crossroads ventures llc

DRAFT
 Environmental Impact Statement

Appendix 20

Bird, Reptile and Amphibian Surveys
with

Addendum 2002

BIRDS. OF THE BELLEAYRE RESORT SITE

Introduction

Field surveys took place in spring and early summer 2000 documenting the occurrence of birds at the proposed Belleayre Resort Site. The property is located in the towns of Middletown and Shandaken, Delaware and Ulster Counties, New York. Prior to fieldwork, a list was compiled of birds that were likely to occur on the site based on habitat requirements and geographical distribution (Table 1). Field survey results in the current report provide documentation of bird species actually recorded as compared to those expected at the site.

Methods

Field Surveys:

Bird surveys were conducted on 5, 10, 11, and 12 May and 7, 8, and 9 June 2000 in order to record both migrant and resident species. Also, during a site visit on 19 April 2000, several species were recorded. Using a random search method, surveys took place in designated plant communities, including beech-maple mesic forest, hemlock-northern hardwoods forest, hemlock-hardwood swamps, and successional old fields. Birds also were noted if they were observed on mowed lawns, flying overhead, or on the periphery of the study area. A concerted effort was made to traverse as large an area as possible in all habitats within the project area, especially those located within the proposed area of impact.

Surveys on most days (11, 12 May; 8, 9 June) began at 0600 h so the observer could record a maximum number of species by both auditory and visual surveys. In addition to early morning surveys, late afternoon surveys also yielded a significant number of species. Mid-day was usually reserved for other duties (e.g., reptile and amphibian surveys), as most bird species are usually quiet during mid-day. However, if encountered, birds also were recorded during midday.

Threatened and Endangered Species:

A letter was sent to the US Fish and Wildlife Service (USFWS) office in Cortland, New York, requesting information on the occurrence of endangered or threatened species, or critical habitat in the vicinity of this project. In a reply letter dated 6 March 2000, Mark W. Clough of the USFWS stated that except for transient individuals, there are no known federally-listed or proposed endangered or threatened species under the jurisdiction of the USFWS in the project impact areas, including threatened or endangered birds.

A letter also was sent to the New York Natural Heritage Program requesting rare species information. In a response letter dated 4 May 2000, Betty A. Ketcham indicated that there are "no records of known occurrences of rare or state-listed animals or plants, significant natural communities, or other significant habitats, on or in the immediate vicinity of [the project site]."

However, a Sharp-shinned Hawk, a species listed by the New York Department of Environmental Conservation as a Species of Special Concern was observed during field surveys in the westernmost section of the study area (see "Results and Discussion, Least Common Species," below).

It is possible that a Common Nighthawk nested in the power line right-of-way behind the old farm house located in successional old field habitat. The Common Nighthawk is listed as a Species of Special Concern by the New York State Department of Environmental Conservation, and is also listed on the 1986 American Birds' Blue List, a list designed by the National Audubon Society to identify patterns of impending or ongoing serious losses in regional avian populations (Ehrlich et al., 1988).

A Common Nighthawk was suspected when the distinctive "boom" call was heard from a distance. However, when the sighting was further investigated, no sign of a Common Nighthawk was observed. Therefore, although presence is suspected, the species was not recorded.

Results and Discussion

Field surveys documented a total of 71 species of birds at the proposed home and resort development site (Table 2, Table 3). Sixty-one species were recorded in May and 58 in June. Many of the individuals observed in May could have been migrants as they were seen during migration dates of each species in New York State. Most species recorded are known to reside in the Catskills. Of the 58 resident species observed in June, all were potential breeders in the area.

Most Common Species:

The most common species observed were the American Robin (Turdus migratorius) and Redeyed Vireo (Vireo olivaceus); both species were recorded on all survey dates (5, 10, 11, and 12 May; 7, 8, and 9 June). The American Robin also was recorded during a site visit on 19 April, a date too early to observe Red-eyed Vireos. Based on data recorded for Red-eyed Vireos in New York State, the species is rare before mid-May, with peak spring migration dates recorded on 17 and 20 May (Bull, 1985).

It also must be noted that American Robins and Red-eyed Vireos are extremely vocal, and this may account for their repeated documentation. For example, the Black-throated Green Warbler (Dendroica virens) was the most commonly heard warbler species, being heard continuously throughout a survey day. However, the Black-and-white Warbler (Mniotilta varia), a species that becomes quite elusive during the latter part of the nesting season (Andrle and Carroll, 1988) consequently was seldom heard during June surveys. However, the Breeding Bird Atlas (1988) shows that Black-and-white Warblers may be just as common as Black-throated Green Warblers, if not more so.

Least Common Species:

Several species were observed only once, including a Sharp-shinned Hawk (Accipiter striatus), Purple Finch (Carpodacus pupureus), and Blackburnian Warbler (Dendroica fusca).
Although only one Blackburnian Warbler was seen (12 May), this species is common in the Catskills (Bull,1985), and are known breeders there (Drennan, 1981). Purple Finches also are common breeders at high elevations (Bull, 1985). A male Purple Finch was observed on 9 June in hemlock-northern hardwoods forest on the edge of an intermittent rocky stream wetland.

On 7 June, a Sharp-shinned Hawk was seen flying in a westerly direction over Todd Mountain Road. The bird flew from beech-maple mesic forest habitat near the northernmost flagged wetlands on the east side of the road into the forested habitat on the west side of the road (off the project site proper). It is not known whether or not the Sharp-shinned Hawk nested on the property, but because the hawk was observed during the breeding season in potentially suitable nesting habitat within its geographical breeding range, it is possible that the bird was a breeder.

Although Sharp-shinned Hawks use mixed conifer-deciduous forests for nesting, most nests recorded in New York State have been located in conifers, with 80% of the nests found in hemlocks (Bull, 1974). Small scattered stands of hemlocks are located along Todd Mountain Road, and larger stands of hemlocks are found just northwest of the accipiter observation site, well within a typical home range size recorded for the species. Large stands of hemlocknorthern forest habitat also are found within 1.3 miles of the hawk observation.

Since no nest or fledglings were found, it is impossible to confirm whether or not the hawk observed was a breeder. Sharp-shinned Hawks have been recorded to have nesting and hunting territories as large as 796.5 ha (Palmer, 1988; Johnsgard, 1990), and as small as 64 ha.
Additionally, the nests of this species are extremely difficult to find; some New York nests have been located as high as 50 feet in a dense hemlock tree.

Number of Birds Observed in a Particular Habitat:

Successional Old Fields:

Only 17% of the total number of birds observed on all survey dates ($\mathrm{n}=10$ species) were found in successional old field habitat. On 11 May a small flock of Chipping Sparrows (Spizella passerina) was observed feeding on highbush blueberry (Vaccinium corymbosum) near an abandoned farmhouse. It is possible that the flock were migrants; spring maxima counts of Chipping Sparrows in New York have been recorded only five days earlier (Bull, 1985). The same numbers were not observed on later survey dates; in fact, only one Chipping Sparrow was observed on 7 June during surveys of the same old-field habitat. Nine additional species were observed in successional old-fields (Tables 2 and 3).

Several of the species observed in successional old field habitat most likely nest in the abandoned buildings, planted shrubs, stone walls, or other human-related sites found in the area, rather than in the old field vegetation. These species include House Wren (Troglodytes aedon), Eastern Phoebe (Sayornis phoebe), and House Finch (Carpodacus mexicanus).

Hardwood Swamps:

Twenty-three percent of the total birds observed on all survey dates ($\mathrm{n}=16$ species) were found in hemlock-hardwood swamps. Veery (Catharus fuscescens) and Wood Thrush (Hylocichla mustelina) were heard in the hemlock-dominated wetlands, as were several species of woodpeckers (Yellow-bellied Sapsucker, Sphyrapicus varius; Downy Woodpecker, Picoides pubescens; Northern Flicker, Colaptes auratu; Pileated Woodpecker, Dryocopus pileatus). Among the remaining species observed in hemlock-hardwood swamp was a Barred Owl (Strix varia), a year-round resident of wooded swamps, and six species of warblers (Table 2). All of these species may nest in forested swamp habitat.

Flying Overhead:

Four species were observed flying over the study site in May, including Great Blue Heron (Ardea herodias), Turkey Vulture (Cathartes aura), Chimney Swift (Chaetura pelagica), and Tree Swallow (Tachycineta bicolor). No breeding habitat was located that appeared suitable for Great Blue Herons within the immediate project area. There also was no suitable nesting habitat (open areas located near water) for tree swallows. However, numerous possible nest sites suitable for Turkey Vultures were observed, including rocky outcrops, hollow trees, and abandoned buildings. Although Chimney Swifts usually nest in chimneys or in the inner walls of old buildings (Andrle and Carroll, 1988), they may also nest in hollow trees, many of which were found on the property.

Three additional species flew over the site in June (Barn Swallow, Hirundo rustica; American crow, Corvus brachyrhynchos; Common Raven, Corvus corax). Nesting habitat for American crows was found within the project site proper and included forested areas with coniferous trees, a preferred type of nest tree. Although no open cliff habitat was found on the property, the Common Raven has also been found to nest in trees (Andrle and Carroll 1988). There is little probability that Barn swallows nest on the project proper due to the limited amount of open habitat found there, and no Barn Swallows were observed in the vicinity of a single possible nesting area surrounding an abandoned farmhouse in open habitat.

One species was observed foraging over open water (Belted Kingfisher, Ceryle alcyon). However, the open water habitat was located on the periphery on the project area. Red-winged Blackbirds (Agelaicus phoeniceus) observed in scrub-shrub wetland habitat also were not located within the project area.

Beech-Maple Mesic Forest:

Sixty-two percent of the total birds observed on all survey dates ($n=44$) were found in beechmaple mesic forest. Beech-maple mesic forest was clearly the dominant habitat type, comprising 82% of the total site. Among the birds observed in beech-maple forest were three raptors (Sharp-shinned Hawk, Accipiter striatus; Red-tailed Hawk, Buteo jamaicensis; Broad-winged Hawk, Buteo platypterus), two game species (Ruffed Grouse, Bonasa umbellus; Wild Turkey, Meleagris gallopavo), and thirteen warblers (Tables 1 and 2).

For many of the warblers, (e.g., Black-and-white Warbler, Mniotilta varia; Black-throated Blue Warbler, Dendroica caerulescens; American Redstart, Setophaga ruticilla; Ovenbird, Seiurus aurocapillus) beech-maple mesic forest is their preferred habitat (Andrle and Carroll, 1988). Black-throated Green Warblers (D. virens) also were consistently found in beech-maple habitat during the survey. However, several species observed during this survey in beech-maple mesic forest in May (e.g., Common Yellowthroat, Geothlypis trichas; Chestnut-sided Warbler, D. pensylvanica; Nashville Warbler, Vermivora ruficapilla) typically nest in habitats other than deciduous forest.

Near Woodchuck Hollow at the headwaters of an intermittent rocky stream, a spring located in beech-maple mesic forest was a center of bird activity on 9 June 2000. Numerous species including a male Purple Finch (Carpodacus purpureas) were seen flying in the direction of the spring. A Red-eyed Vireo was observed bathing in a man-made stone foundation that was probably an old spring house.

