Conservation District, or other Department endorsed entity. After receiving the initial training, the individual working under the direct supervision of the licensed Professional Engineer or Registered Landscape Architect shall receive four (4) hours of training every three (3) years.

It can also mean a person that meets the *Qualified Professional* qualifications in addition to the *Qualified Inspector* qualifications.

Note: Inspections of any post-construction stormwater management practices that include structural components, such as a dam for an impoundment, shall be performed by a licensed Professional Engineer.

Qualified Professional - means a person that is knowledgeable in the principles and practices of stormwater management and treatment, such as a licensed Professional Engineer, Registered Landscape Architect or other Department endorsed individual(s). Individuals preparing SWPPPs that require the post-construction stormwater management practice component must have an understanding of the principles of hydrology, water quality management practice design, water quantity control design, and, in many cases, the principles of hydraulics in order to prepare a SWPPP that conforms to the Department's technical standard. All components of the SWPPP that involve the practice of engineering, as defined by the NYS Education Law (see Article 145), shall be prepared by, or under the direct supervision of, a professional engineer <u>licensed to practice in the State of New York.</u>

Regulated, Traditional Land Use Control MS4 - means a city, town or village with land use control authority that is required to gain coverage under New York State DEC's SPDES General Permit For Stormwater Discharges from Municipal Separate Stormwater Sewer Systems (MS4s).

Routine Maintenance Activity - means construction activity that is performed to maintain the original line and grade, hydraulic capacity, or original purpose of a facility, including, but not limited to:

- Re-grading of gravel roads or parking lots,
- Stream bank restoration projects (does not include the placement of spoil material),
- Cleaning and shaping of existing roadside ditches and culverts that maintains the approximate original line and grade, and hydraulic capacity of the ditch,

• Cleaning and shaping of existing roadside ditches that does not maintain the approximate original grade, hydraulic capacity and purpose of the ditch if the changes to the line and grade, hydraulic capacity or purpose of the ditch are installed to improve water quality and quantity controls (e.g. installing grass lined ditch).

• Placement of aggregate shoulder backing that makes the transition between the road shoulder and the ditch or embankment,

• Full depth milling and filling of existing asphalt pavements, replacement of concrete pavement slabs, and similar work that does not expose soil or disturb the bottom six (6) inches of subbase material,

• Long-term use of equipment storage areas at or near highway maintenance facilities,

- Removal of sediment from the edge of the highway to restore a previously existing sheet-flow drainage connection from the highway surface to the highway ditch or embankment,
- Existing use of Canal Corp owned upland disposal sites for the canal, and
- Replacement of curbs, gutters, sidewalks and guide rail posts.

State Pollutant Discharge Elimination System (SPDES) - means the system established pursuant to Article 17 of the ECL and 6 NYCRR Part 750 for issuance of permits authorizing discharges to the waters of the state.

Surface Waters of the State - shall be construed to include lakes, bays, sounds, ponds, impounding reservoirs, springs, rivers, streams, creeks, estuaries, marshes, inlets, canals, the Atlantic ocean within the territorial seas of the state of New York and all other bodies of surface water, natural or artificial, inland or coastal, fresh or salt, public or private (except those private waters that do not combine or effect a junction with natural surface or underground waters), which are wholly or partially within or bordering the state or within its jurisdiction. Waters of the state are further defined in 6 NYCRR Parts 800 to 941.

Temporary Stabilization - means that exposed soil has been covered with material(s) as set forth in the technical standard, New York Standards and Specifications for Erosion and Sediment Control, to prevent the exposed soil from eroding. The materials can include, but are not limited to, mulch, seed and mulch, and erosion control mats (e.g. jute twisted yarn, excelsior wood fiber mats).

Total Maximum Daily Loads (TMDLs) - A TMDL is the sum of the allowable loads of a single pollutant from all contributing point and nonpoint sources. It is a calculation of the maximum amount of a pollutant that a waterbody can receive on a daily basis and still meet water quality standards, and an allocation of that amount to the pollutant's sources. A TMDL stipulates wasteload allocations (WLAs) for point source discharges, load allocations (LAs) for nonpoint sources, and a margin of safety (MOS).

Trained Contractor - means an employee from the contracting (construction) company, identified in Part III.A.6., that has received four (4) hours of Department endorsed training in proper erosion and sediment control principles from a Soil and Water Conservation District, or other Department endorsed entity. After receiving the initial training, the *trained contractor* shall receive four (4) hours of training every three (3) years.

It can also mean an employee from the contracting (construction) company, identified in Part III.A.6., that meets the *qualified inspector* qualifications (e.g. licensed Professional Engineer, Certified Professional in Erosion and Sediment Control (CPESC), Registered Landscape Architect, or someone working under the direct supervision of, and at the same company as, the licensed Professional Engineer or Registered Landscape Architect, provided they have received four (4) hours of Department endorsed training in proper erosion and sediment control principles from a Soil and Water Conservation District, or other Department endorsed entity).

The trained contractor will be responsible for the day to day implementation of the SWPPP.

Uniform Procedures Act (UPA) Permit - means a permit required under 6 NYCRR Part 621 of the Environmental Conservation Law (ECL), Article 70.

Water Quality Standard - means such measures of purity or quality for any waters in relation to their reasonable and necessary use as promulgated in 6 NYCRR Part 700 et seq.

APPENDIX B

Required SWPPP Components by Project Type

Table 1

CONSTRUCTION ACTIVITIES THAT REQUIRE THE PREPARATION OF A SWPPP THAT ONLY INCLUDES EROSION AND SEDIMENT CONTROLS

 The following construction activities that involve soil disturbances of one (1) or more acres of land, but less than five (5) acres:

 • Single family home not located in one of the watersheds listed in Appendix C and not directly discharging to one of the 303(d) segments listed in Appendix E

 • Single family residential subdivisions with 25% or less impervious cover at total site build-out and not directly discharging to one of the watersheds listed in Appendix C and not directly discharging to one of the 303(d) segments listed in Appendix C and not directly discharging to one of the 303(d) segments listed in Appendix E

 • Construction of a barn or other agricultural building, silo, stock yard or pen.

 The following construction activities that involve soil disturbances of one (1) or more acres of land:

 • Installation of underground, linear utilities; such as gas lines, fiber-optic cable, cable TV, electric, telephone, sewer mains, and water mains

- Environmental enhancement projects, such as wetland mitigation projects, stormwater retrofits and stream restoration projects
- Bike paths and trails
- Sidewalk construction projects that are not part of a road/ highway construction or reconstruction project
- Slope stabilization projects
- Slope flattening that changes the grade of the site, but does not significantly change the runoff characteristics
- Spoil areas that will be covered with vegetation
- Land clearing and grading for the purposes of creating vegetated open space (i.e. recreational parks, lawns, meadows, fields), excluding projects that *alter hydrology from pre to post development* conditions
- Athletic fields (natural grass) that do not include the construction or reconstruction of impervious area and do not alter hydrology from pre to post development conditions
- Demolition project where vegetation will be established and no redevelopment is planned
- Overhead electric transmission line project that does not include the construction of permanent access roads or parking areas surfaced with *impervious cover*
- Structural practices as identified in Table II in the "Agricultural Management Practices Catalog
 for Nonpoint Source Pollution in New York State", excluding projects that involve soil
 disturbances of less than five acres and construction activities that include the construction or
 reconstruction of impervious area

The following construction activities that involve soil disturbances between five thousand (5000) square feet and one (1) acre of land:

All construction activities located in the watersheds identified in Appendix D that involve soil disturbances between five thousand (5000) square feet and one (1) acre of land.

Table 2

CONSTRUCTION ACTIVITIES THAT REQUIRE THE PREPARATION OF A SWPPP THAT INCLUDES POST-CONSTRUCTION STORMWATER MANAGEMENT PRACTICES

The following construction activities that involve soil disturbances of one (1) or more acres of land:

- Single family home located in one of the watersheds listed in Appendix C or *directly discharging* to one of the 303(d) segments listed in Appendix E
- Single family residential subdivisions located in one of the watersheds listed in Appendix C or directly discharging to one of the 303(d) segments listed in Appendix E
- Single family residential subdivisions that involve soil disturbances of between one (1) and five (5) acres of land with greater than 25% impervious cover at total site build-out
- Single family residential subdivisions that involve soil disturbances of five (5) or more acres of land, and single family residential subdivisions that involve soil disturbances of less than five (5) acres that are part of a larger common plan of development or sale that will ultimately disturb five or more acres of land
- Multi-family residential developments; includes townhomes, condominiums, senior housing complexes, apartment complexes, and mobile home parks
- Airports
- Amusement parks
- Campgrounds
- Cemeteries that include the construction or reconstruction of impervious area (>5% of disturbed area) or alter the hydrology from pre to post development conditions
- Commercial developments
- Churches and other places of worship
- Construction of a barn or other agricultural building(e.g. silo) and structural practices as identified in Table II in the "Agricultural Management Practices Catalog for Nonpoint Source Pollution in New York State" that include the construction or reconstruction of *impervious area*, excluding projects that involve soil disturbances of less than five acres.
- Golf courses
- Institutional, includes hospitals, prisons, schools and colleges
- Industrial facilities, includes industrial parks
- Landfills
- Municipal facilities; includes highway garages, transfer stations, office buildings, POTW's and water treatment plants
- Office complexes
- Sports complexes
- Racetracks, includes racetracks with earthen (dirt) surface
- Road construction or reconstruction
- Parking lot construction or reconstruction
- Athletic fields (natural grass) that include the construction or reconstruction of impervious area (>5% of disturbed area) or *alter the hydrology from pre to post development* conditions
- Athletic fields with artificial turf
- Permanent access roads, parking areas, substations, compressor stations and well drilling pads, surfaced with *impervious cover*, and constructed as part of an over-head electric transmission line project, wind-power project, cell tower project, oil or gas well drilling project or other linear utility project
- All other construction activities that include the construction or reconstruction of *impervious area* and alter the hydrology from pre to post development conditions, and are not listed in Table 1

APPENDIX C

Watersheds Where Enhanced Phosphorus Removal Standards Are Required

Watersheds where *owners or operators* of construction activities identified in Table 2 of Appendix B must prepare a SWPPP that includes post-construction stormwater management practices designed in conformance with the Enhanced Phosphorus Removal Standards included in the technical standard, New York State Stormwater Management Design Manual ("Design Manual").

Entire New York City Watershed located east of the Hudson River - Figure 1

- Onondaga Lake Watershed Figure 2
- Greenwood Lake Watershed -Figure 3
- Oscawana Lake Watershed Figure 4

Figure 1 - New York City Watershed East of the Hudson

37

Figure 3 - Greenwood Lake Watershed

40

Figure 4 - Oscawana Lake Watershed

APPENDIX D

Watersheds where *owners or operators* of construction activities that involve soil disturbances between five thousand (5000) square feet and one (1) acre of land must obtain coverage under this permit.

Entire New York City Watershed that is located east of the Hudson River - See Figure 1 in Appendix C

APPENDIX E

List of 303(d) segments impaired by pollutants related to construction activity (e.g. silt, sediment or nutrients). *Owners or operators* of single family home and single family residential subdivision construction activities that involve soil disturbances of one or more acres of land, but less than 5 acres, and *directly discharge* to one of the listed segments below shall prepare a SWPPP that includes post-construction stormwater management practices designed in conformance with the most current version of the technical standard, New York State Stormwater Management Design Manual ("Design Manual").