Hemlock-Northern Hardwoods Forest

Thirty-five percent of the total birds observed on all survey dates $(\mathrm{n}=25)$ were found in hemlock-northern hardwoods forest habitat in May and June. Of special interest was a Broadwinged Hawk (Buteo platypterus) that flew from beech-maple forest habitat to a shrub on a mowed lawn. The bird was observed feeding on chicks in a nest of an unidentified species of passerine located in the shrub. Several warblers, including Black-and-white Warbler, Ovenbird, American Redstart, Yelllow-rumped Warbler, Black-throated Blue Warbler, Black-throated Green Warbler, Chestnut-sided Warbler, and Yellow Warbler, were observed in hemlocknorthern hardwoods. The latter two species (Chestnut-sided and Yellow warblers) were found along the edges of the forested habitat, as well.

Table 1. Potential bird species of the Belleayre Resort Site (Andrle and Carroll, 1988).

Common Name
Scientific Name

Great Blue Heron
Green-backed Heron
Mallard Duck
Turkey Vulture
Sharp-shinned Hawk
Cooper's Hawk
Broad-winged Hawk
Red-tailed Hawk
American Kestrel
Ruffed Grouse
Wild Turkey
Killdeer
Mourning Dove
Black-billed Cuckoo
Yellow-billed Cuckoo
Great Horned Owl
Barred Owl
Chimney Swift
Ruby-throated Hummingbird
Belted Kingfisher
Yellow-bellied Sapsucker
Downy Woodpecker
Hairy Woodpecker
Northern Flicker
Pileated Woodpecker
Eastern Wood-Peewee
Alder Flycatcher
Least Flycatcher
Eastern Phoebe
Great-crested Flycatcher
Eastern Kingbird
Tree Swallow
Cliff Swallow
Barn Swallow
Blue Jay
American Crow
Black-capped Chickadee
Tufted Titmouse
Red-breasted Nuthatch
White-breasted Nuthatch

Ardea herodias
Butorides striatus
Anas platyrhynchos
Cathartes aura
Accipiter striatus
Accipiter cooperii
Buteo platypterus
Buteo jamaicensis
Falco sparverius
Bonasa umbellus
Meleagris gallopavo
Charadrius vociferus
Zenaida macroura
Coccyzus erythropthalmus
Coccyzus americanus
Bubo virginiana
Strix varia
Chaetura pelagica
Archilochus colubris
Ceryle alcyon
Sphyrapicus varius
Picoides pubescens
Picoides villosus
Colaptes auratus
Dryocopus pileatus
Contopus virens
Empidonax alnorum
Empidonax minimus
Sayornis phoebe
Myiarchus crinitus
Tyrannus tyrannus
Tachycineta bicolor
Hirundo pyrrhonota
Hirundo rustica
Cyanocitta cristata
Corvus brachyrhynchos
Parus atricapillus
Parus bicolor
Sitta canadensis
Sitta carolinensis

Brown Creeper
Winter Wren
Golden-crowned Kinglet
Eastern Bluebird
Veery
Hermit Thrush
Wood Thrush
American Robin
Gray Catbird
Northern Mockingbird
Brown Thrasher
Cedar Waxwing
European Starling
Blue-headed Vireo
Yellow-throated Vireo
Warbling Vireo
Red-eyed Vireo
Blue-winged Warbler
Nashville Warbler
Yellow Warbler
Chestnut-sided Warbler
Magnolia Warbler
Black-throated Blue Warbler
Yellow-rumped Warbler
Black-throated Green Warbler
Black-and-white Warbler
American Redstart
Ovenbird
Louisiana Waterthrush
Mourning Warbler
Common Yellowthroat
Canada Warbler
Scarlet Tanager
Northern Cardinal
Rose-breasted Grosbeak
Indigo Bunting
Eastern Towhee
Chipping Sparrow
Field Sparrow
Song Sparrow
White-throated Sparrow
Dark-Eyed Junco
Red-winged Blackbird
Common Grackle
Brown-headed Cowbird
Baltimore Oriole

Certhia americana
Troglodytes troglodytes
Regulus satrapa
Sialia sialis
Catharus fuscescens
Catharus guttatus
Hylocichla mustelina
Turdus migratorius
Dumetella carolinensis
Mimus polyglottos
Toxostoma rufum
Bombycilla cedrorum
Sturnus vulgaris
Vireo solitarius
Vireo flavifrons
Vireo gilvus
Vireo olivaceus
Vermivora pinus
Vermivora ruficapilla
Dendroica petechia
Dendroica pensylvanica
Dendroica magnolia
Dendroica caerulescens
Dendroica coronata
Dendroica virens
Mniotilta varia
Setophaga ruticilla
Seiurus aurocapillus
Seiurus motacilla
Oporornis philadelphia
Geothlypis trichas
Wilsonia canadensis
Piranga olivacea
Cardinalis cardinalis
Pheucticus ludovicianus
Passerina cyanea
Pipilo erythrophthalmus
Spizella passerina
Spizella pusilla
Melospiza melodia
Zonotrichia albicollis
Junco hyemalis
Agelaicus phoeniceus
Quiscalus quiscula
Molothrus ater
Icterus galbula

Purple Finch
House Finch
American Goldfinch
House Sparrow

Carpodacus purpureus
Carpodacus mexicanus
Carduelis tristis
Passer domesticus

Table 2. Bird species observed at the Belleayre Resort Site during field visits on 19 April, and 5, 10, 11, and 12 May 2000. All habitat types were located within the study area except OW (open water) and SS (scrub-shrub wetland), both of which were located on the periphery of the study area.

Species

Common Name	Scientific Name	${ }^{1}$ Habitat Type
Great Blue Heron	Ardea herodias	FO
Turkey Vulture	Cathartes aura	FO
Broad-winged Hawk	Buteo platypterus	HH
Ruffed Grouse	Bonasa umbellus	BM
Wild Turkey	Meleagris gallopavo	BM
Mourning Dove	Zenaida macroura	OF
Barred Owl	Strix varia	HS
Chimney Swift	Chaetura pelagica	FO
Belted Kingfisher	Ceryle alcyon	BM, OW
Yellow-bellied Sapsucker	Sphyrapicus varius	BM,HS
Downy Woodpecker	Picoides pubescens	BM,HH,HS
Hairy Woodpecker	Picoides villosus	BM,HH
Northern Flicker	Colaptes auratu	BM,HS
Pileated Woodpecker	Dryocopus pileatus	BM,HH,HS
Least Flycatcher	Empidonax minimus	BM,HH
Great-crested Flycatcher	Myiarchus crinitus	SS,HH
Tree Swallow	Tachycineta bicolor	FO
Blue Jay	Cyanocitta cristata	BM,OF
American Crow	Corvus brachyrhynchos	OF,ML
Black-capped Chickadee	Parus atricapillus	BM,HH,HS
Tufted Titmouse	Parus bicolor	BM
White-breasted Nuthatch	Sitta carolinensi	BM
Brown Creeper	Certhia americana	HH
Winter Wren	Troglodytes troglodytes	HH,HS
House Wren	Troglodytes aedon	OF
Golden-crowned Kinglet	Regulus satrapa	HH,BM
Veery	Catharus fuscescens	BM,HS
Hermit Thrush	Catharus guttatus	BM
Wood Thrush	Hylocichla mustelina	BM,HS
American Robin	Turdus migratorius	BM, HH,OF
Gray Catbird	Dumetella carolinensis	OF
Blue-headed Vireo	Vireo solitarius	BM
Red-eyed Vireo	Vireo olivaceus	BM,HH,HS
Yellow Warbler	Dendroica petechia	SS,HH,HS,BM

Table 2. continued

Species		
Common Name	Scientific Name	${ }^{1}$ Habitat Type
Chestnut-sided Warbler	Dendroica pensylvanica	HH,BM
Black-throated Blue Warbler	Dendroica caerulescens	HH,BM
Yellow-rumped Warbler	Dendroica coronata	BM,HH,HS
Black-throated Green Warbler	Dendroica virens	BM,HH,HS
Blackburnian Warbler	Dendroica fusca	BM
Pine Warbler	Dendroica pinus	HH
Prairie Warbler	Dendroica discolor	OF
Northern Parula warbler	Parula americana	BM
Nashville Warbler	Vermivora ruficapilla	BM
Black-and-white Warbler	Mniotilta varia	HS,HH.BM
American Redstart	Setophaga ruticilla	HS,HH,BM
Ovenbird	Seiurus aurocapillus	HH,HS,BM
Common Yellowthroat	Geothlypis trichas	SS,BM
Scarlet Tanager	Piranga olivacea	BM,HH
Northern Cardinal	Cardinalis cardinalis	OF,BM
Rose-breasted Grosbeak	Pheucticus ludovicianus	BM,HH,HS
Eastern Towhee	Pipilo erythrophthalmus	BM
Chipping Sparrow	Spizella passerina	OF
Song Sparrow	Melospiza melodia	BM,OF
Dark-eyed Junco	Junco hyemalis	HH,BM
Red-winged Blackbird	Agelaicus phoeniceus	SS
Common Grackle	Quiscalus quiscula	ML
Brown-headed Cowbird	Molothrus ater	OF
Baltimore Oriole	Icterus galbula	BM
House Finch	Carpodacus mexicanus	OF
American Goldfinch	Carduelis tristis	FO, BM
House Sparrow	Passer domesticus	ML

${ }^{1}$ Habitat types in which birds were observed at the Belleayre study site:
BM - Beech-Maple Mesic Forest
HH - Hemlock-Northern Hardwoods Forest
ML - Mowed lawn
OF - Successional Old Field
HS - Hardwood Swamp
FO - Observed Flying Overhead

Table 3. Bird species observed at the Belleayre Resort Site during field visits on 7, 8, and 9 June 2000. All habitat types were located within the study area except OW (open water) and SS (scrub-shrub wetland), both of which were located on the periphery of the study area.

Species		
Common Name	Scientific Name	${ }^{1}$ Habitat Type
Turkey Vulture	Cathartes aura	FO
Sharp-shinned Hawk	Accipiter striatus	BM
Broad-winged Hawk	Buteo platypterus	ML, HH
Red-tailed Hawk	Buteo jamaicensis	BM
Mourning Dove	Zenaida macroura	OF
Ruby-throated Hummingbird	Archilochus colubris	BM
Belted Kingfisher	Ceryle alcyon	OW
Yellow-bellied Sapsucker	Sphyrapicus varius	BM
Downy Woodpecker	Picoides pubescens	BM
Hairy Woodpecker	Picoides villosus	HH
Northern Flicker	Colaptes auratu	BM
Pileated Woodpecker	Dryocopus pileatus	BM
Eastern Wood-Peewee	Contopus virens	BM
Least Flycatcher	Empidonax minimus	BM
Eastern Phoebe	Sayornis phoebe	OF,ML
Barn Swallow	Hirundo rustica	FO
Blue Jay	Cyanocitta cristata	BM
American Crow	Corvus brachyrhynchos	FO
Common Raven	Corvus corax	FO
Black-capped Chickadee	Parus atricapillus	BM,HH
Tufted Titmouse	Parus bicolor	BM,OF
Red-breasted Nuthatch	Sitta canadensis	BM
White-breasted Nuthatch	Sitta carolinensis	BM
Brown Creeper	Certhia americana	HH
Winter Wren	Troglodytes troglodytes	HH
House Wren	Troglodytes aedon	OF
Golden-crowned Kinglet	Regulus satrapa	BM
Veery	Catharus fuscescens	BM,HH
Hermit Thrush	Catharus guttatus	BM
Wood Thrush	Hylocichla mustelina	BM
American Robin	Turdus migratorius	OF,BM
European Starling	Sturnus vulgaris	ML
Blue-Headed Vireo	Vireo solitarius	HH
Red-eyed Vireo	Vireo olivaceus	BM, RS
Blue-winged Warbler	Vermivora pinus	BM

Table 3. continued

Species		${ }^{1}$ Habitat Type
Common Name	Scientific Name	
Yellow Warbler	Dendroica petechia	SS,BM
Chestnut-sided Warbler	Dendroica pensylvanica	HH
Black-throated Blue Warbler	Dendroica caerulescens	BM
Black-throated Green Warbler	Dendroica virens	BM
Common Yellowthroat	Geothhlypis trichas	HH
Northern Parula warbler	Parula americana	BM
Black-and-White Warbler	Mniotilta varia	BM
American Redstart	Setophaga ruticilla	BM
Ovenbird	Seiurus aurocapillus	BM
Scarlet Tanager	Piranga olivacea	BM
Northern Cardinal	Cardinalis cardinalis	OF
Rose-breasted Grosbeak	Pheucticus ludovicianus	HH,BM
Chipping Sparrow	Spizella passerina	OF
Song Sparrow	Melospiza melodia	OF
Dark-eyed Junco	Junco hyemalis	BM
Red-winged Blackbird	Agelaicus phoeniceus	SS
Common Grackle	Quiscalus quiscula	ML
Brown-headed Cowbird	Molothrus ater	ML
Baltimore Oriole	Icterus galbula	BM
Purple Finch	Carpodacus purpureus	HH
House Finch	Carpodacus mexicanus	OF
American Goldfinch	Carduelis tristis	BM
House Sparrow	Passer domesticus	ML

${ }^{1}$ Habitat types in which birds were observed at the Belleayre study site:
BM - Beech-Maple Mesic Forest
HH - Hemlock-Northern Hardwoods Forest
ML - Mowed lawn (with shrubs/trees)
OF - Successional Old Field
HD - Hardwood Swamp
RS - Intermittent Rocky Stream Wetland
FO - Observed Flying Overhead
OW - Open water

Literature Cited:

Andrle, R.F., and J.R. Carroll. 1988. The Atlas of Breeding Birds in New York State.Cornell University Press, Ithaca.

Bull, J. 1974. Birds of New York State, including the 1976 Supplement. Comstock Publishing Associates, Ithaca.

Drennan, S.R. 1981. Where to Find Birds in New York State. Syracuse University Press. Syracuse.

Ehrlich, P.R., D.S. Dobkin, and D. Wheye. 1988. The Birder's Handbook, a Field Guide to the Natural History of North American Birds. Simon and Schuster Inc. New York.

Johnsgard, P.A. 1990. Hawks, Eagles, and Falcons of North America. Smithsonian Institution Press, Washington and London.

Palmer, R.S. 1988. Handbook of North American Birds, Volume 4. Yale University Press, New Haven and London.

REPTILES AND AMPHIBIANS OF THE BELLEAYE RESORT SITE

Introduction

Field surveys took place in spring and early summer 2000 documenting the occurrence of herpetofauna (amphibians and reptiles) at the proposed Belleayre Resort Site. The property is located in the towns of Middletown and Shandaken, Delaware and Ulster Counties, New York. Prior to fieldwork, two lists were compiled of reptiles and amphibians that are judged likely to occur in the vicinity of the project site. One list (Table 1) is based on species occurrences in the southeastern New York region as predicted by habitat requirements and geographical distribution. A second list (Table 2) is based on more specific regional records of species observed in four 7.5-minute topographic quadrangles that include the project site. These quadrangles include data gathered by the New York State DEC Herp Altlas Project, a statewide survey of amphibians and reptiles documenting their occurrence and distribution. Field survey results in the current report provide documentation of herpetofaunal species actually recorded as compared to those expected at the site.

Methods

Field Surveys:

Amphibian and reptile surveys were conducted on 5, 10, and 11 May; 7, 8, and 9 June; and 6 July 2000. Diurnal surveys took place in designated plant community locations (successional old field, hardwood swamps, hemlock-hardwood swamps, hemlock-northern hardwood forest, beech-maple mesic forest, intermittent rocky stream wetland). Within these communities, areas of survey concentration took place in the following locations: (1) in brooks flowing through upland forests, (2) along brook borders, (3) along old logging roads and hiking trails, (4) around old buildings, and (5) in targeted areas off logging trails where the observer went to nearby habitats such as rock outcrops that could be potential denning areas for certain species of snakes.

Due to cool, dry weather conditions during the observer's site visits only one nocturnal survey was conducted. The single night-time survey took place on 11 May 2000 when weather conditions appeared suitable for survey work (9.5 degrees Celsius; light rain). The night-time survey took place in order to encounter migrating or foraging amphibians or snakes that would likely be encountered on roadways, and to make chance observations of road-killed specimens. The survey was conducted by road-cruising at low speeds through the few sections of the project site that contained roads.

Diurnal surveys employed a "visual encounter survey" method (VES). Visual encounter surveys are active searches in which the observer walks through a particular habitat for a prescribed period systematically searching for animals (Heyer et al., 1994). The survey includes both visual searches and cover object searches (e.g., pulling apart logs and replacing them to their original position, searching leaf litter, and searching under bark and rocks). Searches were conducted by walking through the site and concentrating on various habitat
types (e.g., streams) within a particular habitat (e.g., beech-maple mesic forest), while searching for particular species.

Eggs and larvae of many amphibian species can be detected in suitable aquatic habitats. Surveys for eggs of terrestrial species (e.g., lungless salamanders) took place under leaf litter, rocks or boards, or inside decaying logs. Surveys for egg masses of species such as wood frogs (Rana sylvatica) and spotted salamanders (Ambystoma maculatum) are a typical component of spring-breeding amphibian surveys. However, no suitable habitat was found for such species within the project area.

Intensive diurnal surveys took place in brooks and areas adjacent to them where rocks were turned over in search of the adults and aquatic larvae of salamanders such as spring salamanders (Gyrinophilus porphyriticus), dusky salamanders (Desmognathus fuscus, D. ochrophaeus), and two-lined salamanders (Eurycea bislineata). Deadfall (especially decaying logs) and rocks on the forest floor were overturned for terrestrial species such as red-backed salamanders and slimy salamanders (Plethodon cinereus, P. glutinosus). Wet mosses on large boulders were pulled back in search for dusky salamanders (Desmognathus spp.) and lungless salamanders (Plethodon spp.). All of the above searches took place in upland forest, with the exception of a few areas where brooks flowed through forested wetland.

Rocky outcrops and slab rocks for denning were searched for snakes. Crevices were scanned with a mirror and flashlight for potential snakes inhabiting the rocky habitat. Leaf litter impressions, compactions and potential basking sites were noted around the outcrops. Leaf litter was lifted and searched with a hook tool. Sunlight patches were observed for basking snakes; rocks were overturned and the loose bark of some dead trees was peeled off. All rocks and bark were returned to their original position whenever possible.

Other than the stream habitat referred to above, there was little aquatic or wetland habitat where surveys for aquatic and semi-aquatic species could be conducted. No vernal pool habitat or other areas of standing water were encountered where species such as spotted salamanders (Ambystoma maculatum) or wood frogs (Rana sylvatica) could breed. There were few areas of either standing or flowing water deep enough for aquatic or semi aquatic turtles of any species within the areas of potential impact. An exception may include an area where Birch Brook flows through the western property at Lasher Road and Route 28. Other than possibly the Lasher Rd./Rt. 28 area, there was no slow-moving aquatic habitat deep enough for species such as northern water snakes (Nerodia sipedon) in the project area.

Data were recorded for each observation and included the following:

1. Species identification
2. Location
3. Date and time of day
4. Temperature and weather conditions
5. Behavior
6. Type of evidence for each species (e.g., dead-on-road, adult, larva)

Threatened and Endangered Species:

A letter was sent to the US Fish and Wildlife Service (USFWS) office in Cortland, New York, requesting information on the occurrence of endangered or threatened species, or critical habitat in the vicinity of this project. In a reply letter dated 6 March 2000, Mark W. Clough of the USFWS stated that there are no known federally-listed or proposed endangered or threatened species under the jurisdiction of the USFWS in the project impact areas, including no known threatened or endangered reptiles or amphibians.

A letter also was sent to the New York Natural Heritage Program requesting rare species information. In a response letter dated 4 May 2000, Betty A. Ketcham indicated that there are "no records of known occurrences of rare or state-listed animals or plants, significant natural communities, or other significant habitats, on or in the immediate vicinity of [the project site]."

No endangered or threatened reptile or amphibian species or herpetofaunal species of special concern were found during field surveys on the project site.

Results and Discussion

Fourteen species of amphibians and reptiles were observed at the proposed home and resort development site (Table 3). Of the 19 species reported for the four quadrangles of the project area during the NYS Herp Atlas Project (Table 2), 15 species were judged to be possible inhabitants of the project site. It should be noted that when observers contribute records to the NYS Herp Atlas Survey, it is standard procedure to search suitable habitats such as wetlands. No wetlands were found on the project site other than limited stream-side wetland habitat (intermittent rocky stream wetland, rocky headwater stream, shallow emergent marsh) and small areas of forested wetland (hardwood swamp, hemlock-hardwood swamp). As a result of limited wetland habitats, many common reptile and amphibian species typically observed when performing herpetological surveys were not recorded in the present survey (e.g., wood frog, Rana sylvatica; spotted salamander, Ambystoma maculatum; painted turtle, Chrysemys picta; Northern water snake, Nerodia sipedon).

Several species recorded by the Herp Atlas Project were not observed, although the habitat for them appeared to be suitable at the project site: Eastern box turtle (Terrapene carolina), Northern ringneck snake (Diadophus punctatus), and smooth green snake (Opheodrys vernalis).

Snakes:

Due to cool, dry weather conditions on most survey dates, several species of snakes predicted to occur were not observed during the survey period. An ideal temperature and relative humidity for most New York snake species is approximately 18 degrees Celsius with 60-80\% relative humidity (W.S. Brown, Professor/snake researcher, pers. comm.). In the present survey, the humidity was low on all survey days. The air temperature on 5 May was 25 degrees Celsius. Temperatures on later survey dates (10, 11, 12 May; 8,9 June) fell between
9.5 and 16.0 degrees Celsius. On 7 June the air temperature was 21 degrees Celsius; however, it was windy and the humidity was low. On 6 July the air temperature ranged between 17.0 (at 0900 h) and 24.0 degrees (at 1315 h) Celsius. Four snake species were observed during the 6 July survey day.