COUNTY	WATERBODY	COUNTY	WATERBODY
Albany	Ann Lee (Shakers) Pond Stump Pond	Monroe	Genesee River, Lower, Main Stem
Albany	Basic Creek Reservoir	Monroe	Genesee River, Middle, Main Stem
Brony	Van Cortlandt Lake	Monroe	Black Creek, Lower, and minor tribs
Broome	Whitney Point Lake/Pasaryoir	Monroe	Buck Pond
Broome	Beaver Lake	Monroe	Long Pond
Broome	White Birch Lake	Monroe	Cranberry Pond
Chautauqua	Chautaugua Lake North	Monroe	Mill Creek and tribs
Chautauqua	Chautauqua Lake, North	Monroe	Shipbuilders Creek and tribs
Chautauqua	Paar Laka	Monroe	Minor tribs to Irondequoit Bay
Chautauqua	Chadakain Divar and triba	Monroe	Thomas Creek/White Brook and tribs
Chautauqua		Nassau	Glen Cove Creek, Lower, and tribs
Chautauqua	Lower Cassadaga Lake	Nassau	LI Tribs (fresh) to East Bay
Chautauqua	Findles Lake	Nassau	East Meadow Brook, Upper, and tribs
Clinter	Findley Lake	Nassau	Hempstead Bay
Clinton	Great Chazy River, Lower, Main Stem	Nassau	Hempstead Lake
Columbia	Kindernook Lake	Nassau	Grant Park Pond
Columbia	Kobinson Pond	Niagara	Bergholtz Creek and tribs
Dutchess	Hillside Lake	Oneida	Ballou, Nail Creeks
Dutchess	Wappinger Lakes	Onondaga	Lev Creek and tribs
Dutchess	Fall Kill and tribs	Onondaga	Onondaga Creek Lower and tribs
Dutchess	Rudd Pond	Onondaga	Onondaga creek, Middle and tribs
Erie	Rush Creek and tribs	Onondaga	Onondaga Creek Upper and minor tribs
Erie	Ellicott Creek, Lower, and tribs	Onondaga	Harbor Brook Lower and tribs
Erie	Beeman Creek and tribs	Onondaga	Ninemile Creek Lower and tribs
Erie	Murder Creek, Lower, and tribs	Onondaga	Minor tribs to Opondaga Lake
Erie	South Branch Smoke Cr, Lower, and tribs	Ontario	Honeove Lake
Erie	Little Sister Creek, Lower, and tribs	Ontario	Hemlock I ake Outlet and minor tribs
Essex	Lake George (primary county listed as Warren)	Ontario	Great Brook and minor tribs
Genesee	Black Creek, Upper, and minor tribs	Oswego	Lake Negtahwanta
Genesee	Tonawanda Creek, Middle, Main Stem	Butnam	Oscawana Lake
Genesee	Tonawanda Creek, Upper, and minor tribs	Putnam	Lake Carmel
Genesee	Little Tonawanda Creek, Lower, and tribs	Quaana	Jamaiaa Bay, Fastarn, and tribs (Ouaans)
Genesee	Oak Orchard Creek, Upper, and tribs	Queens	Banara Bay, Eastern, and tribs (Queens)
Genesee	Bowen Brook and tribs	Queens	Shallbank Dasin
Genesee	Bigelow Creek and tribs	Densseleer	Snudors Laka
Greene	Schoharie Reservoir	Disharand	Snyders Lake
Greene	Sleepy Hollow Lake	Richmond	Grasmere, Arbutus and wolles Lakes
Herkimer	Steele Creek tribs	Saratoga	Dwaas Kill and tribs
Kings	Hendrix Creek	Saratoga	Labe Loneiy
Lewis	Mill Creek/South Branch and tribs	Saratoga	Lake Lonely
Livingston	Conesus Lake	Saratoga	Schuyler Creek and tribs
Livingston	Jaycox Creek and tribs	Schenectady	Collins Lake
Livingston	Mill Creek and minor tribs		l

APPENDIX E

List of 303(d) segments impaired by pollutants related to construction activity, cont'd.

COUNTY	WATERBODY	COUNTY	WATERBODY
Schoharie	Engleville Pond		
Schoharie	Summit Lake		
St. Lawrence	Black Lake Outlet/Black Lake		
Steuben	Lake Salubria		
Steuben	Smith Pond		
Suffolk	Millers Pond		
Suffolk	Mattituck (Marratooka) Pond		
Suffolk	Tidal tribs to West Moriches Bay		
Suffolk	Canaan Lake		
Suffolk	Lake Ronkonkoma		
Tompkins	Cayuga Lake, Southern End		
Tompkins	Owasco Inlet, Upper, and tribs		
Ulster	Ashokan Reservoir		
Ulster	Esopus Creek, Upper, and minor tribs		
Warren	Lake George		
Warren	Tribs to L.George, Village of L George		
Warren	Huddle/Finkle Brooks and tribs		
Warren	Indian Brook and tribs		
Warren	Hague Brook and tribs		
Washington	Tribs to L.George, East Shore of Lake George		
Washington	Cossayuna Lake		
Wayne	Port Bay		
Wayne	Marbletown Creek and tribs		
Westchester	Peach Lake		
Westchester	Mamaroneck River, Lower		
Westchester	Mamaroneck River, Upper, and minor tribs		
Westchester	Sheldrake River and tribs		
Westchester	Blind Brook, Lower		
Westchester	Blind Brook, Upper, and tribs		
Westchester	Lake Lincolndale		
Westchester	Lake Meahaugh		
Wyoming	Java Lake		
Wyoming	Silver Lake		

Note: The list above identifies those waters from the final New York State "2008 Section 303(d) List of Impaired Waters Requiring a TMDL/Other Strategy", dated May 26, 2008, that are impaired by silt, sediment or nutrients.

APPENDIX F

LIST OF NYS DEC REGIONAL OFFICES

<u>Region</u>	<u>Covering the</u> <u>following</u> <u>counties:</u>	DIVISION OF ENVIRONMENTAL PERMITS (DEP) Permit Administrators	DIVISION OF WATER (DOW) WATER (SPDES) PROGRAM
1	NASSAU AND SUFFOLK	50 CIRCLE ROAD Stony Brook, Ny 11790 Tel., (631) 444-0365	50 CIRCLE ROAD STONY BROOK, NY 11790-3409 TEL. (631) 444-0405
2	BRONX, KINGS, NEW YORK, QUEENS AND RICHMOND	1 HUNTERS POINT PLAZA, 47-40 21st St. LONG ISLAND CITY, NY 11101-5407 TEL. (718) 482-4997	1 HUNTERS POINT PLAZA, 47-40 21st St. Long Island City, Ny 11101-5407 Tel. (718) 482-4933
3	DUTCHESS, ORANGE, PUTNAM, Rockland, Sullivan, Ulster and Westchester	21 SOUTH PUTT CORNERS ROAD NEW PALTZ, NY 12561-1696 TEL. (845) 256-3059	100 Hillside Avenue, Suite 1w White Plains, Ny 10603 Tel. (914) 428 - 2505
4	Albany, Columbia, Delaware, Greene, Montgomery, Otsego, Rensselaer, Schenectady and Schoharie	1150 NORTH WESTCOTT ROAD SCHENECTADY, NY 12306-2014 TEL. (518) 357-2069	1130 NORTH WESTCOTT ROAD SCHENECTADY, NY 12306-2014 Tel. (518) 357-2045
5	CLINTON, ESSEX, FRANKLIN, FULTON, HAMILTON, SARATOGA, WARREN AND WASHINGTON	1115 STATE ROUTE 86, PO BOX 296 RAY BROOK, NY 12977-0296 TEL. (518) 897-1234	232 GOLF COURSE ROAD, PO BOX 220 WARRENSBURG, NY 12885-0220 TEL. (518) 623-1200
6	HERKIMER, JEFFERSON, LEWIS, ONEIDA AND ST. LAWRENCE	STATE OFFICE BUILDING 317 WASHINGTON STREET WATERTOWN, NY 13601-3787 TEL. (315) 785-2245	STATE OFFICE BUILDING 207 GENESEE STREET UTICA, NY 13501-2885 TEL. (315) 793-2554
7	BROOME, CAYUGA, CHENANGO, CORTLAND, MADISON, ONONDAGA, OSWEGO, TIOGA AND TOMPKINS	615 ERIE BLVD. WEST SYRACUSE, NY 13204-2400 TEL. (315) 426-7438	615 ERIE BLVD. WEST SYRACUSE, NY 13204-2400 TEL. (315) 426-7500
8	CHEMUNG, GENESEE, LIVINGSTON, MONROE, ONTARIO, ORLEANS, SCHUYLER, SENECA, STEUBEN, WAYNE AND YATES	6274 EAST AVON-LIMA ROAD AVON, NY 14414-9519 TEL. (585) 226-2466	6274 EAST AVON-LIMA RD. AVON, NY 14414-9519 TEL. (585) 226-2466
9	ALLEGANY, CATTARAUGUS, CHAUTAUQUA, ERIE, NIAGARA AND WYOMING	270 MICHIGAN AVENUE BUFFALO, NY 14203-2999 TEL. (716) 851-7165	270 MICHIGAN AVE. BUFFALO, NY 14203-2999 TEL. (716) 851-7070

<u>Exhibit F</u>

Historic Preservation Documentation

New York State Office of Parks, Recreation and Historic Preservation

Historic Preservation Field Services Bureau
Peebles Island, PO Box 189, Waterford, New York 12188-0189
518-237-8643
www.nysparks.com

4 November 2010

Mr. Kevin J. Franke The LA Group 40 Long Alley Saratoga Springs, NY 12866

Re: DEC

Windham Mountain Sporting Club Town of Windham, Greene County 10PR01623

Dear Mr. Franke:

The Office of Parks, Recreation and Historic Preservation (OPRHP) has reviewed the information submitted for this project (*Phase IA Literature Review and Archaeological Sensitivity Assessment & Phase IB Archaeological Field Survey and Reconnaissance, The Windham Mountain Sporting Club Project, Town of Windham, Greene County, NY, dated September 2010, prepared by Hudson Mohawk Archaeological Consultants, LLC). Our review has been in accordance with Section 14.09 of the New York Parks, Recreation and Historic Preservation Law and relevant implementing regulations.*

Thank you for submitting the above-referenced report. In order to continue review of this project OPRHP requests submission of the following additional information. Please provide a project plan which shows the locations of all shovel tests and clearly labels areas not tested with the reason for exclusion from testing.

Comments regarding buildings and structures are provided on the accompanying form.

If you have any questions please don't hesitate to contact me.

Sincere

Philip Al Perazio, OPRAP Phone: 518-237-8643 x3276; FAX: 518-233-9049 Email: <u>Philip.Perazio@oprhp.state.ny.us</u>

Enclosure

Cc: Jason Fenton, Hudson Mohawk (via email)

David A. Paterson Governor

> Carol Ash Commissioner

REQUEST FOR ADDITIONAL INFORMATION BUILDINGS/STRUCTURES/DISTRICTS

PROJECT NUMBER 10PR01623

(Windham Mountain Sporting Club/Windham/T/WINDHAM)

In order for us to complete our evaluation of the historic signification of all buildings/structures/districts within or adjacent to your project area we will need the following additional information

Full project description showing area of potential effect.

Clear, original photographs of buildings/structures 50 years or older.

within or
 immediately adjacent to the project area
 ** key all photographs to a site map

Clear, original photographs of the surroundings looking out from the project site in all direction, keyed to a site map.

Date of construction.

Brief history of property.

Clear, original photographs of the following:

Other:

This report does not address the presence or absence of built features; there is no report on whether an architectural survey was even done

Please provide only the additional information checked above. If you have any question concerning this request for additional information, please call Kathleen LaFrank at 237-8643. ext 3261

PLEASE BE SURE TO REFER TO THE PROJECT NUMBER NOTED ABOVE WHEN RESPONDING TO THIS REQUEST

http://sphinx/PR/PMReadForm.asp?iPrn=1&iFId=20658&sSFile=form3.htm

10/15/2010

<u>Exhibit G</u>

Deep Ripping and De-compaction (DEC, 2008)

Division of Water

Deep-Ripping and Decompaction

April 2008

New York State Department of Environmental Conservation Document Prepared by:

John E. Lacey, Land Resource Consultant and Environmental Compliance Monitor (Formerly with the Division of Agricultural Protection and Development Services, NYS Dept. of Agriculture & Markets)

Alternative Stormwater Management Deep-Ripping and Decompaction

Description

The two-phase practice of 1) "Deep Ripping;" and 2) "Decompaction" (deep subsoiling), of the soil material as a step in the cleanup and restoration/landscaping of a construction site, helps mitigate the physically induced impacts of soil compression; i.e.: soil compaction or the substantial increase in the bulk density of the soil material.

Deep Ripping and Decompaction are key factors which help in restoring soil pore space and permeability for water infiltration. Conversely, the physical actions of cut-and-fill work, land grading, the ongoing movement of construction equipment and the transport of building materials throughout a site alter the architecture and structure of the soil, resulting in: the mixing of layers (horizons) of soil materials, compression of those materials and diminished soil porosity which, if left unchecked, severely impairs the soil's water holding capacity and vertical drainage (rainfall infiltration), from the surface downward.

In a humid climate region, compaction damage on a site is virtually guaranteed over the duration of a project. Soil in very moist to wet condition when compacted, will have severely reduced permeability. Figure 1 displays the early stage of the deep-ripping phase (Note that all topsoil was stripped prior to construction access, and it remains stockpiled until the next phase – decompaction – is complete). A heavy-duty tractor is pulling a three-shank ripper on the first of several series of incrementally deepening passes through the construction access corridor's densely compressed subsoil material. Figure 2 illustrates the approximate volumetric composition of a loam surface soil when conditions are good for plant growth, with adequate natural pore space for fluctuating moisture conditions.