Although much of the habitat appeared to be suitable for snakes, most rocky outcrops and large slab rocks in the project area were located on north-facing slopes in closed-canopy forest. Most snakes in mountainous areas of New York require denning sites on south-facing slopes with an open canopy so that they can thermoregulate in sunny spots on the den after early spring emergence. Several rocky south-facing slopes were surveyed, but none of the habitats found were located in open-canopy forest. Several deciduous woodland snake species known to den together were anticipated, particularly the black rat snake (Elaphe obsoleta) and milk snake (Lampropeltis triangulum). Copperheads (Agkistrodon contortrix) and timber rattlesnakes (Crotalus horridus) also den with the above species, although the latter species is rare, and neither species has been found in the project area (NYS Herp Atlas data). On 6 July, an adult black rat snake was observed climbing down a small tree (witch hazel, Hamamelis virginiana) at the top of a steep rockslide on the south-facing slopes of the western section of the property. This terrestrial and arboreal species is often observed in trees where it may feed on nestling birds (pers. obs. by LA Group Biologist).

Of the previously-mentioned species, only the black rat snake (Elaphe obsoleta) was recorded during the Belleayre surveys. Also found on the south-facing slopes was a Northern brown snake (Storeria dekayi), a secretive, nocturnal species. The snake was observed under a flat rock in beech-maple forest, near a brook at the bottom of the slope. A common garter snake (Thamnophis sirtalis) also was observed on the south-facing beechmaple slopes of the western property. Likewise, garter snakes were recorded on the eastern property in the same deciduous-forest habitat on 6 July.

Throughout much of the property, suitable habitat for red-bellied snakes (Storeria occipitomaculata) was present. Although they prefer wetland-upland ecotones, red-bellied snakes are found in a variety of terrestrial habitats. This extremely secretive, nocturnal species may be found under rocks, logs, bark, and leaves, although if conditions are dry, they are apt to go underground in unused rodent burrows (Mitchell, 1994). A red-bellied snake was observed on top of the moist left litter in beech-maple forest on the south-facing slopes of the property, on 6 July.

Turtles:

The only turtle species recorded during the survey was a common snapping turtle (Chelydra serpentina) that was observed outside the survey boundaries. The turtle also was observed outside the herp survey period, on 28 June 2000, when LA Group biologists were leaving the Fir Mountain area. The snapping turtle was seen on Route 47, on the edge of the road. The turtle may use a pond on a resident's property on Lasher Road, or it may have come from Birch Creek. But snapping turtles have large home ranges, and therefore it is impossible to predict the exact location of the turtle's "home pond."

Salamanders:

The most common amphibian species observed was the Allegheny Mountain dusky salamander (Desmognathus ochrophaeus). Mountain duskies were observed on 5 May and on 8 and 9 June in eight different locations, and several dozen individuals were found in two of the eight locations (Table 3). The salamanders were found under rocks in shallow water or along brook borders in intermittent rocky stream wetlands or in streams that flowed through shallow emergent marshes. A congener, the northern dusky salamander (D. fuscus), was recorded in two of the seven locations.

On 6 July, on the south-facing slopes of the western property, two slimy salamanders (Plethodon glutinosus) were observed. The salamanders were found under two different flat rocks, both heavily covered underneath with ants and ant eggs. The rocks were located in an open area dominated by successional vegetation in beech-maple forest, at an elevation of approximately 1600 feet. When handled, the salamanders left a residue of adhesive skin secretions which function to deter predators (Petranka, 1998).

Additional salamander species observed at the study site included the two-lined salamander (Eurycea bislineata), red-backed salamander (Plethodon cinereus), and Eastern red-spotted newt (Notophthalmus viridescens). These species were found on 5 May, 10 May, and 8 June. P. cinereus was observed in large numbers (>12 individuals) in two locations. One site was a moss-covered, rocky bank where the salamanders were found underneath flat rocks and trickling waterfalls. The other site contained similar habitat on the forest floor.

Anurans:

Three anurans were observed in the study area: the green frog (Rana clamitans), spring peeper (Pseudacris crucifer), and American toad (Bufo americanus). Spring peepers were believed to inhabit a wetland on NYS DEC ski resort property, based on vocalizations heard on 11 May. An American toad was observed crossing a road outside the project site proper at 0300 h on a rainy night (11 May). Although the green frog is considered to be the most common frog in New York State based on data collected by the NYS Herp Atlas Project (data through 1998), in the present survey only two survey locations contained green frogs.

Literature Cited:

Conant, R., and J.T. Collins. 1998. A Field Guide to Reptiles and Amphibians, Eastern and Central North America, Third Edition. Houghton Mifflin Company, Boston.

Heyer, W.R., M.A. Donnelly, R.W. McDiarmid, L.C. Hayek, M.S. Foster, 1994. Measuring and Monitoring Biological Diversity, Standard Methods for Amphibians. Smithsonian Institution Press, Washington.

Mitchell, J.C. 1994. The Reptiles of Virginia. Smithsonian Institution Press. Washington and London.

New York State Amphibian and Reptile Atlas Project. 1999. New York State Amphibian and Reptile Atlas, 1990 - 1998 Interim Report. Wildlife Resources Center, Delmar, New York.

Petranka, J.W. 1998. Salamanders of the United States and Canada. Smithsonian Institution Press, Washington.

Table 1. Potential reptile and amphibian species of the Belleayre Resort Site based on distribution maps in Conant and Collins (1998).

Group	Common Name	Scientific Name ${ }^{1}$
Turtles	Common Snapping Turtle Wood Turtle Painted Turtle	Chelydra serpentina Clemmys insculpta Chrysemys picta
Snakes	Northern Water Snake Brown Snake Redbelly Snake Common Garter Snake Eastern Ribbon Snake Northern Ringneck Snake Northern Black Racer Smooth Green Snake Black Rat Snake Milk Snake Timber rattlesnake Northern Copperhead	Nerodia sipedon Storeria dekayi Storeria occipitomaculata Thamnophis sirtalis Thamnophis sauritis Diadophis punctatus Coluber constrictor Opheodrys vernalis Elaphe obsoleta Lampropeltis triangulum Crotalus horridus Agkistrodon contortrix
Salamanders	Spotted Salamander Blue-spotted Salamander Eastern Red-spotted Newt Northern Dusky Salamander Allegheny Mountain Dusky Salamander Red-backed Salamander Slimy Salamander Spring Salamander Two-lined Salamander Longtail Salamander	Ambystoma maculatum Ambystoma laterale Notophthalmus viridescens Desmognathus fuscus Desmognathus ochrophaeus Plethodon cinereus Plethodon glutinosus Gyrinophilus porphyriticus Eurycea bislineata Eurycea longicauda
Anurans	American Toad Gray Treefrog Spring Peeper Bullfrog Green Frog Wood Frog Northern Leopard Frog	Bufo americanus Hyla versicolor Pseudacris crucifer Rana catesbeiana Rana clamitans Rana sylvatica Rana pipiens

> Pickerel Frog Rana palustris

Table 2. Amphibian and reptile species recorded over the first 8 years of the New York State Herp Atlas Project (a NYSDEC-managed statewide herpetofaunal survey) in four USGS 7.5 minute topographic quadrangles (Fleischmanns, Westkill, Seager, Shandaken), that include the project area.
Group Common Name Scientific Name

Snakes	Common Garter Snake Northern Ringneck Snake Smooth Green Snake Northern Red-bellied Snake	Thamnophis sirtalis Diadophus punctatus Opheodrys vernalis Storeria occipitomaculata
Turtles	Eastern Box Turtle Wood Turtle Painted Turtle Common Snapping Turtle	Terrapene carolina Clemmys insculpta Crysemys picta Chelydra serpentina
Salamanders	Spotted Salamander Eastern Red-spotted Newt Allegheny Mountain Dusky Salamander Northern Dusky Salamander Northern Two-lined Salamander Red-backed Salamander	Ambystoma maculatum Notophthalmus viridescens Desmognathus ochrophaeus Desmognathus fuscus Eurycea bislineata Plethodon cinereus
Anurans	Pickerel Frog Wood Frog Bull Frog Green Frog Spring Peeper American Toad	Rana palustris Rana sylvatica Rana catesbeiana Rana clamitans Pseudacris crucifer Bufo americanus

Table 3. Reptile and amphibian species observed in spring-early summer 2000 at the proposed Belleayre Resort Site in the towns of Middletown and Shandaken, Delaware and Ulster Counties, New York.
Species Habitat Date Observed

Salamanders:

Notophthalmus viridescens	Beech-Maple Mesic Forest	
	Intermittent Rocky Stream Wetland 8 June	
Desmognathus ochrophaeus	Intermittent Rocky Stream Wetland 5 May, 8, 9 June	
Desmognathus fuscus	Intermittent Rocky Stream Wetland 5 May, 8, 9 June	
Eurycea bislineata	Intermittent Rocky Stream Wetland 5 May	
Plethodon cinereus	Intermittent Rocky Stream Wetland 10 May, 8 June	
Plethodon glutinosus	Beech-Maple Mesic Forest	6 July

Anurans:
Rana clamitans
Pseudacris crucifer
Bufo americanus

Snakes:
Thamnophis sirtalis
Elaphe obsoleta
Storeria occipitomaculata
Storeria dekayi
Intermittent Rocky Stream Wetland 5 May, 8 June
Scrub-shrub Swamp
5, 11 May
Roadway through
Hemlock-Northern Hardwood
Forest
Beech-Maple Mesic Forest
Beech-Maple Mesic Forest
Beech-Maple Mesic Forest
Beech-Maple Mesic Forest
11 May
5 May, 6 July
6 July
6 July
6 July
Turtles:
Chelydra serpentina
Roadway near Birch Creek
28 June
crossroadsventureslla

DRAFT
 Environmental Impact Statement

Appendix 20

Bird, Reptile and Amphibian Surveys
Addendum December 2002

The Belleayre Resort at Catskill Park

New York State Department of Environmental Conservation Division of Fish, Wildlife \& Marine Resources
 Bureau of Fisheries, Region 3
 21 South Putt Corners Road, New Paltz, New York 12561-1696
 Phone: (914) 2565364 • FAX: (914) 255-4659

Website: www.dec.sfate.ny.us

$$
3069 \text { molla }
$$

8 November 2000
Kevin J. Franke
The LA Group, P.C.
40 Long Alley
Saratoga Springs, NY 12866
Dear Mr. Franke:
I have collected all the survey data that we have in our files for the streams you requested in Ulster County. Over the years the format that the Bureau of Fisheries has used to record this information has evolved, as has our method of storing and retrieving this data. Therefore, you will see that the attached information has been provided in a variety of different forms. If this is hard for you to follow, please give me a call and I will help clarify the information. The most recent data has been coded on standard forms that are then entered into a statewide database. The database is not fully functional at this point and there is a backlog of data yet to be entered. For the data that has not yet been entered into the database, I have included the raw data forms. To understand the codes that are used, please check the back of the forms. I have included photocopies of the USGS quadrangle maps that show the stream numbering system our Department uses and the sites sampled this last September.

The enclosed stream surveys, and the year(s) they were conducted, are listed below:
Lost Clove Brook (H-171-53): 1936, 1957 and 2000
Birch Creek (H-171-52): 1936, 1956, 1980, 1988, 1989, 1993 and 1996
Giggle Hollow (H-171-52-3): 2000
Crystal Spring Brook (H-171-52-4): 2000
Woodchuck Hollow (H-171-52-4-1): 2000
Cathedral Glen Brook (H-171-52-4-1A): 2000
You will see that all of these streams contain adult and fingerling trout and therefore protection should be given to these streams to ensure that trout and trout spawning habitat is not degraded.

$\begin{array}{ll}\text { cc w/o enclosures: } & \begin{array}{l}\text { A.. Ciesluk (Div. of Environmental Permits, Region 3) } \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \text { W. Isaacs (Bureau of Filiot (Bureatat Region 3) } \\ \text { Records Access Office, Region 3 (FOIL \#668-3/00) } \\ \text { MJF:mjf File:LAGroup.wpd }\end{array} \\ & \end{array}$

Stocking policy:
$94-14-7(5 / 76)$
Formerly FW-88

Posting Notes
Miscellaneous:
The upper portion of the stream is in undeveloped woods, the middle in a rural housed area,
and the lower section in the Village of Fleischmanns.
itocking Policy:
Entire; 5.0 miles, $B T, S T, N S A$

$\stackrel{\circledR}{i n}$
NEW YORK STATE DEPARTMENT OF ENVIRONMENTAL CONSERVATION Stream survey

[^0]

FISH COLLECTION

or
SMALL STREAM SURVEY

[^1]NEW YORK STATE DEPARTMENT OF ENVIRONMENTAL CONSERVATION

STREAM SITE LOCATION RECORD
Coding Instructions. See Data Diction
Coding Instructions. See Data Dictionary for detailed information.

[^2]11. TIME START - Record the time that the electrofishing run began. Use 24 format, i.e. 3:30 PM $=1530$. Record times in Eastern Standard or Daylight Savings time, whith
1位

survey was done. For the AM hours before 10:00 record a leading zero, i.e. 7:30 $A M=0730$.
13. ON-TIME - Record the time, in hours and hundredths of hours that the electrofishing gear was actually applying current to the water and actively fishing. This can be either determined from
meters on the generator or control box, or estimated, as for backpack shockers.
14. WATER TEMPERATURE - Record the water temperature in degrees Fahrenheit or Celsius, as accurately as equipment allows.
 17. CONDUCTIVITY - Record the conductivity of the water to the nearest $\mu \mathrm{mho} / \mathrm{cm}^{2}$
18. CONDUCTIVITY METHOD - Enter the appropriate code from the list below.
 1. SURVEY NUMBER - Enter the region, year, and survey serial number. Take caution not to use survey serial numbers more than oncel
2. DATE - Enter the month, day and year the data on this form was collected. (Use a leading zero for days and months less than 10. le. 03/06/92).
3. SITE NUMBER - Enter the number that corresponds to the description of the location of the sampling effort. 4. NET/RUN NUMBER - If a piece of gear was used at the same site on the same day then assign each separa 4. GEAR CODE - Enter the appropriate code from the list same ste on the same day then assign each separate collection effort a sequential net/run number.
6. INVENTORY NUMBER - Relow. 7. WEATHER - Enter the appropriate code from the list below.
8. RAIN 48 - Enter "Y" if significant rain, that could bias the data 8. AAN 48 - Enter "Y" if significant rain, that could bias the data, has fallen at the site during the previous 48 hours.
9. LENGTH of SHORELINE SHOCKED. Enter the length of shoreline that was fished per run to the nearest yard.
10. COMMENTS - Record a "Y" if a comment record, (Rectype CO) relating to a GE record for this collection effort (survey, date, site, and net/run) has been completed.
11. TIME START - Record the time that the electrofishing run began. Use 24 format, i.e. $3: 30 \mathrm{PM}=1530$. Record times in Eastern Standard or Daylight Savings time, whicher
 12. TIME STOP. Record the time that the electrofishing run ended. Use 24 format, i.e. 3:30 PM $=1530$. survey was done. For the $A M$ hours before 10:00 record a leading zero, i.e. 7:30 $A M=0730$.
13. ON-TIME - Record the time, in hours and hundredths of hours that the electrofishing gear was actually applying current to the water and actively fishing. This can be either determined from
14. WATER TEMPERATURE - Record the water temperature in degrees Fahrenheit or Celsius, as accurately as equipment allows.

16. TEMP UNITS - Record "F" if temperature readings are recorded in Fahrenheit or "C" if they are recorded in Celsius. All te
17. CONDUCTIVITY - Record the conductivity of the water to the nearest μ mho/cm".

19. SECCHI DEPTH - Record the secchi depth, or the bottom depth, if the secchi depth and the bottom depth would be equal, to the nearest tenth of a foot.
20. BOTTOM - Enter "Y" if the secchi depth equals the bottom depth.
21. AC/DC - Enter "AC" for alternating current or "DC" for direct current electrofishing systems.
22. WAVEFORM - Enter the appropriate code from the list below
23. PULSE RATE - For AC systems enter the frequency, for DC sy
22. WAUEFRM - Enter the appropriate code from the list below
23. AMPERAGE - For AC systems enter the frequency, for DC systems enter the number of DC pulses per second.
25. VOLTAGE - Record the voltage applied to the water, this, can come come from a meter or equipment specifications. Recor

- Record the the that the electrofishing run ended Use 24 format, e. 3:30 PM = 1530. Record times in Eastern Standard or Daylight Savings time, whichever is in effect when the

20. BOTTOM - Enter " Y^{\prime} " if the secchi depth equals the bottom depth.
21. UNITS - Enter the number of electroshocking units used in conjunction with each other for this collection effort.
22. BRAIL LENGTH - Record the length of the brail to the nearest whole foot.
23. DC WANDS - Record the number of DC wands used with an electroshocki
24. DC WANDS - Record the number of DC wands used with an electroshocking system.
25. FLOW - Enter the appropriate code from the list below.
26. TARGET - Enter the appropriate code from the list below.
27. TARGET-Enter the appropriate code from the list below.
28. FINGERLING EFFICIENCY - Enter the estimate of electro
29. FINGERLING EFFICIENCY - Enter the estimate of electroshocking efficiency as it relates to trout fingerlings ($0+$) only.
30. YEARLING EFFICIENCY - Enter the estimate of electroshocking efficiency as it relates to trout yearlings (1+) only.
31. OLDER TROUT EFFICIENCY - Enter the estimate of electrofishing efficiency as it relates to older trout ($2+$ and older)
 34. SCAPPERS - Record the number of scappers.
32. ZERO CATCH - Record " Y " if no fish are captur
33. ZERO CATCH - Record "Y" if no fish are captured during the electrofishing effort.
34. BIAS - Enter "Y" if the electrofishing effort was biased, or the equipment damaged.

35. SUBMERGED, EMERGENT, FLOATING - Enter the appropriate code that best describes the abundance of each type of vegetation.
WEATHER CODES ELECTROFISHING GEAR CODES

STREAM CHARACTERISYICS RECORD
Coding Instructions. See Data Dictionary for detailed information.
36. SURVEY NUMBER - Enter the region, year, and survey serial number. Take caution not to use survey serial numbers more than oncel 2. DITE NUMBER - Enter the number that corresponds to the description of the location of the sampliny safd months less than 10 . ie. 03/06/92). survey was done. For the AM hours before $10: 00$ record a leadin zer $, 7: 30 \mathrm{AM}=0730$ 5. STREAM WIDTH - Record the average width of the stream study section from water's edge to water's edge to the nearest whole foot.
37. CHANNEL WIDTH - Record the average width of the channel, or streambed (bank to bank) to the nearest whole foot. 8. MEAN DEPTH - Enter the average depth of the water at the site to the nearest tenth of a foot. 9. MEAN DEPTH METHOD - Enter the appropriate code from the list below.
38. GRADIENT - Record the distance, in feet, over which 40 foo 12. SECTION LENGTH - Record the lengent record, (Rectype CO) relating to a 13. VELOCITY - Record the average veloctity of the stream through the site to the nearest tenth of a foot per second. 14. VELOCITY METHOD. Enter the appropriate code from the list below.
39. DISCHARGE - Record the average discharge volume through the site to 16. DISCHARGE METHOD. Enter the appropriate code from the list below.
40. POOLLENGTH - Record the total, summed length of pools in the section to the nearest whole foot.
41. QUALITY - Enter " V " if the pools at the site can be considered as high quality trout habitat. 19. WATER TEMPERATURE - Record the water temperature at the site in degrees Fahrenheit
42. TEMP UNITS - Record "F" if temperature readings are recorded in Fahrenteit or "C" if they ar, as accurately as equipment allows.
43. DISSOLVED OXYGEN. Record tha concentration of dissolved oxygen at the site to the nearest tenth mg in Celsius. All temperature readings recorded on this sheet should be in the same units. 23. pH - Record the pH of the water at the site to the nearest code from the list on the back of the WATER CHEMISTRY RECORD (Rectype C). . PH - Record the pH of the water at the site to the nearest hundredth.

 sectional area measured for discharge Salt brick

MEAN DEPTH METHOD CODES

Mean of Thalweg measurements
Mean of cross sectional transects

Visual estimate
Other, explain in
Other, explain in Comments

INDIVIDUAL FISH: SHORT FORM
NYSDEC Bureau of Fisheries: Fisheries Data Base
of

Sheet

佂

STREAM CHARACTERISTICS RECORD
Coding Instructions. See Data Dictionary f
Coding Instructions. See Data Dictionary for detailed information.

1. SURVEY NUMBER - Enter the region, year, and survey serial number. Take caution not to use survey serial numbers more than oncel
2. DATE - Enter the month, day and year the data on this form was collected. (Use a leading zero for days and months less than 10. ie. 03/06/92).
3. SITE NUMBER - Enter the number that corresponds to the description of the location of the sampling effort.
4. TIME - Record the time the the
 survey was done. For the AM hours before 10:00 record a leading zero, l.e. 7:30 $A M=0730$. 5. STREAM WIDTH - Record the average width of the stream study section from water's edge to water's edge to the nearest whole foot. MEAN DEPTH - Enter the average depth of the water at the site to the nearest tenth of a foot.
5. GRADIENT - Record the distance, in feet, over which a 40 foot change in elevation occurs, with the site at the center. Determine gradient from topographic maps. . COMMENTS - Record a " Y " If a comment record, (Rectype CO) relating to a SC record for this collection effort (survey, date and site) has been completed.
VELOCITY - Record the average veloctity of the stream through the site to the
VELOCITY METHOD - Enter the appropriate code from the list below.
DISCHARGE - Record the average discharge volume through the site
. DISCHARGE - Record the average discharge volume through the site to the nearest hundredth of a cublic foot per second.
POOL LENGTH - Record the total, summed length of pools in the section to the nearest whole foot.
WATER TEMPERATURE - Record the water temperature at the site in degrees Fahrenheit