Recommended Application of Practice

The objective of Deep Ripping and Decompaction is to effectively fracture (vertically and laterallly) through the thickness of the physically compressed subsoil material (see Figure 3), restoring soil porosity and permeability and aiding infiltration to help reduce runoff. Together with topsoil stripping, the "two-phase" practice of Deep Ripping and Decompaction first became established as a "best management practice" through ongoing success on commercial farmlands affected by heavy utility construction right-of-way projects (transmission pipelines and large power lines).

Soil permeability, soil drainage and cropland productivity were restored. For broader

Fig. 3. Construction site with significant compaction of the deep basal till subsoil extends 24 inches below this exposed cutand-fill work surface.

construction application, the two-phase practice of Deep Ripping and Decompaction is best adapted to areas impacted with significant soil compaction, on contiguous open portions of large construction sites and inside long, open construction corridors used as temporary access over the duration of construction. Each mitigation area should have minimal above-and-below-ground obstructions for the easy avoidance and maneuvering of a large tractor and ripping/decompacting implements. Conversely, the complete two-phase practice is not recommended in congested or obstructed areas due to the limitations on tractor and implement movement.

Benefits

Aggressive "deep ripping" through the compressed thickness of exposed subsoil before the replacement/respreading of the topsoil layer, followed by "decompaction," i.e.: "sub-soiling," through the restored topsoil layer down into the subsoil, offers the following benefits:

- Increases the project (larger size) area's direct surface infiltration of rainfall by providing the open site's mitigated soil condition and lowers the demand on concentrated runoff control structures
- Enhances direct groundwater recharge through greater dispersion across and through a broader surface than afforded by some runoff-control structural measures
- Decreases runoff volume generated and provides hydrologic source control
- May be planned for application in feasible open locations either alone or in

conjunction with plans for structural practices (e.g., subsurface drain line or infiltration basin) serving the same or contiguous areas

• Promotes successful long-term revegetation by restoring soil permeability, drainage and water holding capacity for healthy (rather than restricted) root-system development of trees, shrubs and deep rooted ground cover, minimizing plant drowning during wet periods and burnout during dry periods.

Feasibility/Limitations

The effectiveness of Deep Ripping and Decompaction is governed mostly by site factors such as: the original (undisturbed) soil's hydrologic characteristics; the general slope; local weather/timing (soil moisture) for implementation; the space-related freedom of equipment/implement maneuverability (noted above in **Recommended Application of Practice**), and by the proper selection and operation of tractor and implements (explained below in **Design Guidance**). The more notable site-related factors include:

Soil

In the undisturbed condition, each identified soil type comprising a site is grouped into one of four categories of soil hydrology, Hydrologic Soil Group A, B, C or D, determined primarily by a range of characteristics including soil texture, drainage capability when thoroughly wet, and depth to water table. The natural rates of infiltration and transmission of soil-water through the undisturbed soil layers for Group A is "high" with a low runoff potential while soils in Group B are moderate in infiltration and the transmission of soil-water with a moderate runoff potential, depending somewhat on slope. Soils in Group C have slow rates of infiltration and transmission of soil-water and a moderately high runoff potential influenced by soil texture and slope; while

soils in Group D have exceptionally slow rates of infiltration and transmission of soilwater, and high runoff potential.

In Figure 4, the profile displays the undisturbed horizons of a soil in Hydrologic Soil Group C and the naturally slow rate of infiltration through the subsoil. The slow rate of infiltration begins immediately below the topsoil horizon (30 cm), due to the limited amount of macro pores, e.g.: natural subsoil fractures, worm holes and root channels. Infiltration after the construction-induced mixing and compression of such subsoil material is virtually absent; but can be restored back to this natural level with the two-phase practice of deep ripping and decompaction, followed by the permanent establishment of an appropriate, deep taproot

Fig. 4. Profile (in centimeters) displaying the infiltration test result of the natural undisturbed horizons of a soil in Hydrologic Soil Group C.

lawn/ground cover to help maintain the restored subsoil structure. Infiltration after constructioninduced mixing and compression of such subsoil material can be notably rehabilitated with the Deep Ripping and Decompaction practice, which prepares the site for the appropriate long-term lawn/ground cover mix including deep taproot plants such as clover, fescue or trefoil, etc. needed for all rehabilitated soils.

Generally, soils in Hydrologic Soil Groups A and B, which respectively may include deep, welldrained, sandy-gravelly materials or deep, moderately well-drained basal till materials, are among the easier ones to restore permeability and infiltration, by deep ripping and decompaction. Among the many different soils in Hydrologic Soil Group C are those unique glacial tills having a natural fragipan zone, beginning about 12 to 18 inches (30 - 45cm), below surface. Although soils in Hydrologic Soil Group C do require a somewhat more carefully applied level of the Deep Ripping and Decompaction practice, it can greatly benefit such affected areas by reducing the runoff and fostering infiltration to a level equal to that of pre-disturbance.

Soils in Hydrologic Soil Group D typically have a permanent high water table close to the surface, influenced by a clay or other highly impervious layer of material. In many locations with clay subsoil material, the bulk density is so naturally high that heavy trafficking has little or no added impact on infiltration; and structural runoff control practices rather than Deep Ripping and Decompaction should be considered.

The information about Hydrologic Soil Groups is merely a general guideline. Site-specific data such as limited depths of cut-and-fill grading with minimal removal or translocation of the inherent subsoil materials (as analyzed in the county soil survey) or, conversely, the excavation and translocation of deeper, unconsolidated substratum or consolidated bedrock materials (unlike the analyzed subsoil horizons' materials referred to in the county soil survey) should always be taken into account.

Sites made up with significant quantities of large rocks, or having a very shallow depth to bedrock, are not conducive to deep ripping and decompation (subsoiling); and other measures may be more practical.

Slope

The two-phase application of 1) deep ripping and 2) decompaction (deep subsoiling), is most practical on flat, gentle and moderate slopes. In some situations, such as but not limited to temporary construction access corridors, inclusion areas that are moderately steep along a project's otherwise gentle or moderate slope may also be deep ripped and decompacted. For limited instances of moderate steepness on other projects, however, the post-construction land use and the relative alignment of the potential ripping and decompaction work in relation to the lay of the slope should be reviewed for safety and practicality. In broad construction areas predominated by moderately steep or steep slopes, the practice is generally not used.

Local Weather/Timing/Soil Moisture

Effective fracturing of compressed subsoil material from the exposed work surface, laterally and vertically down through the affected zone is achieved only when the soil material is moderately dry to moderately moist. Neither one of the two-phases, deep ripping nor decompaction (deep

subsoiling), can be effectively conducted when the soil material (subsoil or replaced topsoil) is in either a "plastic" or "liquid" state of soil consistency. Pulling the respective implements legs through the soil when it is overly moist only results in the "slicing and smearing" of the material or added "squeezing and compression" instead of the necessary fracturing. Ample drying time is needed for a "rippable" soil condition not merely in the material close to the surface, but throughout the material located down to the bottom of the physically compressed zone of the subsoil.

The "poor man's Atterberg field test" for soil plasticity is a simple "hand-roll" method used for quick, on-site determination of whether or not the moisture level of the affected soil material is low enough for: effective deep ripping of subsoil; respreading of topsoil in a friable state; and final decompaction (deep subsoiling). Using a sample of soil material obtained from the planned bottom depth of ripping, e.g.: 20 - 24 inches below exposed subsoil surface, the sample is hand rolled between the palms down to a 1/8-inch diameter thread. (Use the same test for stored topsoil material before respreading on the site.) If the respective soil sample crumbles apart in segments no greater than 3/8 of an inch long, by the time it is rolled down to 1/8 inch diameter, it is low enough in moisture for deep ripping (or replacement), decompaction. topsoil and Conversely, as shown in Figure 5, if the rolled sample stretches out in increments greater than

Fig. 5. Augered from a depth of 19 inches below the surface of the replaced topsoil, this subsoil sample was hand rolled to a 1/8-inch diameter. The test shows the soil at this site stretches out too far without crumbling; it indicates the material is in a plastic state of consistence, too wet for final decompaction (deep subsoiling) at this time.

3/8 of an inch long before crumbling, it is in a "plastic" state of soil consistency and is too wet for subsoil ripping (as well as topsoil replacement) and final decompaction.

Design Guidance

Beyond the above-noted site factors, a vital requirement for the effective Deep Ripping and Decompaction (deep subsoiling), is implementing the practice in its distinct, two-phase process:

1) Deep rip the affected thickness of exposed subsoil material (see Figure 10 and 11), aggressively fracturing it before the protected topsoil is reapplied on the site (see Figure 12); and

2) Decompact (deep subsoil), simultaneously through the restored topsoil layer and the upper half of the affected subsoil (Figure 13). The second phase, "decompaction," mitigates the partial recompaction which occurs during the heavy process of topsoil spreading/grading. Prior to deep ripping and decompacting the site, all construction activity, including construction equipment and material storage, site cleanup and trafficking (Figure 14), should be finished; and the site closed off to further disturbance. Likewise, once the practice is underway and the area's soil permeability and

rainfall infiltration are being restored, a policy limiting all further traffic to permanent travel lanes is maintained.

The other critical elements, outlined below, are: using the proper implements (deep, heavy-duty rippers and subsoilers), and ample pulling-power equipment (tractors); and conducting the practice at the appropriate speed, depth and pattern(s) of movement.

Note that an appropriate plan for the separate practice of establishing a healthy perennial ground cover, with deep rooting to help maintain the restored soil structure, should be developed in advance. This may require the assistance of an agronomist or landscape horticulturist.

Implements

Avoid the use of all undersize implements. The small-to-medium, light-duty tool will, at best, only "scarify" the uppermost surface portion of the mass of compacted subsoil material. The term "chisel plow" is commonly but incorrectly applied to a broad range of implements. While a few may be adapted for the moderate subsoiling of non-impacted soils, the majority are less durable and used for only lighter land-fitting (see Figure 6).

Use a "heavy duty" agricultural-grade, deep ripper (see Figures 7,9,10 and 11) for the first phase: the lateral and vertical fracturing of the mass of exposed and compressed subsoil, down and through, to the bottom of impact, prior to the replacement of the topsoil layer. (Any oversize rocks which are uplifted to the subsoil surface during the deep ripping phase are picked and removed.) Like the heavy-duty class of implement for the first phase, the decompaction (deep subsoiling) of Phase 2 is conducted with the heavy-duty version of the deep subsoiler. More preferable is the angled-leg variety of deep subsoiler (shown in Figures 8 and 13). It minimizes the inversion of the subsoil and topsoil layers while laterally and vertically fracturing the upper half of the previously ripped subsoil layer and all of the topsoil layer by delivering a momentary, wave-like "lifting and shattering" action up through the soil layers as it is pulled.

Pulling-Power of Equipment

Use the following rule of thumb for tractor horsepower (hp) whenever deep ripping and decompacting a significantly impacted site: For both types of implement, have at least 40 hp of tractor pull available for each mounted shank/ leg.

Using the examples of a 3-shank and a 5-shank implement, the respective tractors should have 120 and 200 hp available for fracturing down to the final depth of 20-to-24 inches per phase. Final depth for the deep ripping in Phase 1 is achieved incrementally by a progressive series of passes (see Depth and Patterns of Movement, below); while for Phase 2, the full operating depth of the deep subsoiler is applied from the beginning.

The operating speed for pulling both types of implement should not exceed 2 to 3 mph. At this slow and managed rate of operating speed, maximum functional performance is sustained by the tractor and the implement performing the Referring to Figure 8, the soil fracturing. implement is the 6-leg version of the deep angled-leg subsoiler. Its two outside legs are "chained up" so that only four legs will be engaged (at the maximum depth), requiring no less than 160 hp, (rather than 240 hp) of pull. The 4-wheel drive, articulated-frame tractor in Figure 8 is 174 hp. It will be decompacting this unobstructed, former construction access area simultaneously through 11 inches of replaced topsoil and the upper 12 inches of the previously deep-ripped subsoil. In constricted areas of Phase 1) Deep Ripping, a medium-size tractor with adequate hp, such as the one in Figure 9 pulling a 3-shank deep ripper, may be more maneuverable.

Some industrial-grade variations of ripping implements are attached to power graders and bulldozers. Although highly durable, they are generally not recommended. Typically, the shanks or "teeth" of these rippers are too short and stout; and they are mounted too far apart to achieve the well-distributed type of lateral and vertical fracturing of the soil materials necessary to restore soil permeability and infiltration. In addition, the power graders and bulldozers, as pullers, are far less maneuverable for turns and patterns than the tractor.

Fig. 8. A deep, angled-leg subsoiler, ideal for Phase 2 decompaction of after the topsoil layer is graded on top of the ripped subsoil.

Fig. 9. This medium tractor is pulling a 3shank deep ripper. The severely compacted construction access corridor is narrow, and the 120 hp tractor is more maneuverable for Phase 1 deep ripping (subsoil fracturing), here.

Depth and Patterns of Movement

As previously noted both Phase 1 Deep Ripping through significantly compressed, exposed subsoil and Phase 2 Decompaction (deep subsoiling) through the replaced topsoil and upper subsoil need to be performed at maximum capable depth of each implement. With an implement's guide wheels attached, some have a "normal" maximum operating depth of 18 inches, while others may go deeper. In many situations, however, the tractor/implement operator must first remove the guide wheels and other non essential elements from the implement. This adapts the ripper or the deep subsoiler for skillful pulling with its frame only a few inches above surface, while the shanks or legs, fracture the soil material 20-to-24 inches deep.

There may be construction sites where the depth of the exposed subsoil's compression is moderate, e.g.: 12 inches, rather than deep. This can be verified by using a ³/₄ inch cone penetrometer and a shovel to test the subsoil for its level of compaction, incrementally, every three inches of increasing depth. Once the full thickness of the subsoil's compacted zone is finally "pieced" and there is a significant drop in the psi measurements of the soil penetrometer, the depth/thickness of compaction is determined. This is repeated at several representative locations of the construction site. If the thickness of the site's subsoil compaction is verified as, for example, ten inches, then the Phase 1 Deep Ripping can be correspondingly reduced to the implement's minimum operable depth of 12 inches. However, the Phase 2 simultaneous Decompation (subsoiling) of an 11 inch thick layer of replaced topsoil and the upper subsoil should run at the subsoiling implements full operating depth.

Typically, three separate series (patterns) are used for both the Phase 1 Deep Ripping and the Phase 2 Decompaction on significantly compacted sites. For Phase 1, each series begins with a moderate depth of rip and, by repeat-pass, continues until full depth is reached. Phase 2 applies the full depth of Decompation (subsoiling), from the beginning.

Every separate series (pattern) consists of parallel, forward-and-return runs, with each progressive

pass of the implement's legs or shanks evenly staggered between those from the previous pass. This compensates for the shank or leg-spacing on the implement, e.g., with 24-to-30 inches between each shank or leg. The staggered return pass ensures lateral and vertical fracturing actuated every 12 to 15 inches across the densely compressed soil mass.

Large, Unobstructed Areas

For larger easy areas, use the standard patterns of movement:

- The first series (pattern) of passes is applied lengthwise, parallel with the longest spread of the site; gradually progressing across the site's width, with each successive pass.
- The second series runs obliquely, crossing the first series at an angle of about 45 degrees.
- The third series runs at right angle (or 90 degrees), to the first series to complete the fracturing and shattering on severely compacted sites, and avoid leaving large unbroken blocks of compressed soil material. (In certain instances, the third series may be optional, depending on how thoroughly the first two series loosen the material and eliminate large chunks/blocks of material as verified by tests with a $\frac{3}{4}$ -inch cone penetrometer.)

Fig. 12. Moderately dry topsoil is being replaced on the affected site now that Phase 1 deep ripping of the compressed subsoil is complete.

Fig. 13. The same deep, angled-leg subsoiler shown in Fig. 7 is engaged at maximum depth for Phase 2, decompaction (deep soiling), of the replaced topsoil and the upper subsoil materials.

Corridors

In long corridors of limited width and less maneuverability than larger sites, e.g.: along compacted areas used as temporary construction access, a modified series of pattern passes are used.

• First, apply the same initial lengthwise, parallel series of passes described above.

• A second series of passes makes a broad "S" shaped pattern of rips, continually and gradually alternating the "S" curves between opposite edges inside the compacted corridor.

• The third and final series again uses the broad, alternating S pattern, but it is "flip-flopped" to continually cross the previous S pattern along the corridor's centerline. This final series of the S pattern curves back along the edge areas skipped by the second series.

Maintenance and Cost

Once the two-phase practice of Deep Ripping and Decompation is completed, two items are essential for maintaining a site's soil porosity and permeability for infiltration. They are: planting and maintaining the appropriate ground cover with deep roots to maintain the soil structure (see Figure 15); and keeping the site free of traffic or other weight loads.

Note that site-specific choice of an appropriate vegetative ground-cover seed mix, including the proper seeding ratio of one or more perennial species with a deep taproot system and the proper amount of lime and soil nutrients (fertilizer mix) adapted to the soil-needs, are basic to the final practice of landscaping, i.e: surface tillage, seeding/planting/fertilizing and culti-packing or mulching is applied. The "maintenance" of an effectively deep-ripped and decompacted area is generally limited to the successful perennial (long-term) landscape ground cover; as long as no weight-bearing force of soil compaction is applied.

Fig. 14. The severely compacted soil of a temporary construction yard used daily by heavy equipment for four months; shown before deep ripping, topsoil replacement, and decompaction.

Fig. 15. The same site as Fig. 14 after deep ripping of the exposed subsoil, topsoil replacement, decompaction through the topsoil and upper subsoil and final surface tillage and revegetation to maintain soil permeability and infiltration.

The Deep Ripping and Decompaction practice is, by necessity, more extensive than periodic subsoiling of farmland. The cost of deep ripping and decompacting (deep subsoiling), will vary according to the depth and severity of soil-material compression and the relative amount of tractor and implement time that is required. In some instances, depending on open maneuverability, two-to-three acres of compacted project area may be deep-ripped in one day. In other situations of more severe compaction and - or less maneuverability, as little as one acre may be fully ripped in a day. Generally, if the Phase 1) Deep Ripping is fully effective, the Phase 2) Decompaction should be completed in 2/3 to 3/4 of the time required for Phase 1.

Using the example of two acres of Phase 1) Deep Ripping in one day, at \$1800 per day, the net cost is \$900 per acre. If the Phase 2) Decompacting or deep subsoiling takes 3/4 the time as Phase 1, it costs \$675 per acre for a combined total of \$1575 per acre to complete the practice (these figures do not include the cost of the separate practice of topsoil stripping and replacement). Due to the many variables, it must be recognized that cost will be determined by the specific conditions or constraints of the site and the availability of proper equipment.

Resources

Publications:

- American Society of Agricultural Engineers. 1971. Compaction of Agricultural Soils. ASAE.
- Brady, N.C., and R.R. Weil. 2002. The Nature and Properties of Soils. 13th ed. Pearson Education, Inc.
- Baver, L.D. 1948. Soil Physics. John Wiley & Sons.
- Carpachi, N. 1987 (1995 fifth printing). *Excavation and Grading Handbook, Revised.* 2nd ed. Craftsman Book Company
- Ellis, B. (Editor). 1997. Safe & Easy Lawn Care: The Complete Guide to Organic Low Maintenance Lawn. Houghton Mifflin.
- Harpstead, M.I., T.J. Sauer, and W.F. Bennett. 2001. *Soil Science Simplified.* 4th ed. Iowa State University Press.
- Magdoff, F., and H. van Es. 2000. *Building Soils for Better Crops.* 2nd ed. Sustainable Agricultural Networks
- McCarthy, D.F. 1993. *Essentials of Soil Mechanics and Foundations, Basic Geotechnics* 4th ed. Regents/Prentice Hall.
- Plaster, E.J. 1992. *Soil Science & Management*. 3rd ed. Delmar Publishers.
- Union Gas Limited, Ontario, Canada. 1984. *Rehabilitation of Agricultural Lands, Dawn-Kerwood Loop Pipeline; Technical Report*. Ecological Services for Planning, Ltd.; Robinson, Merritt & Devries, Ltd. and Smith, Hoffman Associates, Ltd.
- US Department of Agriculture in cooperation with Cornell University Agricultural Experiment Station. Various years. *Soil Survey of (various names) County, New York.* USDA.

Internet Access:

• Examples of implements:

- <u>V-Rippers.</u> Access by internet search of *John Deere Ag -New Equipment for 915* (larger-frame model) *V-Rippe;* and, *for 913* (smaller-frame model) *V-Ripper.* <u>Deep, angled-leg subsoiler.</u> Access by internet search of: *Bigham Brothers Shear Bolt Paratill-Subsoiler.* <u>http://salesmanual.deere.com/sales/salesmanual/en_NA/primary_tillage/2008/feature/rippers/915v_pattern_frame.html?sbu=a_g&link=prodcat</u> Last visited March 08.
- Soils data of USDA Natural Resources Conservation Service. NRCS Web Soil Survey. <u>http://websoilsurvey.nrcs.usda.gov/app/</u> and USDA-NRCS Official Soil Series Descriptions; View by Name. <u>http://ortho.ftw.nrcs.usda.gov/cgi-bin/osd/osdname.cgi</u>. Last visited Jan. 08.
- Soil penetrometer information. Access by internet searches of: Diagnosing Soil Compaction using a Penetrometer (soil compaction tester), PSU Extension; as well as Dickey-john Soil Compaction Tester. http://www.dickey-johnproducts.com/pdf/SoilCompactionTest.pdf and http://cropsoil.psu.edu/Extension/Facts/uc178pdf Last visited Sept. 07

<u>Exhibit H</u>

Deep Hole Test Pit Logs from Soil Mapping

THE LA GROUP 40 Long Alley, Saratoga Springs, New York 12866

To: Kevin Franke

From: Roger J. Case, Soil Scientist

Re: Deep Soil Test pits @ Windham Resort (revised 12/17/2009)

On October 2008 the following deep soil test pits were observed.

Test pit #1:0 to 4 inches, dark reddish brown silt loam
4 to 25 inches, yellowish red gravelly silt loam
25 to 70+ inches, very firm, reddish gray gravelly fine sandy loam

Soil type: Lewbeach silt loam Boundary condition @ 25 inches, restrictive layer

Test pit #2:0 to 4 inches, dark reddish brown silt loam
4 to 31 inches, yellowish red gravelly silt loam
31 to 70+ inches, very firm, reddish gray gravelly fine sandy loam

Soil type: Lewbeach silt loam Boundary condition @ 31 inches, restrictive layer

Test pit #3: 0 to 4 inches, dark reddish brown silt loam 4 to 19 inches, yellowish red gravelly silt loam 19 inches, hard bedrock ledge

Soil type: Halcott silt loam Boundary condition @ 19 inches, impervious layer

Test pit #4: 0 to 4 inches, dark reddish brown silt loam 4 to 26 inches, yellowish red gravelly silt loam 26 inches, hard bedrock ledge

Soil type: Vly silt loam Boundary condition @ 26 inches, impervious layer

Test pit #5:	0 to 5 inches, dark reddish brown silt loam 5 to 31 inches, reddish brown very gravelly silt loam 31 inches, rippable red shale bedrock
Soil type:	Vly silt loam
Boundary cond	dition @ 31 inches, impervious layer
Test pit #6:	0 to 5 inches, dark reddish brown silt loam 5 to 36 inches, reddish brown very gravelly silt loam 36 inches, rippable red shale bedrock
Soil type:	Vly silt loam
Boundary cond	dition @ 36 inches, impervious layer
Test pit #7:	0 to 5 inches, dark reddish brown silt loam 5 to 30 inches, reddish brown, silty clay loam 30 inches, hard red shale bedrock
Soil type:	Vly silt loam
Boundary cond	dition @ 30 inches, impervious layer
Test pit #8:	0 to 5 inches, dark reddish brown silt loam 5 to 22 inches, reddish brown, gravelly silt loam 22 inches, hard bedrock
Soil type:	Vly silt loam
Boundary cond	dition @ 22 inches, impervious layer
Test pit #9:	0 to 5 inches, dark reddish brown silt loam 5 to 40 inches, reddish brown, gravelly silt loam 40 inches, hard red shale bedrock
Soil type:	Vly silt loam
Boundary cond	dition @ 40 inches, impervious layer

Test pit #10:	0 to 5 inches, dark reddish brown silt loam
	5 to 16 inches, reddish brown, gravelly silt loam
	16 to 36 inches, mottled reddish brown, gravelly silt loam
	Refusal

Soil type: Onteora silt loam Boundary condition @ 16 inches, seasonal high water table

Test pit #11: 0 to 4 inches, dark reddish brown silt loam 4 to 15 inches, yellowish red gravelly silt loam 15 inches, hard bedrock ledge

Soil type: Halcott silt loam Boundary condition @ 15 inches, impervious layer

Test pit #12: 0 to 5 inches, dark reddish brown, gravelly (channery) silt loam 5 to 36 inches, reddish brown, very channery silt loam 36 to 51 inches, reddish brown, slightly firm, unconsolidated shale fragments
51 inches, reddish brown shale bedrock

Soil type: Elka channery silt loam Boundary condition @ 51 inches, impervious layer

Test pit #13: 0 to 5 inches, dark reddish brown, gravelly (channery) silt loam 5 to 40 inches, reddish brown, very channery silt loam 40 to 57 inches, reddish brown, slightly firm, unconsolidated shale fragments
57 inches, reddish brown shale bedrock