DISSOLVED OXYGEN METHOD - Enter the appropriate code from the list on the back of the WATER CHEMISTRY RECORD (Rectype C).
pH - Record the pH of the water at the site to the nearest hundredth.
pH METHOD - Enter the appropriate code from the list on the back of the WATER CHEMISTRY RECORD (Rectype C).
TOTAL ALKALINITY - Record the total alkalinity of the water at the site in tenths of mg CaCO ${ }_{3} / \Lambda$
CONDUCTIVITY. Re METHOD - Enter the appropriate code from the list on the back of the WATER CHEMISTRY RECORD (Rectyp C).
CONDUCTIVITY METHOD - Record the appropriate code from the list on the back of the WATER CHEMISTRY RECORD (Rectype C)
SHELTER GRADE - Enter the appropriate code from the list below.
SHELTER DESCRIPTION - Briefly describe the shelter present in the stream.
COVER GRADE - Enter the appropriate code from the list below.
COVER DESCRIPTION - Briefly describe the cover present over the stream.
VEGETATION ABUNDANCE - Enter the appropriate code from the list below.
VEGETATION DESCRIPTION - Briefly describe the aquatic vegetation present in the stream.
INSECT SPECIES - Enter "Y" if at least 10 species of aquatic insects are present in the stream, or "N" if there are less than 10 species.
SIMULIIDS \& HYDROPSYCHIDS - Enter " Y "if the stream supports abundant simulids and/or hydropsychid caddisflies associated with a
WATERCRESS COMPLEX - Enter "Y" If a complex of extremely stable flow, fine gravel bottom, and abundant watercress or other rooted
CONDUCTIVITY METHOD - Record the appropriate code from the list on the back of the WATER CHEMISTRY RECORD (Rectype C)
SHELTER GRADE - Enter the appropriate code from the list below.
SHELTER DESCRIPTION - Briefly describe the shelter present in the stream.
COVER GRADE - Enter the appropriate code from the list below.
COVER DESCRIPTION - Briefly describe the cover present over the stream.
VEGETATION ABUNDANCE - Enter the appropriate code from the list below.
VEGETATION DESCRIPTION - Briefly describe the aquatic vegetation present in the stream.
INSECT SPECIES - Enter "Y" if at least 10 species of aquatic insects are present in the stream, or "N" if there are less than 10 species.
SIMULIIDS \& HYDROPSYCHIDS - Enter " Y "if the stream supports abundant simulids and/or hydropsychid caddisflies associated with a
WATERCRESS COMPLEX - Enter "Y" If a complex of extremely stable flow, fine gravel bottom, and abundant watercress or other rooted
CONDUCTIVITY METHOD - Record the appropriate code from the list on the back of the WATER CHEMISTRY RECORD (Rectype C)
SHELTER GRADE - Enter the appropriate code from the list below.
SHELTER DESCRIPTION - Briefly describe the shelter present in the stream.
COVER GRADE - Enter the appropriate code from the list below.
COVER DESCRIPTION - Briefly describe the cover present over the stream.
VEGETATION ABUNDANCE - Enter the appropriate code from the list below.
VEGETATION DESCRIPTION - Briefly describe the aquatic vegetation present in the stream.
INSECT SPECIES - Enter "Y" if at least 10 species of aquatic insects are present in the stream, or "N" if there are less than 10 species.
SIMULIIDS \& HYDROPSYCHIDS - Enter " Y "if the stream supports abundant simulids and/or hydropsychid caddisflies associated with a
WATERCRESS COMPLEX - Enter "Y" If a complex of extremely stable flow, fine gravel bottom, and abundant watercress or other rooted
CONDUCTIVITY METHOD - Record the appropriate code from the list on the back of the WATER CHEMISTRY RECORD (Rectype C)
SHELTER GRADE - Enter the appropriate code from the list below.
SHELTER DESCRIPTION - Briefly describe the shelter present in the stream.
COVER GRADE - Enter the appropriate code from the list below.
COVER DESCRIPTION - Briefly describe the cover present over the stream.
VEGETATION ABUNDANCE - Enter the appropriate code from the list below.
VEGETATION DESCRIPTION - Briefly describe the aquatic vegetation present in the stream.
INSECT SPECIES - Enter "Y" if at least 10 species of aquatic insects are present in the stream, or "N" if there are less than 10 species.
SIMULIIDS \& HYDROPSYCHIDS - Enter " Y "if the stream supports abundant simulids and/or hydropsychid caddisflies associated with a
WATERCRESS COMPLEX - Enter "Y" If a complex of extremely stable flow, fine gravel bottom, and abundant watercress or other rooted
CONDUCTIVITY METHOD - Record the appropriate code from the list on the back of the WATER CHEMISTRY RECORD (Rectype C)
SHELTER GRADE - Enter the appropriate code from the list below.
SHELTER DESCRIPTION - Briefly describe the shelter present in the stream.
COVER GRADE - Enter the appropriate code from the list below.
COVER DESCRIPTION - Briefly describe the cover present over the stream.
VEGETATION ABUNDANCE - Enter the appropriate code from the list below.
VEGETATION DESCRIPTION - Briefly describe the aquatic vegetation present in the stream.
INSECT SPECIES - Enter "Y" if at least 10 species of aquatic insects are present in the stream, or "N" if there are less than 10 species.
SIMULIIDS \& HYDROPSYCHIDS - Enter " Y "if the stream supports abundant simulids and/or hydropsychid caddisflies associated with a
WATERCRESS COMPLEX - Enter "Y" If a complex of extremely stable flow, fine gravel bottom, and abundant watercress or other rooted
CONDUCTIVITY METHOD - Record the appropriate code from the list on the back of the WATER CHEMISTRY RECORD (Rectype C)
SHELTER GRADE - Enter the appropriate code from the list below.
SHELTER DESCRIPTION - Briefly describe the shelter present in the stream.
COVER GRADE - Enter the appropriate code from the list below.
COVER DESCRIPTION - Briefly describe the cover present over the stream.
VEGETATION ABUNDANCE - Enter the appropriate code from the list below.
VEGETATION DESCRIPTION - Briefly describe the aquatic vegetation present in the stream.
INSECT SPECIES - Enter "Y" if at least 10 species of aquatic insects are present in the stream, or "N" if there are less than 10 species.
SIMULIIDS \& HYDROPSYCHIDS - Enter " Y "if the stream supports abundant simulids and/or hydropsychid caddisflies associated with a
WATERCRESS COMPLEX - Enter "Y" If a complex of extremely stable flow, fine gravel bottom, and abundant watercress or other rooted
INSECT FORAGE - Enter the code that best describes the abundance and availability of insect forage.
ALGAE - Enter the code that best describes the abundance of algae on rocks at the site.
LEAVES PRESENT - Enter the code that best describes the abundance of leaves on the bottom of the stream.
MINNOWS - Enter the code that best describes the abundance of minnows smaller than $2.5^{\prime \prime}$ in the stream.
WEATHER - Enter the appropriate code from the list below.
STREAM CHARACHTER CODES, BANKDESCRIPTION CODES, BOTTOM TYPE CODES previous 48 hours.

$\begin{array}{ll}\text { Float method } & -1 \\ \text { Salt slug method } & -2 \\ \text { Velocity meter } & -7 \\ \text { Visual estimate } & -8 \\ \text { Other, see Comments } & -9\end{array}$
$\begin{array}{ll}\text { Float method } & -1 \\ \text { Salt slug method } & -2 \\ \text { Velocity meter } & -7 \\ \text { Visual estimate } & -8 \\ \text { Other, see Comments } & -9\end{array}$
$\begin{array}{ll}\text { Float method } & -1 \\ \text { Salt slug method } & -2 \\ \text { Velocity meter } & -7 \\ \text { Visual estimate } & -8 \\ \text { Other, see Comments } & -9\end{array}$
$\begin{array}{ll}\text { Derived from discharge } & -1 \\ \text { Mean of Thalweg measurements } & -2 \\ \text { Mean of cross sectional transects } & -3 \\ \text { Visual estimate } & -\mathbf{8} \\ \text { Other, expléin in Comments } & -9\end{array}$

か

STREAM CHARACTERISTICS RECORD
Coding Instructions. See Data Dictionary for detailed information.

1. SURVEY NUMBER - Enter the region, year, and survey serial number. Take caution not to use survey serial numbers more than oncel 2. DATE-Enter the month, day and year the data on this form was collected. (Use a leading zero for days and months less than 10. ie. 03/06/92). surver . survey was done. For the AM hours before $10: 00$ record a leading zero, l.e. $7: 30 \mathrm{AM}=0730$,
. CHANNEL WIDTH - Record the average width of the channel, or streambed (bank to bank) to water's edge to the nearest whole foot.
2. MAX DEPTH - Enter the maximum depth of the water at the site to the nearest tenth of a foot.
3. MEAN DEPTH - Enter the average depth of the water at the site to the nearest tenth of a foot.
4. MEAN DEPTH METHOD - Enter the appropriate code from the list below.
5. GRADIENT - Record the distance, in feet, over which a 40 foot change in elevation occurs, with the site at the center. Determine gradient from topographic maps.
6. COMMENTS - Record a " C " if a comment record, (Rectype CO) relating to a SC record for this collection effort (survey, date and site) has been completed. 12. SECTION LENGTH - Record the length of the site to the nearest whole foot. 14. VELOCITY METHOD - Enter the appropriate code from the list below.
7. DISCHARGE - Record the average discharge volume through the site to the nearest hundredth of a cubic foot per second.
8. DISCHARGE METHOD - Enter the appropriate code from the list below.
9. POOL LENGTH - Record the total, summed length of pools in the section to the nearest whole foot.
10. QUALITY - Enter "Y" if the pools at the site can be considered as high quality trout habitat.
11. WATER TEMPERATURE - Record the water temperature at the site in degrees Fahrenheit or Celsius, as accurately as equipment allows.
12. TEMP UNITS. Record "F" if temperature readings are recorded in Fahrenteit or "C" if they are raccurately as equipment allows. 22. DISSOLVED OXYGEN - Record the concentration of dissolved oxygen at the site to the nearest tenth $\mathrm{mg} /$. 24. pH - Record the pH of the water at the site to the nearest hundredth. pH METHOD - Enter the appropriate code from the list on the back of
OTAL ALKALINITY METHOD - Enter the appropriate code from the list on the back of the WATER CHEMISTRY RECORD (Rectyp C).
CONDUCTIVITY METHOD - Record the appropriate code from the list on the back of the WATER CHEMISTRY RECORD (Rectype C)
13. SHELTER GRADE - Enter the appropriate code from the list below.
14. SHELTER DESCRIPTION - Briefly describe the shelter present in the
15. COVER GRADE - Enter the appropriate code from the list below.
16. COVER DESCRIPTION - Briefly describe the cover present over the stream.
17. VEGETATION ABUNDANCE - Enter the appropriate code from the list below.
18. VEGETATION DESCRIPTION - Briefly describe the aquatic vegetation present in the stream.
19. INSECT SPECIES - Enter " γ " if at least 10 species of aquatic insects are present in the stream,
20. WITIDS \& HYDROPSYCHIDS - Enter " Y " if the stream supports abundant simulids and/or hydropsychid caddisflies associated with a lake outlet, or " N " if it does not.
 ALGAE - Enter the code that best describes the abundance of algae on rocks at the site.
. LEAVES PRESENT - Enter the code that best describes the abundance of leaves on the bottom of the stream.
. WINNOS - Enter the code that best describes the abundance of minnows smaller than $2.5^{\prime \prime}$ in the stream.
21. WEATHER - Enter the appropriate code from the list below.
22. STREAM CHARACHTER CODES, BANK DESCRIPTION CODES, BOTTOM TYPE CODES, ABUNDANCE (ABD) CODES - Enter the appropriate codes. Up to three codes may be selected.