Soil type: Elka channery silt loam Boundary condition @ 57 inches, impervious layer

Test pit #14: 0 to 5 inches, dark reddish brown, gravelly (channery) silt loam
5 to 36 inches, reddish brown, very channery silt loam
36 to 60 inches, reddish brown, firm, unconsolidated shale fragments
60+ inches, reddish brown shale bedrock

Soil type: Elka channery silt loam Boundary condition @ 60 inches, impervious layer

Test pit #15:	0 to 5 inches, dark reddish brown silt loam
	5 to 25 inches, reddish brown, gravelly silt loam
	25 to 40 inches, angular very gravelly aggregate
	40 inches, hard bedrock

Soil type: Vly silt loam Boundary condition @ 40 inches, impervious layer

Test pit #16: 0 to 5 inches, dark reddish brown silt loam 5 to 34 inches, reddish brown, gravelly silt loam 34 inches, hard red shale bedrock

Soil type: Vly silt loam Boundary condition @ 34 inches, impervious layer

Test pit #17: 0 to 5 inches, dark reddish brown silt loam 5 to 29 inches, reddish brown, gravelly silt loam 29 inches, hard red shale bedrock

Soil type: Vly silt loam Boundary condition @ 29 inches, impervious layer

Test pit #18:0 to 4 inches, dark reddish brown silt loam
4 to 29 inches, yellowish red gravelly silt loam
29 to 70+ inches, very firm, reddish gray gravelly fine sandy loam

Soil type: Lewbeach silt loam Boundary condition @ 29 inches, restrictive layer

Test pit #19: 0 to 5 inches, dark reddish brown, gravelly (channery) silt loam 5 to 45 inches, reddish brown, very channery silt loam 45 to 51 inches, reddish brown, slightly firm, unconsolidated shale fragments with strong seeps in the upper part 51 inches, reddish brown shale bedrock

Soil type: Elka channery silt loam Boundary condition @ 45 inches, seasonal high water table Test pit #20: 0 to 4 inches, dark reddish brown silt loam
4 to 20 inches, yellowish red gravelly silt loam
20 to 29 inches, mottled, reddish brown gravelly fine sandy loam
29 to 72+ inches, reddish brown gravelly silt loam

Soil type: Willowemoc silt loam Boundary condition @ 20 inches, seasonal high water table

Test pit #21: 0 to 4 inches, dark reddish brown silt loam 4 to 14 inches, yellowish red gravelly silt loam 14 inches, hard bedrock ledge

Soil type: Halcott silt loam Boundary condition @ 14 inches, impervious layer

Test pit #22: 0 to 5 inches, dark reddish brown silt loam 5 to 30 inches, reddish brown, gravelly silt loam 30 inches, hard red shale bedrock

Soil type: Vly silt loam

Boundary condition @ 30 inches, impervious layer

Test pit #23:0 to 4 inches, dark reddish brown silt loam
4 to 26 inches, yellowish red gravelly silt loam
26 to 70+ inches, very firm, reddish gray gravelly fine sandy loam

Soil type: Lewbeach silt loam

Boundary condition @ 26 inches, restrictive layer

Test pit #24: 0 to 4 inches, dark reddish brown silt loam 4 to 12 inches, yellowish red gravelly silt loam 12 inches, hard bedrock ledge

Soil type: Halcott silt loam Boundary condition @ 12 inches, impervious layer

Test pit #25: 0 to 5 inches, dark reddish brown silt loam 5 to 38 inches, reddish brown, gravelly silt loam 38 inches, hard red shale bedrock

Soil type: Vly silt loam

Boundary condition @ 38 inches, impervious layer

Test pit #26: 0 to 4 inches, dark reddish brown silt loam 4 to 25 inches, yellowish red gravelly silt loam 25 to 70+ inches, very firm, reddish gray gravelly fine sandy loam

Soil type: Lewbeach silt loam Boundary condition @ 25 inches, restrictive layer

- Test pit #27:0 to 4 inches, dark reddish brown silt loam
4 to 29 inches, yellowish red gravelly silt loam
29 to 70+ inches, very firm, reddish gray gravelly fine sandy loam
- Soil type: Lewbeach silt loam Boundary condition @ 29 inches, restrictive layer
- Test pit #28: 0 to 5 inches, dark reddish brown silt loam 5 to 26 inches, reddish brown, gravelly silt loam 26 inches, hard red shale bedrock

Soil type: Vly silt loam

Boundary condition @ 26 inches, impervious layer

- Test pit #29:0 to 4 inches, dark reddish brown silt loam
4 to 25 inches, yellowish red gravelly silt loam
25 to 70+ inches, very firm, reddish gray gravelly fine sandy loam
- Soil type: Lewbeach silt loam Boundary condition @ 25 inches, restrictive layer
- Test pit #30 0 to 4 inches, dark reddish brown silt loam 4 to 12 inches, yellowish red gravelly silt loam 12 inches, hard bedrock ledge

Soil type: Halcott silt loam Boundary condition @ 12 inches, impervious layer

Test pit #31: 0 to 5 inches, dark reddish brown silt loam 5 to 34 inches, reddish brown, gravelly silt loam 34 inches, hard red shale bedrock

Soil type: Vly silt loam

Boundary condition @ 34 inches, impervious layer

Test pit #32:	0 to 5 inches, dark reddish brown silt loam
	5 to 29 inches, reddish brown, gravelly silt loam
	29 inches, fractured bedrock

Soil type: Vly silt loam Boundary condition @ 29 inches, impervious layer

Test pit #33:0 to 4 inches, dark reddish brown silt loam
4 to 26 inches, yellowish red gravelly silt loam
26 to 70+ inches, very firm, reddish gray gravelly fine sandy loam

Soil type: Lewbeach silt loam Boundary condition @ 26 inches, restrictive layer

Test pit #34:0 to 5 inches, dark reddish brown silt loam5 to 25 inches, yellowish red gravelly silt loam25 to 70+ inches, very firm, reddish gray gravelly fine sandy loam

Soil type: Lewbeach silt loam Boundary condition @ 25 inches, restrictive layer

Test pit #35: 0 to 5 inches, dark reddish brown silt loam 5 to 38 inches, reddish brown, gravelly silt loam 38 inches, hard red shale bedrock

Soil type: Vly silt loam Boundary condition @ 38 inches, impervious layer

Every test pit witnessed at the property had a boundary condition. Where the boundary condition is bedrock it is described as an impervious layer. The restrictive layer is used to indicate the upper limits of a hardpan in a deep soil and seasonal high water table indicates mottling or seeps.

<u>MEMO</u>

TO: Kevin Franke, Mark Taber

FROM: Will Buetow

DATE: December 13, 2010

RE: Windham Test Pit and Percolation Tests Results

On December 10, 2010, I went to the Windham site to evaluate deep hole test pits and perform percolation tests for stormwater suitability determinations. The locations of five deep hole test pits were determined in the office and loaded onto a GPS unit so they could be located in the field. Five deep hole test pits were evaluated and three percolation tests were performed and GPS points were collected at each location. John from Katterskill was also present and performed all of the other percolation tests. The results from the deep hole test pits are as follows:

TP1-12/10/10

This site is located to the west of Trail Side Road close to the road edge. The slope at this location is approximately 12%.

- A 0"-7" (5YR 3/4)dark red brown, gravelly silt loam, strong, fine, granular structure, friable.
- B 7"-32" (5YR 4/3) red brown, gravelly fine silt loam, moderate, fine subangular blocky structure, friable.
- B/Cd 32"-48" (2.5YR 4/3) red brown, gravelly silt loam, weak, fine subangular blocky structure, moderately firm.

This pit was dug to 8' with no bedrock encountered. A fast flowing seep was observed at 67" which is representative of the water table. A percolation test was performed at a 24" depth resulting in a stabilized percolation rate of 36 minutes per inch of fall. This soil is most like the Lewbeach soil series.

TP2-12/10/2010

This site is located just off of a dirt road onsite in the northern most portion of the site and immediately south of an offsite house. The slope at this location is approximately 12%.

- A 0"-7" (5YR 3/4) dark red brown, gravelly silt loam, strong, fine, granular structure, friable, many large rocks at the soil surface.
- B 7"-32" (5YR 4/3) red brown, gravelly fine silt loam, moderate, fine subangular blocky structure, friable.
- B/Cd 32"-48" (2.5YR 5/3) red brown, gravelly silt loam, weak, fine subangular blocky structure, moderately firm.

This pit was dug to 9' with no bedrock indication of groundwater. A percolation test was performed at a 24" depth resulting in a stabilized percolation rate of 45 minutes per inch of fall. This soil is most like the Lewbeech soil series.

TP3-12/10/10

This pit is located in the northern portion of the site just to the west of a switchback onsite. The slope at this location is approximately 17%.

- A 0"-5" (5YR 3/4) dark red brown, gravelly silt loam, strong, fine, granular structure, friable, many large pieces of shale at the soil surface.
- B 5"-29" (5YR 4/3) red brown, gravelly fine silt loam, strong, fine subangular blocky structure, friable.
- B/Cd 32"-48" (2.5YR 5/3) red brown, gravelly silt loam, very weak, fine subangular blocky structure, moderately firm.

This pit was dug to 8' with no bedrock encountered. Flowing seeps were observed at 76" depth which are indicative of groundwater. A percolation test performed at a 24" depth resulted in a stabilized percolation rate of 47 minutes per inch of fall. This soil is most like the Lewbeach soil series.

TP4-12/10/10

This pit is located in the central portion of the site just to the east of the Wanderer Ski Slope. The slope at this location is approximately 8%. This area is a terrace which has bedrock exposed throughout the terrace face. This pit was dug to 26" and rippable shale was encountered. At 28" depth, hard bedrock was encountered. No percolation test was performed. This soil is most like the Vly soil series.

TP5-12/10/10

This pit is located in the southeastern portion of the property close to the eastern property boundary. The slope at this location is approximately 10%. Bedrock ledge and flowing seeps were encountered at a 24" depth. Numerous other pits were dug in the area with similar results. No percolation test were performed at this location. This soil is most like the Halcott and Vly soil series.

<u>Exhibit I</u>

Phosphorus and Total Suspended Solids Models for Existing and Proposed Conditions

Direct Calculation Mass Total P (Kg)

Pre Development Design Point 1 Total acreage 74.71		<u>Post Development</u> Design Point 1 Total acreage 80.53	
Forest (0.00002005kg/m3) (70.18acres* 4047m2) (1.27m) (0.64) =	4.63	Forest $(0.00002005 \text{kg/m3}) (62.09 \text{ acres} * 4047 \text{ m2}) (1.27 \text{ m}) (0.64) =$	4.10
Impervious $(0.00026 \text{kg/m3}) (0 \text{acres}^* 4047 \text{m2}) (1.27 \text{m}) (0.98) =$	-	Impervious (0.00026 kg/m3) (6.44 acres * 4047 m2) (1.27 m) (0.98) =	8.43
(0.0000825 kg/m3) (4.53 acres * 4047 m2) (1.27 m) (0.64) =	1.23	(0.0000825kg/m3) (4.53acres* 4047m2) (1.27m) (0.64) =	1.23
(0.00014kg/m3) (0acres* 4047m2) (1.27m) (0.64) = Total kg of P per year	- 5.86	(0.00014kg/m3) (7.47acres* 4047m2) (1.27m) (0.64) = Total kg of P per year	3.44 17.20
Pre Development		Post Development	
Design Point 2 Total acreage 38.00 Forest		Design Point 2 Total acreage 43.46 Forest	
(0.00002005kg/m3) (36.59acres* 4047m2) (1.27m) (0.64) = Impervious	2.41	(0.00002005kg/m3) (19.23acres* 4047m2) (1.27m) (0.64) = Impervious	1.27
(0.00026kg/m3) (0acres* 4047m2) (1.27m) (0.98) = Wetland	-	(0.00026kg/m3) (7.87acres* 4047m2) (1.27m) (0.98) = Wetland	10.31
(0.0000825kg/m3) (1.41acres* 4047m2) (1.27m) (0.64) = Pasture/Grass	0.38	(0.0000825kg/m3) (1.43acres* 4047m2) (1.27m) (0.64) = Pasture/Grass	0.39
(0.00014kg/m3) (0acres* 4047m2) (1.27m) (0.64) = Total kg of P per year	- 2.79	(0.00014kg/m3) (14.93acres* 4047m2) (1.27m) (0.64) = Total kg of P per year	6.88 18.85
Pre Development		Post Development	
Design Point 2a Total acreage 2.89 Forest		Design Point 2a Total acreage 1.80 Forest	
(0.00002005 kg/m3) (2.89acres* 4047m2) (1.27m) (0.64) =	0.19	(0.00002005 kg/m3) (1.73 acres * 4047 m2) (1.27 m) (0.64) =	0.11
(0.00026kg/m3) (0acres* 4047m2) (1.27m) (0.98) =	-	(0.00026kg/m3) (0acres* 4047m2) (1.27m) (0.98) =	-
$(0.0000825 \text{kg/m3}) (0 \text{acres}^* 4047 \text{m2}) (1.27 \text{m}) (0.64) =$	-	(0.0000825 kg/m3) (0 acres * 4047 m2) (1.27 m) (0.64) =	-
(0.00014kg/m3) (0acres* 4047m2) (1.27m) (0.64) = Total kg of P per year	- 0.19	(0.00014 kg/m3) (0.07 acres * 4047 m2) (1.27 m) (0.64) = Total kg of P per year	0.03 0.14
Pro Davelonment		Post Davelonment	
Design Point 2b Total acreage 17.97		Design Point 2b Total acreage 4.27 Forest	
(0.00002005 kg/m3) (17.97 acres * 4047 m2) (1.27 m) (0.64) =	1.19	(0.0002005 kg/m3) (3.68acres* 4047m2) (1.27m) (0.64) =	0.24
(0.00026kg/m3) (0acres* 4047m2) (1.27m) (0.98) =	-	$(0.00026 \text{kg/m3}) (0 \text{acres}^* 4047 \text{m2}) (1.27 \text{m}) (0.98) =$	-
$(0.0000825 \text{kg/m3}) (0 \text{acres}^* 4047 \text{m2}) (1.27 \text{m}) (0.64) =$	-	$(0.0000825 \text{kg/m3}) (0 \text{acres}^* 4047 \text{m2}) (1.27 \text{m}) (0.64) =$	-
$(0.00014 \text{kg/m3}) (0 \text{ accres}^* 4047 \text{ m2}) (1.27 \text{ m}) (0.64) =$ Total kg of P per year	- 1.19	(0.00014 kg/m3) (0.59 acres * 4047 m2) (1.27 m) (0.64) = Total kg of P per year	0.27 0.51
Pre Development		Post Development	
Design Point 3 Total acreage 14.68		Design Point 3 Total acreage 27.38	
$(0.00002005 \text{kg/m3}) (9.88 \text{acres}^* 4047 \text{m2}) (1.27 \text{m}) (0.64) =$	0.65	(0.00002005 kg/m3) (15.39 acres* 4047 m2) (1.27 m) (0.64) =	1.01
$\begin{array}{l} \text{Intervious} \\ (0.00026 \text{kg/m3}) & (1.66 \text{acres}^* \ 4047 \text{m2}) & (1.27 \text{m}) & (0.98) = \\ \text{Weak-ad} \end{array}$	2.17	(0.00026 kg/m3) (4.24 acres * 4047 m2) (1.27 m) (0.98) =	5.55
we train $(0.000825 \text{kg/m3}) (0.13 \text{acres}^* 4047 \text{m2}) (1.27 \text{m}) (0.64) = 0.000825 \text{kg/m3}$	0.04	we training (0.0000825 kg/m3) (0 acres * 4047 m2) (1.27 m) (0.64) =	-
rasure/Grass (0.00014kg/m3) (3.01acres* 4047m2) (1.27m) (0.64) = Total kg of P per year	1.38 4.24	rasture/Grass (0.00014kg/m3) (7.76acres* 4047m2) (1.27m) (0.64) = Total kg of P per year	3.57 10.13

Pre Development		Post Development	
Design Point 4 Total acreage 12.33		Design Point 4 Total acreage 3.57	
$(0.00002005 \text{kg/m3}) (9.33 \text{acres}^* 4047 \text{m2}) (1.27 \text{m}) (0.64) =$	0.62	(0.00002005 kg/m3) (2.77acres* 4047m2) (1.27m) (0.64) =	0.18
Impervious		Impervious	
(0.00026 kg/m3) (1.6acres* 4047m2) (1.27m) (0.98) =	2.10	(0.00026 kg/m3) (0.31 acres * 4047 m2) (1.27 m) (0.98) =	0.41
Wetland		Wetland	
(0.0000825 kg/m3) (0acres* 4047m2) (1.27m) (0.64) =	-	$(0.0000825 \text{kg/m3}) (0 \text{ acres}^* 4047 \text{m2}) (1.27 \text{m}) (0.64) =$	-
Pasture/Grass (0.00014kg/m3) (1.4acree* 4047m2) (1.27m) (0.64) $-$	0.64	Pasture/Grass (0.00014kg/m3) (0.49 $_{2}$ cres* 4047m2) (1.27m) (0.64) –	0.23
Total kg of P per vear	3.36	Total kg of P per vear	0.23
Pre Development		Post Development	
Design Point 5 Total acreage 44.40		Design Point 5 Total acreage 24.14	
Forest		Forest	
(0.00002005 kg/m3) (38.96acres* 4047m2) (1.27m) (0.64) =	2.57	(0.00002005 kg/m3) (17.61 acres * 4047 m2) (1.27 m) (0.64) =	1.16
Impervious (0.00026kg/m3) (02cres* $4047m^2$) (1.27m) (0.98) –		Impervious $(0.00026 kg/m^3) (3.073 cres * 4047 m^2) (1.27m) (0.98) =$	4.02
Wetland	-	Wetland	4.02
(0.0000825 kg/m3) (1.21acres* 4047m2) (1.27m) (0.64) =	0.33	(0.0000825 kg/m3) (0.1 acres * 4047 m2) (1.27 m) (0.64) =	0.03
Pasture/Grass		Pasture/Grass	
(0.00014 kg/m3) (4.23 acres * 4047 m2) (1.27 m) (0.64) =	1.95	(0.00014 kg/m3) (3.36acres* 4047m2) (1.27m) (0.64) =	1.55
Total kg of P per year	4.85	Total kg of P per year	6.76
Der Deuslamment			
Prie Development		Post Development	
Forest		Forest	
(0.00002005 kg/m3) (0acres* 4047m2) (1.27m) (0.64) =	-	(0.00002005 kg/m3) (1.53acres* 4047m2) (1.27m) (0.64) =	0.10
Impervious		Impervious	
(0.00026 kg/m3) $(0 acres * 4047 m2)$ $(1.27 m)$ $(0.98) =$	-	(0.00026 kg/m3) (0.22 acres * 4047 m2) (1.27 m) (0.98) =	0.29
Wetland (0.00008251 (a/m^2)) (0.00008251 (a/m^2)) (1.27m) (0.64) =		Wetland (0.00008251/ a/m^2) (0.0000000 * 4047m ²) (1.27m) (0.64) =	
$(0.0000825 \text{Kg/III5}) (0acles* 4047 \text{III2}) (1.27 \text{III}) (0.04) = D_{\text{acture/Grass}}$	-	$(0.0000823 \text{kg/IIIS}) (030108^{\circ} 40471112) (1.27111) (0.04) =$ Pasture/Grass	-
(0.00014 kg/m3) (2.82acres* 4047m2) (1.27m) (0.64) =	1.30	(0.00014 kg/m3) (0.25 acres * 4047 m2) (1.27 m) (0.64) =	0.12
Total kg of P per year	1.30	Total kg of P per year	0.51
Pre Development		Post Development	
Design Point 7 Total acreage 5.31		Design Point 7 Total acreage 4.92	
Forest (0.00002005kg/m3) (0.37acres* $4047m^2$) (1.27m) (0.64) –	0.02	rorest (0.00002005kg/m3) (2.57acres* 4047m2) (1.27m) (0.64) –	0.17
Impervious	0.02	Impervious	0.17
(0.00026 kg/m3) (0acres* 4047m2) (1.27m) (0.98) =	-	$(0.00026 \text{kg/m3}) (1.17 \text{acres}^* 4047 \text{m2}) (1.27 \text{m}) (0.98) =$	1.54
Wetland		Wetland	
(0.0000825 kg/m3) (0acres* 4047m2) (1.27m) (0.64) =	-	$(0.0000825 \text{kg/m3}) (0 \text{acres}^* 4047 \text{m2}) (1.27 \text{m}) (0.64) =$	-
Pasture/Grass	2.29	Pasture/Grass	0.54
(0.00014 kg/m3) (4.95 acres* 404 /m2) (1.2 /m) (0.64) = Total kg of P per year	2.28	(0.00014kg/m3) (1.1/acres* 404/m2) (1.2/m) (0.64) = Total kg of P per year	0.54
Town ng or T per year			2120
Pre Development		Post Development	
Design Point 8 Total acreage 40.51		Design Point 8 Total acreage 52.82	
Forest		Forest	
(0.00002005 kg/m3) (26.23acres* 4047m2) (1.27m) (0.64) =	1.73	(0.00002005 kg/m3) (30.29acres* 4047m2) (1.27m) (0.64) =	2.00
1111per v10us (0.00026kg/m3) (0acres* 4047m2) (1.27m) (0.98) –	_	1111per vious (0 00026kg/m3) (9 72acres* 4047m2) (1 27m) (0 98) –	12 73
Wetland	_	Wetland	12.13
$(0.0000825 \text{kg/m3}) (0.7 \text{acres}^* 4047 \text{m2}) (1.27 \text{m}) (0.64) =$	0.19	(0.0000825 kg/m3) (0.32 acres * 4047 m2) (1.27 m) (0.64) =	0.09
Pasture/Grass		Pasture/Grass	
(0.00014 kg/m3) (13.58acres* 4047m2) (1.27m) (0.64) =	6.25	(0.00014 kg/m3) (12.49acres* 4047m2) (1.27m) (0.64) =	5.75
Total kg of P per year	8.17	Total kg of P per year	20.57

Pre Development		Post Development	
Design Point 9 Total acreage 26.05		Design Point 9 Total acreage 24.72	
Forest		Forest	
(0.00002005 kg/m3) (9.76 acres * 4047 m2) (1.27 m) (0.64) =	0.64	(0.00002005 kg/m3) (10.45 acres * 4047 m2) (1.27 m) (0.64) =	0.69
Impervious		Impervious	
(0.00026 kg/m3) (0.62 acres * 4047 m2) (1.27 m) (0.98) =	0.81	(0.00026 kg/m3) (4.97 acres * 4047 m2) (1.27 m) (0.98) =	6.50
Wetland		Wetland	
(0.0000825 kg/m3) (0.14 acres * 4047 m2) (1.27 m) (0.64) =	0.04	(0.0000825 kg/m3) (0.2 acres * 4047 m2) (1.27 m) (0.64) =	0.05
Pasture/Grass		Pasture/Grass	
$(0.00014 \text{kg/m3}) (15.52 \text{acres}^* 4047 \text{m2}) (1.27 \text{m}) (0.64) =$	7.15	$(0.00014 \text{kg/m3}) (9.11 \text{acres}^* 4047 \text{m2}) (1.27 \text{m}) (0.64) =$	4.19
Total kg of P per year	8.64	Total kg of P per year	11.43
Pro Davalonment		Dest Davidonment	
Design Design 11 Total agreese 165.06		Post Development 11 Total agrange 160.25	
Forest		Design Folint 11 Total acteage 109.25	
$(0.00002005 \text{kg/m}^3)$ (127.23acres* 4047m2) (1.27m) (0.64) –	8 39	$(0.00002005 k_{B}/m_{3}) (142.12) = (147 m_{2}) (1.27 m_{2}) (0.64) =$	9 37
(0.00002005kg/hl5) (127.25acres 4047hl2) (1.27hl) (0.04) =	0.57	(0.00002005 kg/m3)(142.124005 + 4047 m2)(1.27 m)(0.04) =	9.57
$(0.00026kg/m^3)$ (12.28acres* 4047m ²) (1.27m) (0.98) –	16.00	$(0.00026 kg/m^3)$ (10.012cres* 4047m2) (1.27m) (0.98) –	13 11
(0.00020kg/hl3) (12.20deres 4047hl2) (1.27hl) (0.98) =	10.09	(0.00020 kg/m3) (10.01acres 404/m2) (1.2/m) (0.98) =	15.11
$(0.0000825 \text{kg/m}^3)$ (6.223 cres* 4047 m²) (1.27 m) (0.64) –	1 69	$(0.0000825 \text{kg/m}^3)$ (5.43acres* 4047m ²) (1.27m) (0.64) –	1 47
Pasture/Grass	1.07	Pasture/Grass	1.47
(0.00014kg/m^3) (19.32acres* 4047m ²) (1.27m) (0.64) =	8 90	(0.00014kg/m^3) (11.68acres* 4047m ²) (1.27m) (0.64) =	5 38
Total kg of P per year	35.07	Total kg of P per year	29.33
Pre Development		Post Development	
Design Point 12 Total acreage 34.37		Design Point 12 Total acreage 40.21	
Forest		Forest	
(0.00002005 kg/m3) (33.64acres* 4047m2) (1.27m) (0.64) =	2.22	(0.00002005 kg/m3) (34.29acres* 4047m2) (1.27m) (0.64) =	2.26
Impervious		Impervious	
(0.00026 kg/m3) $(0 acres * 4047 m2)$ $(1.27 m)$ $(0.98) =$	-	(0.00026 kg/m3) (1.86acres* 4047m2) (1.27m) (0.98) =	2.44
Wetland		Wetland	
$(0.0000825 \text{kg/m3}) (0.72 \text{acres}^* 4047 \text{m2}) (1.27 \text{m}) (0.64) =$	0.20	(0.0000825 kg/m3) (0.72 acres * 4047 m2) (1.27 m) (0.64) =	0.20
Pasture/Grass		Pasture/Grass	
(0.00014kg/m3) $(0 \text{acres}^* 4047 \text{m2})$ (1.27m) $(0.64) =$	-	(0.00014 kg/m3) (3.34acres* 4047m2) (1.27m) (0.64) =	1.54
Total kg of P per year	2.42	Total kg of P per year	6.44