DISCHARGE METHOD CODES

Salt slug
Velocity meter, cross sectional area
measured
Visual estimate
Other method, explain in Comments

Direct measurement of discharge

loat used to estimate velocity, cross Gauge readings and conversion charts Salt brick

Derived from discharge
Mean of Thalweg measurements Mean of cross sectional transects Visual estimate

Other, explain in Comments

Float method

Salt slug method
Velocity metor
Visual estimate
Other, see Comm
Other, see Comments

NOTES

BULK CATCH DESCRIPTIVE DATA RECORD
Coding Instructions. See Data Dictionary for detailed information.

1. SURVEY NUMBER - Enter the region, year, and survey serial number. Take caution not to use survey serial numbers more than oncel . SITE NUMBER - Enter the number that corresponds to the description of the location of the sampling effort.
NET/RUN NUMBER. The number that corresponds to the electrofishing run, trawl run or seine haul during which the fish described was caught. 5. PANEL NUMBER . Enter the panel number in which the fish was caught. Panel numbers are assigned to specific mesh sizes in the Gear Descrip PANEL NUMBER - Enter the panel number in which the fish was caught. Panel numbers are assigned to specific mesh sizes in the Gear Descip
2. MINIMUM LENGTH - Enter the total length of the smallest fish in the collection, in millimeters.
3. MAXIMUM LENGTH - Enter the total length of the largest fish in the collection, in millimeters. 10. VALIDITY. Enter the appropriato code
4. STAGE - Enter the appropriate code from the list below.
5. SEX-Enter " M " for male and " F " for female. Leave blank if unknown or undetermined.
 15. NUMBER IN SUB-SAMPLE - If the catch is divided int sub-samples, record the number of fish in the sub-sample. This line of data MUST refer to the sub-sample only. 16. COMMENTS - Enter "Y" if a comment record (Rectype CO) relating to a BF record for this survey, date, site, net/run, and species has been completed.

Fish caught, counted, and measured
Fish caught, counted, smallest and largest measured
Fish caught, counted, measurements estimated
 Fish caught, numbers estimated, smallest and largest measured Fish caught, numbers estimated, measurements estimated
 Other, explain in comment records

SOME COMMON SPECIES CODES \& SPEED CODES

ㅁ. 2000

Alewife
American eel

Black crappie
Blacknose dace
Blueback herring Bluegill

Brown bullhead
Brown trout
 Chinook salmon
 Common shiner
Creek chub Fallish

 Lake trout
NEW YORK STATE DEPARTMENT OF ENVIRONMENTAL CONSERVATION 1593
stream survey
Subum then fores
Birch Creek (52-171LH)
Name \& Key of Stream
Section Entire
County(s) Uister Town(s) Shandaken
Quadrangle(s) Shandaken, West Kill : Autherity Wm. H. Kelly
Watershed Lower Hudson \quad Date $7 / 3 / 80 \quad$ Aut
Posted Mileage (Entíe)

Station Location	Upper (3)	Middle (2)	Lower (1)
Average Width (Actual) (Normal)		10.5(7)	21(40)
		\cdots	\cdots
Depth		$0.4(7.5)$	0.7(3.0)
Volume		2.9 cfs	26 cfs
Velocity		Moderate	Moderate
Color		White	White
Turbidity		Clear	S1. Turbid
Altitude		1860	1230
Bottom		$\mathrm{Bo}, \mathrm{R}, \mathrm{Gr}$	Bo, R, Gr
Temperature	A. W.	64 A. 54 W.	77 A. 65 W.
Time-Weather		11:30AM Fair	2:40PM Fair
Habitat \% Pool	\% G.	$H=2$ $\% \quad \text { G. }$	$\begin{array}{lll} H=2 & & \\ & \% & \\ \hline \end{array}$
Shelter Cover			
Fertility Forage Soil Type		$F=1$	$F=2$
Wild Trout (辞 No. per Acre		$\begin{aligned} & 440 \mathrm{ST} \\ & 1600 \mathrm{BT} \end{aligned}$	860
Trout: Non-Trout Estimate by Weight		$N=3$	$N=2$
Shocker Efficiency Adjusted iNo. per Acre		25	25\%
Length of Shocker Section (feet)		300	$300{ }^{\prime}$
		$\frac{\text { Station } 2}{0.5 \mathrm{mi} \text { above }}$ T4a	$\frac{\text { Station } 1}{0.5 \text { miles }}$ above mouth Lasher Road

				－	－1	\cdots	\％				
			．	6	\cdots	\therefore	\cdots			－	
				\because	\cdots	\square	\because			\because	
				E．	－		\cdots				
7			\cdots	$=$		$\underline{-1}$	z				
			009	$009 \mathrm{I}$	OST	－007	． 00 己				
			दE6T	TEGT	Ec¢6	$t=$ CE6	T: TE6		8UTY007	75 snot	－9x．
			－		－	OOE	$\because 008$			－	
			\pm		\cdots	SE：	771	$\bullet 山 * 8$	8 8uFPOO？	45 snot	Ө．1d
			Σ		2	\bigcirc	\square			－	＊
पe日s 7015			$\underline{3}$		0	－ 5	－			－Juc 0	7－T
			E，		$\square 10$	－ 4 家－4	ees 71	OJ」	＊ 1888	TrdS T	$75 \Omega \times 0$
					\square	$\cdots \bigcirc$	\％			¢！	－प7w
$300 T^{6}$［ gOOZ	2008	40808	OT0 0S：Z	हక	$\overline{519}$	－II	78	8J0T：	49200：	$7^{\circ} \mathrm{FmO}$	Fog＇${ }^{7}$
1.1		b心2	7	E6T）00	96	（TE6T）	002T	8世FJ＊		MOTTOH	27887
W＇g08t	2008	pubs	OTO द7：	हद	± 19	$\square I^{-1}$	0	¢8002	9ucX：S：	${ }^{\circ}$ Fm9＊0	－प7\％
		66%	\cdots		\square	\％				\square	
				108	07 pe9	7xodey	－pro	I MOTO	q 1 Ip		
$\text { buour } \dot{x}^{\text {KIG }}$	ITBJ	x_{8}	OTO दE：Z	$S^{\circ} 85$	± 49	$\theta-I I$	40 ma	8ら2 4	，4 $2,7, z$	${ }^{\circ}$ TIIE® T	－प74
¢		$E \Rightarrow$			\div	$\begin{array}{lll} 3 & + & \\ \hline & -1 & \end{array}$	ue	日s 7n¢	QrI ： 7	Y\＆47！	IS EXI
山g08I	工TBJ	x8x	OTO ST：Z	95	579	－－II	40	SJ0\％	4ZX．8．2	－${ }^{\text {met }}$	－प7m
Кอกัด ริप！耳007S	дәлор	\％	ләчэвәм рия әய！	${ }^{\text {rafg }}$ ¢	过		$\mathrm{slog}^{\text {d }}$	SOOL	чұवәр рия чวр！м	पวึัロวт	roquinu Kixqnquax

Req. 356. FG9эe3s. 6-13-38-10,000 (18-9943) Survey...... Lower Hudson
Drainage. Hudson
Localit. T52(Birch Cr.) of Hl71 (Esopus Cr.) at mouth at
Big Indian, N. Y.
County....Ulster
Water....clear: white Flow. Width...to 25.
Vegetation.... Some algas
Bottom...... Sd. \mathbf{r}. gr , bo Current... mod.
Shore..... wooded: higuses IDistance from shore shore to shore
Temperature: Air.. $78 \frac{1}{2} \mathrm{~F}$ Water... $62 \frac{1}{2} \mathrm{~F}$ Time... 12 Meather... clear
Depth of capture..... $0-2{ }^{-1}$. Depth of water. $0-1$ ' to 5^{\prime} in pool.
Method of capture....... 6' $^{\prime}$ seine
Collected by.U.Stone: M. Hall DateJune 17, 1936
Orig. preserv.... 10% form. Time 11:25-12:10
General notes: History of stocking and angling; fishing conditions and size of fish, etc.
Good trout water. Pools \& cover (Rocks
\& logs) good. Food good; caddis, stone fly, may
fly, dragon fly larvae and annelids present.
Cottus eiges in coll?
विए
0

Req. 350. FG9Je38. 6-13-38-10,000 (16-9943) Survey. Lower Hudson Drainage..... Hudson
Locality. T52(BIrch Cr.) of H171 (Esopus Cr.) at Pine Hill, N. Y., $1 / 8 \mathrm{mi}$. above mouth of $T 4$ County...Ulster \quad Uuadrangle Phoeniciaevation 1527.
Water...clear white
Vegetation sparse some al gae on rocks
Botom....gr, R., bo .
Shore......wooded; Village Distance from shore. shore to shore
Temperature: Air. 71 F F Water........ 560 F . Time. 11 AM Weather..Clear
Depth of capture... $0-1^{\prime}$ '
Method of capture.... 6: seine
Collected by....U.Stone:M. Hall

General notes: History of stocking and angling; fishing conditions and size of fish, etc.

Good brown trout streara at this point; rather small stream for big trout. Pools \& cover fair. Food abdt: stoneflies, mayflies, etc. abdt. as nymphs. Caddis \& beetle larvae. No minnows seen.

The eggs in coll. were found under
large flat rock in a group attached inaividually by slender gelatinous threads, attached to the under side of the rock \& covering an area of 3-4 sq. in.

Bond \& Tasker

Recommendations: Fishing rights, improvement, spearing, commercial bait, set lines or other:
Posting Notes

Miscellaneous:
Stocking Policy:
Entire, 6.8 miles, B.T.(N.S.A.)

F

毕 111
\approx E

8

Saimo trutta

BIRCH CREEK (52-171 HR)
Section \#3 0.5 mi . abv.T-3
$\begin{array}{lr}\text { Salmo trutta } & 123 \\ \text { Rhinichthys atratulus } & 130 \\ \text { Rhinichthys cataractae.... } & 45 \\ \text { Exoglossum maxillingua } & \text { I }\end{array}$
15935.1
[4

跔
$W=290 \mathrm{BTF} /$ acre
$\therefore B T$ (NSA) \cdots
3
$=4030040$
37
55
(OVER)
BIRCH CRWMK (52-171-HR)
Section ${ }_{H}$, 0.5 mi . abv. mouth Salmo trutta
Salmo gairdnerii
Cottus sp.
Rhinichthys cat'aractae...
Rhinichthys atratulus ...
Exoglossum maxillingua Catostoma commersonnii.....

1. $5 \mathrm{mineabv} . \mathrm{T}-4 \quad 0.5 \mathrm{mi} . a b v .7-3 \quad 0.2 \mathrm{mi}, \mathrm{bel} . \mathrm{T}-20.5 \mathrm{mi}$. abv.mc

Station Locations: (3-10)	Upper (3)	Middle (2)	Lower (1)
Average Width (Actual) (Normal)	$14^{\prime}(12-29)$	$13^{\prime}(12-18)$	$10^{\prime}(3-15)$
Depth 4"n(2-8")	$4^{\prime \prime}\left(2-8^{\prime \prime}\right)$	$4^{\prime \prime}\left(2-12^{\prime \prime}\right)$	$6\left(2-12^{\prime \prime}\right)$
Volume	2 cis	$\vdots 3$ cts	$2-3 \mathrm{cfs}$
Velocity Slow	Slow	Slow	Slow

Shocker Efficiency 90\% Adjusted No. per Acre	90%	90%	9
Length of Shocker 300 Section (feet)	3001	300	$\cdots 300$

15935.