Total Existing kg P/year 80.38

Total Proposed kg P/year 124.94

Total pre-development acreage 479.09

Total post-development acreage 479.08
Direct Calculation Total Kg of TSS per year

<u>Pre Development</u> Design Point 1 Total acreage 74.71		Post Development Design Point 1 Total acreage 80.53	
Forest (0.037kg/m3) (70.18acres* 4047m2) (1.27m) (0.64) =	8,541	Forest (0.037kg/m3) (62.09acres* 4047m2) (1.27m) (0.64) =	7,557
Impervious (0.15kg/m3) (0acres* 4047m2) (1.27m) (0.98) =	-	Impervious (0.15kg/m3) (6.44acres* 4047m2) (1.27m) (0.98) =	4,864
Wetland $(0 \text{kg/m3}) (4.53 \text{acres}^* 4047 \text{m2}) (1.27 \text{m}) (0.64) =$ Pasture/Grass	-	Wetland (0kg/m3) (4.53acres* 4047m2) (1.27m) (0.64) =	-
(0.037 kg/m3) * (0 acres * 4047 m2) (1.27 m) (0.64) = Total TSS kg/Year	8,541	(0.037 kg/m3) * (7.47 acres * 4047 m2) (1.27 m) (0.64) = Total TSS kg/Year	909 13,330
Pre Development		Post Development	
Design Point 2 Total acreage 38.00 Forest		Design Point 2 Total acreage 43.46 Forest	
(0.037kg/m3) (36.59acres* 4047m2) (1.27m) (0.64) = Impervious	4,453	(0.037kg/m3) (19.23acres* 4047m2) (1.27m) (0.64) = Impervious	2,341
(0.15kg/m3) (0acres* 4047m2) (1.27m) (0.98) = Wetland	-	(0.15kg/m3) (7.87acres* 4047m2) (1.27m) (0.98) = Wetland	5,945
(0kg/m3) (1.41acres* 4047m2) (1.27m) (0.64) = Pasture/Grass	-	(0kg/m3) (1.43acres* 4047m2) (1.27m) (0.64) = Pasture/Grass	-
(0.037kg/m3) * (0acres* 4047m2) (1.27m) (0.64) = Total TSS kg/Year	4,453	(0.037kg/m3) * (14.93acres* 4047m2) (1.27m) (0.64) = Total TSS kg/Year	1,818 10,104
<u>Pre Development</u> Design Point 2a Total acreage 2.89		Post Development Design Point 2a Total acreage 1.80	
$(0.037 \text{ kg/m3}) (2.89 \text{ acres}^* 4047 \text{ m2}) (1.27 \text{ m}) (0.64) =$	351	$(0.037 \text{kg/m3}) (1.73 \text{acres}^* 4047 \text{m2}) (1.27 \text{m}) (0.64) =$	211
(0.15 kg/m3) (0acres* 4047m2) (1.27m) (0.98) =	-	$(0.15 \text{kg/m3}) (0 \text{acres}^* 4047 \text{m2}) (1.27 \text{m}) (0.98) =$	-
(0 kg/m3) (0 acres* 4047m2) (1.27m) (0.64) = Pasture/Grass	-	(0 kg/m3) (0 acres * 4047 m2) (1.27 m) (0.64) =	-
(0.037 kg/m3) * (0 acres * 4047 m2) (1.27 m) (0.64) = Total TSS kg/Year	- 351	(0.037kg/m3) * (0.07acres* 4047m2) (1.27m) (0.64) = Total TSS kg/Year	9 219
Pre Development		Post Development	
Design Point 2b Total acreage 17.97 Forest		Design Point 2b Total acreage 4.27 Forest	
(0.037kg/m3) (17.97acres* 4047m2) (1.27m) (0.64) = Impervious	2,187	(0.037kg/m3) (3.68acres* 4047m2) (1.27m) (0.64) = Impervious	448
(0.15kg/m3) (0acres* 4047m2) (1.27m) (0.98) = Wetland	-	(0.15kg/m3) (0acres* 4047m2) (1.27m) (0.98) = Wetland	-
(0kg/m3) (0acres* 4047m2) (1.27m) (0.64) = Pasture/Grass	-	(0kg/m3) (0acres* 4047m2) (1.27m) (0.64) = Pasture/Grass	-
(0.037kg/m3) * (0acres* 4047m2) (1.27m) (0.64) = Total TSS kg/Year	2,187	(0.037kg/m3) * (0.59acres* 4047m2) (1.27m) (0.64) = Total TSS kg/Year	71 519
Pre Development Design Point 3 Total acreage 14.68		Post Development Design Point 3 Total acreage 27.38	
Forest (0.037kg/m3) (9.88acres* 4047m2) (1.27m) (0.64) =	1,202	Horest (0.037kg/m3) (15.39acres* 4047m2) (1.27m) (0.64) =	1,873
(0.15kg/m3) (1.66acres* 4047m2) (1.27m) (0.98) =	1,254	1100000000000000000000000000000000000	3,204
we trand (0 kg/m3) (0.13 acres * 4047 m2) (1.27 m) (0.64) =	-	wettand $(0 \text{kg/m3}) (0 \text{acres}^* 4047 \text{m2}) (1.27 \text{m}) (0.64) =$	-
rasune Grass (0.037kg/m3) * (3.01acres* 4047m2) (1.27m) (0.64) = Total TSS kg/Year	366 2,823	rasture/01ass (0.037kg/m3) * (7.76acres* 4047m2) (1.27m) (0.64) = Total TSS kg/Year	944 6,020

Pre Development	Post Development
Design Point 4 Total acreage 12.33	Design Point 4 Total acreage 3.57
Forest $(0.027 k_{2}/m^{2}) (0.22 correct 4047 m^{2}) (1.27 m) (0.64) = 1.126$	Forest $(0.0271c_2/m^2) (2.77a_2mc_* 40.47m^2) (1.07m) (0.64) = 2277$
(0.03/kg/m3)(9.332cres*404/m2)(1.2/m)(0.04) = 1,130	(0.03/kg/m3)(2.7/acres + 404/m2)(1.2/m)(0.04) = 337
(0.15 kg/m^3) (1.6 acres* 4047m ²) (1.27m) (0.98) = 1.212	(0.15 kg/m3) (0.31 acres* 4047 m2) (1.27 m) (0.98) = 234
Wetland	Wetland
$(0 \text{kg/m3}) (0 \text{acres}^* 4047 \text{m2}) (1.27 \text{m}) (0.64) =$	$(0 \text{kg/m3}) (0 \text{acres}^* 4047 \text{m2}) (1.27 \text{m}) (0.64) =$
Pasture/Grass	Pasture/Grass
(0.037 kg/m3) * (1.4 acres * 4047 m2) (1.27 m) (0.64) = 170	(0.037 kg/m3) * (0.49 acres * 4047 m2) (1.27 m) (0.64) = 60
Total TSS kg/Year 2,518	Total TSS kg/Year 631
Pro Davalonment	Post Davelonment
Design Point 5 Total acreage 44.40	Design Point 5 Total acreage 24.14
Forest	Forest
(0.037 kg/m3) (38.96acres* 4047m2) (1.27m) (0.64) = 4,742	(0.037 kg/m3) (17.61acres* 4047m2) (1.27m) (0.64) = 2,143
Impervious	Impervious
$(0.15 \text{kg/m3}) (0 \text{acres}^* 4047 \text{m2}) (1.27 \text{m}) (0.98) = -$	$(0.15 \text{kg/m3}) (3.07 \text{acres}^* 4047 \text{m2}) (1.27 \text{m}) (0.98) = 2,318$
Wetland	Wetland
$(0 \text{kg/m3}) (1.21 \text{ acres}^* 4047 \text{m2}) (1.27 \text{m}) (0.64) = -$	$(0 \text{kg/m3}) (0.1 \text{acres}^* 4047 \text{m2}) (1.27 \text{m}) (0.64) = -$
Pasture/Grass (0.027 k_{2}/m^{2}) * (4.22 k_{2}/m^{2}) (1.27 m) (0.64) - 514	Pasture/Grass (0.0271/g/m2) * (2.26 grass * 4047 m2) (1.27 m) (0.64) = 400
$(0.03/\text{kg/m3})^*$ (4.23acres* 404/m2) (1.2/m) (0.04) = 514 Total TSS kg/Vear 5 256	$(0.05 / \text{kg/m}_5)^* (5.50 \text{acres}^* 404 / \text{m}_2) (1.2 / \text{m}) (0.04) = 409$ Total TSS kg/Vear 4871
Pre Development	Post Development
Design Point 6 Total acreage 2.82	Design Point 6 Total acreage 2.00
Forest	Forest
$(0.037 \text{kg/m3}) (0 \text{acres}^* 4047 \text{m2}) (1.27 \text{m}) (0.64) = -$	$(0.037 \text{kg/m3}) (1.53 \text{acres}^* 4047 \text{m2}) (1.27 \text{m}) (0.64) = 186$
Impervious	Impervious
$(0.15 \text{kg/m3}) (0 \text{acres}^* 404 / \text{m2}) (1.2 / \text{m}) (0.98) = -$	$(0.15 \text{ kg/m3}) (0.22 \text{ acres}^* 404 / \text{m2}) (1.2 / \text{m}) (0.98) = 16 / 16 / 16 / 16 / 16 / 16 / 16 / 16$
(0 kg/m3) (0 acres * 4047 m2) (1.27 m) (0.64)	(0 kg/m3) (0 acres* 4047m2) (1.27m) (0.64) -
Pasture/Grass	Pasture/Grass
(0.037 kg/m3) * (2.82 acres * 4047 m2) (1.27 m) (0.64) = 343	(0.037 kg/m3) * (0.25 acres * 4047 m2) (1.27 m) (0.64) = 31
Total TSS kg/Year 343	Total TSS kg/Year 383
Pre Development	Post Development
Design Point / Total acreage 5.31	Design Point / Total acreage 4.92
Forest $(0.037k_{\pi}/m_{3}) = (0.37a_{eres} * 4047m_{2}) = (1.27m) = (0.64) = 45$	FOREST $(0.037 \text{kg/m}^3) (2.57_{3} \text{cres}* 40.47 \text{m}^2) (1.27 \text{m}) (0.64) = 213$
(0.05/kg/iii5) (0.5/acres 404/iii2) (1.2/iii) (0.04) = 45	$\frac{(0.057 \text{ kg/m5})(2.57 \text{ acres}^{-4.047 \text{ m2}})(1.27 \text{ m})(0.04)}{\text{Impervious}} = 515$
$(0.15 \text{kg/m3}) (0 \text{acres}^* 4047 \text{m2}) (1.27 \text{m}) (0.98) =$	$(0.15 \text{kg/m3}) (1.17 \text{acres}^* 4047 \text{m2}) (1.27 \text{m}) (0.98) = 887$
Wetland	Wetland
$(0 \text{kg/m3}) (0 \text{acres}^* 4047 \text{m2}) (1.27 \text{m}) (0.64) =$	$(0 \text{kg/m3}) (0 \text{acres}^* 4047 \text{m2}) (1.27 \text{m}) (0.64) =$ -
Pasture/Grass	Pasture/Grass
$(0.05/\text{kg/m3})^*$ (4.95acres* 4047m2) (1.27m) (0.64) = 602 Total TSS kg/Veer	(0.03/kg/m3) * (1.17 acres * 4047 m2) (1.27 m) (0.64) = 142 Total TSS kg/Vaar
10(a) 100 Ng/ 10a) 04/	1,545
Pre Development	Post Development
Design Point 8 Total acreage 40.51	Design Point 8 Total acreage 52.82
Forest	Forest
(0.037 kg/m3) (26.23 acres * 4047 m2) (1.27 m) (0.64) = 3,193	$(0.037 \text{kg/m3}) (30.29 \text{acres}^* 4047 \text{m2}) (1.27 \text{m}) (0.64) = 3,687$
Impervious	Impervious
$(0.15 \text{kg/m3}) (0 \text{acres}^* 4047 \text{m2}) (1.27 \text{m}) (0.98) = -$	$(0.15 \text{kg/m3}) (9.72 \text{acres}^* 4047 \text{m2}) (1.27 \text{m}) (0.98) = 7,346$
wetiand $(0 \log m^2) (0.7 \cos^2 4047 m^2) (1.27 m) (0.64) =$	Wetland $(0 kg/m^2) (0.22 gorses * 40.47 m^2) (1.27 m) (0.54) =$
(0.04) = -	(0.82/11.2)(0.52acres + 404/11.2)(1.2/11)(0.04) = -
(0.037 kg/m3) * (13.58 acres * 4047 m2) (1.27 m) (0.64) = 1.653	(0.037 kg/m3) * (12.49 acres * 4047 m2) (1.27 m) (0.64) = 1520
Total TSS kg/Year 4,845	Total TSS kg/Year 12,553

Total Existing kg P/year	66,721	Total Proposed kg P/year	88,374	
Total TSS kg/Year	4,095	Total TSS kg/Year	5,986	
Pasture/Grass (0.037 kg/m3) * (0 acres * 4047 m2) (1.27 m) (0.64) =	-	Pasture/Grass (0.037kg/m3) * (3.34acres* 4047m2) (1.27m) (0.64) =	406	
$(0 \text{kg/m3}) (0.72 \text{acres}^* 4047 \text{m2}) (1.27 \text{m}) (0.64) =$	-	$(0 \text{kg/m3}) (0.72 \text{acres}^* 4047 \text{m2}) (1.27 \text{m}) (0.64) =$	-	
Wetland		Wetland	,	
(0.15 kg/m3) (0acres* 4047m2) (1.27m) (0.98) =	-	$(0.15 \text{kg/m3}) (1.86 \text{acres}^* 4047 \text{m2}) (1.27 \text{m}) (0.98) =$	1,406	
(0.03 / kg/m3) (33.64acres* 4047m2) (1.27m) (0.64) = Impervious	4,095	(0.03 / kg/m3) (34.29acres* 4047m2) (1.27m) (0.64) = Impervious	4,174	
Forest	4.005	Forest		
<u>Pre Development</u> Design Point 12 Total acreage 34.37		Post Development Design Point 12 Total acreage 40.21		
Total TSS kg/Year	27,117	Total TSS kg/Year	26,283	
(0.037 kg/m3) * (19.32 acres * 4047 m2) (1.27 m) (0.64) =	2,351	(0.037 kg/m3) * (11.68 acres * 4047 m2) (1.27 m) (0.64) =	1,422	
(0 kg/m3) (6.22 acres * 4047 m2) (1.27 m) (0.64) =	-	(0 kg/m3) (5.43 acres * 4047 m2) (1.27 m) (0.64) =	-	
Wetland		Wetland		
(0.15 kg/m3) (12.28 acres * 4047 m2) (1.27 m) (0.98) =	9,280	$(0.15 \text{kg/m3}) (10.01 \text{acres}^* 4047 \text{m2}) (1.27 \text{m}) (0.98) =$	7,565	
(0.05 / kg/m3) (12 / .25 acres + 404 / m2) (1.2 / m) (0.04) = Impervious	15,485	(0.03/kg/m3) (142.12acres* 404/m2) (1.2/m) (0.04) = Impervious	17,297	
Forest	15 495	Forest	17 207	
Design Point 11 Total acreage 165.06		Design Point 11 Total acreage 169.25		
Pre Development		Post Development		
Total TSS kg/Year	3,546	Total TSS kg/Year	6,132	
(0.037 kg/m3) * (15.52 acres * 4047 m2) (1.27 m) (0.64) =	1,889	(0.037 kg/m3) * (9.11 acres * 4047 m2) (1.27 m) (0.64) =	1,108	
(0 kg/m3) (0.14 acres* 4047 m2) (1.27 m) (0.64) =	-	$(0 \text{kg/m3}) (0.2 \text{acres}^* 4047 \text{m2}) (1.27 \text{m}) (0.64) =$	-	
Wetland		Wetland		
$(0.15 \text{ kg/m3}) (0.62 \text{ acres}^* 4047 \text{ m2}) (1.27 \text{ m}) (0.98) =$	469	(0.15 kg/m3) (4.97 acres * 4047 m2) (1.27 m) (0.98) = 3.75		
(0.03/kg/m3) (9./6acres* 404/m2) (1.2/m) (0.64) =	1,188	(0.03/kg/m3) (10.45acres* 404/m2) (1.2/m) (0.64) = 1,2/1 Impervious		
Forest	1 100	Forest	1 071	
Design Point 9 Total acreage 26.05		Design Point 9 Total acreage 24.72		
Pre Development		Post Development		

Total pre-development acreage 479.09

Total post-development acreage 479.08

<u>Exhibit J</u>

Figures

- Figure 1-5 West of Hudson (NYC) Watershed
- Figure 1-3 Site Location Map
- Figure 3-10 Vegetation Covertypes
- Figure 3-7 NYSDEC Mapped Streams
- Figure 3-9 Perennial, Intermittent, and Ephemeral Drainages
- Figure 3-1 Shallow (<60") Depth to Bedrock
- Figure 3-3 Masterplan Overlay on Shallow Depth to Bedrock

PREPARED FOR:

⊢ ₽	≣ Ω			
R				
1" =	= 2,000'			
0 1	,000 2,000			
F	eet			
Project:	08077			
Date:	11/30/2011			
Figure:				
1-3				

the LA group

Landscape Architecture and Engineering, PC

> 40 Long Alley Saratoga Springs New York 12866

P 518/567-8100 F 518/587-0180 www.thelagroup.com

Unauthorized alteration or addition to this document is a violation of Section 7209 of the New York State Education Law

© the LA group 2008					
PREPARED FOR:	PREPARED FOR: TUCK EASTSIDE PARTNERS, L.P. 34 SALISBURY ROAD DARIEN, CT 06820				
The Windham Mountain Sporting Club	Town of Windham, Greene County, New York	Title Vegetation Covertypes			
	R				
0	1" =	600'			
	ىر F4	000 			
Proiec	Project: 08077				
Date: 12/07/2011					
Figure:					
3-10					

1,000

Feet

3-7

2,000

08077

12/07/2011

0

				0
				the LA gr
		lancer ange	1	and Engineering 40 Long Saratoga Sj New York P 518/587 518/587 vww.thelagrou
	LON		a terminer D	Unauthorized alterat addition to this docume violation of Section 7209 New York State Educatio
		an al a state of the state of t	-	© the LA Group 2011
LUCATION		X-S-Y	~	Design Drawn
		Rensonville	×	Checked
	<u>LOCAT</u> KEY	ION MAP	4	
	WC2			This drawing is not contribut xurposes of constitution, us a specifically, noted as issu- construction. Submission: FOR REGULATOF APPROVALS ONL
				۵.
LEGEN	D THATES HAAN HAA SET (HES)			NE PARTNERS, L ROAD
0	* * PROPERTY ANGLE * * IRON PIPE (IPE) OR IRON RO	D (IRF) FOUND		OR: STSID SURY
	* * STONE ON END / ROCK PILE			EAG
alw	" UTILITY POLE AND OVERHEAL	Ο ΠΙΙΤΥ		ICK ISA
~~~~~	" " STONE WALL			1 1 8 C
0	" TREE WITH WIRE			
*	" " TREE WITH BLAZE &/OR PAI	NT		
	" " TREE WITH FLAGGING			-
÷	" " DECIDUOUS TREE			qn
£13	" " CONIFEROUS TREE			0
0	" BOOK OF BOULDER			
	* * BOOK OUTCOOD			ort
07				Sp
	" " CHAIR LIET TOWER			<u>n</u>
0	CHAIR LIFT TOWER			nta
	" " DELINEA TED WA TERCOURSE			nam Mou ^{am} , ^{New York}
UNAUTIONIZED ALTERATIO 7203 SUBDINGON 2 OF DRAMING ARE VALID ONLY ITIS A VIDLATION OF MEN THESE FAMING, SPECIFICAT SUBJECTION OF A LICENSED SURVEY HAS BEEN P THIS SURVEY HAS BEEN P SURVEY THES OF THE M SURVEY OF SOF THE M SURVEY OF SOF THE M	N OR ADDITION TO THIS DRAWING I THE NEW YORK STATE BUICATION I THEY BERN THE SEAL OF THE Y YORK STATE BUICATION LAW FOR ONS OR REPORTS IN ANY WAY, UN PROFESSIONAL (ARCHITECT, ENDIN REPARED IN ACCORDANCE WITH TH WYORK STATE ASSOCIATION OF P 18, 1997.	S A VIOLATION OF SECTION AM COPIES OF THIS NERTANER. ANY PERSON TO ALTER LESS ACTING UNDER THE EER, LANDSCAPE ARCHITECT, 5 CODE OF FRACTICE FOR ROFESSIONAL LAND		The Windh Town of Windh Greene County
PROJECT: 164207	.01	DRAWING:	1	
DATE: 12-07-2	D11 D0'			
TAX MAP #: 95-1-2	8.1	WC-1		
DRAWN BY: J	WV PV	_		
FILE; \$420701- Wolarcourse Delineation sheet WC	CHRISTINE P. VALACHOVIC NYS PLS #50368	SHEET 1 of 3		Revisions
and a second second second second				
				Project: 0 Date: 11/23/
				Drawing
				····· 0

Land ar	the LA group the states the statestatestatestatest the statest the statestatestatest t				
This drap purpose is spatic construc Subr FO AP	The description for the program of the second formation of the second formation of the second for construction. Submission: FOR REGULATORY APPROVALS ONLY				
PREPARED FOR:	TUCK EASTSIDE PARTNERS, L.P. 34 SALISBURY ROAD	DARIEN, CT 06820			
The Windham Mountain Sporting Club	Town of Windham Greene County, New York	Perennial, Intermittent and Ephemeral Drainages			
Revl: Proje Date	sions 	08077 3/2011			



the LA group				
This draw purposes is specifi construct Subn FOR API	ving is in celly no celly no celly no cells nilssic PROV.	iot certi structio ted as DD: ULAT	Ned for the n, unless It issued for ORY INLY	
PREPARED FOR:	TUCK EASTSIDE PARTNERS, L.P.	34 SALISBURY ROAD	DARIEN, CT 06820	
The Windham Mountain Sporting Club	Town of Windham	Greene County, New York	$\mid$ Perennial, Intermittent and Ephemeral Drainages $\mid$	
Revis Proje Date Draw	ilons ct: ing 3	-91	080777 33/20111	



Land ar unauto addit volution volution volution volution volution volution volution volution volution volution volution volution volution volution volution volution volution volution volution volution volution volution volution volution volution volution volution volution volution volution volution volution volution volution volution volution volution volution volution volution volution volution volution volution volution volution volution volution volution volution volution volution volution volution volution volution volution volution volution volution volution volution volution volution volution volution volution volution volution volution volution volution volution volution volution volution volution volution volution volution volution volution volution volution volution volution volution volution volution volution volution volution volution volution volution volution volution volution volution volution volution volution volution volution volution volution volution volution volution volution volution volution volution volution volution volution volution volution volution volution volution volution volution volution volution volution volution volution volution volution volution volution volution volution volution volution volution volution volution volution volution volution volution volution volution volution volution volution volution volution volution volution volution volution volution volution volution volution volution volution volution volution volution volution volution volution volution volution volution volution volution volution volution volution volution volution volution volution volution volution volution volution volution volution volution volution volution volution volution volution volution volution volution volution volution volution volution volution volution volution volution volution volution volution volution volution volution volution volution volution volution volution volution volution volution volution volution volution volution volution volution volution volution volution volution	the scaped Eng sa sa sa sa sa sa sa sa sa sa sa sa sa	LA g a Arch gineel 40 L avratog ew Y 2 518/ 518/ s 40c. ction 7. e Educ ction 7. e Educ	Group G
This dras purposes is specific construc Subr FOI API	ving is r con celly no colly no nissic nissic R REG PROV.	ict certification struction ted as DIT: ULAT ALS C	lied for the n, unless I: issued for ORY INLY
PREPARED FOR:	TUCK EASTSIDE PARTNERS, L.P.	34 SALISBURY ROAD	DARIEN, CT 06820
The Windham Mountain Sporting Club	Town of Windham	Greene County, New York	Perennial, Intermittent and Ephemeral Drainages
Revis Proje Date	slons ing	11/2	08077 372011