NEW YORK STATE CONSERVATION DEPARTMENT
STREAM SURVEY
Birch C_{n}. or Fine Hill Stream ($52-17 \mathrm{HHR}$)

FISH COLLECTION OR SMALL STREAM SURVEY

Station 1

Survey Lower Hudson Date 7/3/80 Authority Wm. H. Kelly
Name and key Birch Creek (52-171LH) Quad Shandaken

Station location 0.5 mi above mouth County Ulster

Length 300 \quad Width 21 0.15
Flow 26 cfs: Temp: A 77 W_ 65 Time (EDT
Gear 230 VAC Generation
 Wild . (adults)
*UVXI trout per acre (adjusted total) 860
Factors: WHSA N 2 H_ $H 2$ Total NSA 8 . Excellent section for fishing. No BT fings collected or seen. One RT fing (1.5" collected). March flood may:have restricted BT spawning success.

$$
\begin{aligned}
& \mathrm{pH}=7.0 \\
& \text { M. } 0 .=21 \mathrm{ppm} \\
& \text { D.0. }=10 \mathrm{ppm} \\
& \text { Specific Conductivity }=43 \text { mmhos }
\end{aligned}
$$

Stocking policy:

FISH COLLECTION OR SMALL STREAM SURVEY

Station 2

Survey Lower Hudson Date 7/3/80 Authority Wm. H. Kelly
Name and key Birch Creek (52-171LH) Quad West Kill
Station location 0.5 mi below T4a County Ulster

Length 300'_Width 10.5 Depth 0.4(1.5)_Acres 0.07 EDT
Flow_2.9 cfs Temp: A_64_W_54_Time (䒫X) 11:30AM
Gear_230 VAC Generation Efficiency (yg trout) _ 25\%

Factors: W_NSA N 3 H_ H _ F _] Total NSA 6
General notes: Only trout were collected. No other species observed. Typical headwater wild trout environment. $\mathrm{pH}=7.0$
D.0. $=9 \mathrm{ppm}$

Specific Conductivity $=25$ mmhos

Stocking policy:

NEW YORK STATE CONSERVATION DEPARTMENT
STREAM SURVEY
\longrightarrow
Name \& Key of Stream_ LOST CLOVE (53-171 HR)

Posted Mileage (Entire)

(3

[^3]
［14．

江
Z

3

空
 曷

Section \＃1， 0.1 mi．abv．mouth
Cottus sp．．．．．．．Abundant
$=\operatorname{ainct}^{2}+$
Recommendations: Fishing rights, improvement, spearing, commercial bait, set lines or other:
Posting Notes
Miscellaneous:
Entire, 1.5 mi., BT (NSA)
Recommendations: Fishing rights, improvement, spearing, commercial bait, set lines or other:

Posting Notes
Miscellaneous:
Stocking Policy: Entire 6.8 miles, BT, RT, ST,NSA

| |
| :--- | :--- |

Survey Purpose: Trap and transfer
Authority: FLAHERTY
WIN: H-171-52
Site Date Description \quad RMI RMIUp

1 11/09/93 JUST UPSTREAM OF T3 1.9 Town: SHANDAKEN Cnty: Ulster Quad: WEST KILL
$211 / 09 / 9350$ FT UPSTREAM OF UPSTREAM LIMIT OF SITE $1 \quad 1.9$ Town: SHANDAKEN Cnty: Ulster Quad: WEST KILL

3 11/09/93 50 FT UPSTREAM OF UPSTREAM LIMIT OF SITE $2 \quad 1.9$ Town: SHANDAKEN Cnty: Ulster Quad: WEST KILL

NYSDEC Bureau of Fisheries

Survey Report
File \#: 1593
BIRCH CREEK
Lower Hudson watershed
Survey \#: 393049

Water Chemistry					
Date: 11/09/93		Site \#:	1		
Time start:	: 1200	Secchi	depth:	ft	Color:
Time stop:		Bottom	depth:	ft	Turbidity:
Air temp:	C	Weather:	: Cloudy		Surface
	F	Rain 48:			Conditions:
Methods - ${ }^{\text {D }}$	Dissolved Oxygen:pH :		Hach kit		
			Hach ki		
	Total Alkalinity:		Hach kit		
	Conductivity:		Presto	mode	DP 03

Sample	Wate	Dissolved		Total		
Depth (ft)	$\underset{\mathrm{C}}{\text { Temperature }}$	oxygen (mg/l)	pH	Alkalinity (mg CaCO3/l)	Conductivity (umhos)	$\begin{aligned} & \text { Pt-Co } \\ & \text { Color } \end{aligned}$
. 1		10.0	6.30	13.7	80	

Date: $11 / 09 / 93$	
Time start: 1515	
Time stop:	
Air temp:	C

Site \#: 3
Time start: 1515 Air tomp: Secchi depth: Bottom depth:
C Weather: Clear
F Rain 48:
ft Color:
ft Turbidity:
Surface Conditions:

Methods - Dissolved Oxygen:
pH :
Total Alkalinity:
Conductivity: Presto-tek model DP 03

Sample	Water	Dissolved		Total		
Depth (ft)	$\underset{\mathrm{C}}{\text { Temperature }}$	Oxygen (mg/l)	pH	Alkalinity (mg CaCO3/1)	Conductivity (umhos)	$\begin{aligned} & \text { Pt-Co } \\ & \text { Color } \end{aligned}$
. 1					143	

Electrofishing Gear

Date: 11/09/93

Site \#: 1
Net/Run \#:
Gear: Backpack shocker; DC

Time start:	1100	Water temp:	C	F
Time stop:	1125	Air temp:	C	F
On-time:	.33 hr	Weather:	Rain 48:	
Conductivity:	80	umhos		
Method: Presto-tek model	DP 03			

AC/DC: DC
Amperage:
\# of units: 2
\# of scappers: 2
Waveform:
Target: Trout, all
Efficiencies - Fingerling: 33\% Yearling: 50\% Older Trout or All: 50\%

Date: 11/09/93
Site \#: 2
Net/Run \#:
Gear: Backpack shocker; DC

Time start:	1205
Time stop:	1230
On-time:	.41 hr
AC/DC:	
Amperage:	
\# of units:	2
\# of scappers:	2
Waveform:	

Water temp:
C $\quad \mathrm{F}$
Air temp:
C
F Weather:

Rain 48:

Pulse rate:
Voltage:
350
\# of DC wands:
Brail length: ft
Flow: Gear employed against the current

Target: Trout, all
Efficiencies - Fingerling: 33\% Yearling: 50\% Older Trout or All: 50\%

```
NYSDEC Bureau of Fisheries

\section*{Electrofishing Gear}

\section*{Date: 11/09/93 Site \#: 3 Net/Run \#:}

Gear: Backpack shocker; DC
\begin{tabular}{|c|c|c|c|c|}
\hline Time start: & 1410 & Water temp: & C & F \\
\hline Time stop: & 1500 & Air temp: & C & F \\
\hline On-time: & .83 hr & Weather: & & Rain 48: \\
\hline Conductivity: & 143 umhos & & & \\
\hline Method: & Presto-tek model & DP 03 & & \\
\hline AC/DC: & DC & Pulse rate: & & \\
\hline Amperage: & & Voltage: & 350 & \\
\hline \# of units: & 2 & \# of DC wands: & & \\
\hline \# of scappers: & 2 & Brail length: & & \\
\hline Waveform: & & Flow: Gear empl & loyed & inst the \\
\hline
\end{tabular}

Target: Trout, all
Efficiencies - Fingerling: 25\% Yearling: 40\% Older Trout or All: 50\%
NYSDEC Bureau of Fisheries Survey Report
File \#: 1593
Survey \#: 393049



Lower Hudson watershed Survey \#: 393049

\section*{Comments}
Date: 11/09/93 Site \#: 1 Net/run \#:

Stream Site Location
THIS SECTION OF BIRCH CR HAS A PETITION ON FILE FOR UPGRADING FROM A B(T) TO A B(TS) CLASSIFICATION STANDARD

Date: 11/09/93 site \#: 2 Net/run \#:
Stream Characteristics
THIS SECTION WAS BISECTED BY THE OUTLET FLOW OF PINE HILL LAKE AND SOME MINIMAL FLOW FROM A BLACK PLASTIC PIPE (WATER CONDO. 50) CONDO. ABOVE THIS WAS 143

```

 === Shelter Grade and Description ====
 O-20% CHANNEL CONSTRUCTED IN 1986-87
 === Cover Grade and Description ===
 O - 25% ALMOST NO SHADE
 === Vegetation Abundance and Description ===
 1 - 5%
 === CROTS Factors ===
 10 or more Insect Species: PRESENT
Simuliids and Hydropshychids: PRESENT
Insect Forage abundance: HIGH
Algae abundance On Rocks: Low
Leaf abundance on Bottom: LOW
Minnows < 2.5 in. abundance: row

```

                \(==\) Time, Chemical and Physical Info ==

Time Start: 1000
Time Stop: 1300
on-Time: 2.0 hrs
Secchi Depth (ft): . 1

No. of Units: 2
No. of Scappers: 3

Air Temp (F):
Water \(\operatorname{Temp}(F)\) : Conductivity:

\section*{\(==\) Gear Settings, Readings and Configurations == AC/DC: DC Pulse Rate: \\ Amperage: Voltage:} No. of DC Wands: 2 Direction Fished: AGAINST THE CURRENT
\[
\begin{gathered}
\text { == Target }== \\
\text { TROUT, ALL } \\
==\text { Efficiencies }== \\
\text { Fingerling: } 20 \% \\
\text { Yearling: } 25 \% \\
\text { Older Trout: } 25 \% \\
====\text { Gear Details }====
\end{gathered}
\]

Electroshocker Model: DEC BACK PACK

====== Individual Fish Records \(======\)
Survey \#: 389007 Site \#: 1 10/06/1989
\begin{tabular}{|c|c|c|c|}
\hline Common Name & \[
\begin{aligned}
& \text { Length } \\
& m m(i n)
\end{aligned}
\] & \begin{tabular}{l}
Weight \\
gm (lb)
\end{tabular} & W/S Stage Sex Age Pan\# Fish\# \\
\hline BROWN TROUT & 67 (2.6) & & 226 \\
\hline BROWN TROUT & 69 (2.7) & & 83 \\
\hline BROWN TROUT & 70 (2.8) & & 22.5 \\
\hline BROWN TROUT & 70 (2.8) & & 224 \\
\hline BROWN TROUT & 71 (2.8) & & 223 \\
\hline BROWN TROUT & 73 (2.9) & & 158 \\
\hline BROWN TROUT & 73 (2.9) & & 151 \\
\hline BROWN TROUT & 74 (2.9) & & 157 \\
\hline BROWN TROUT & 74 (2.9) & & 146 \\
\hline BROWN TROUT & 74 (2.9) & & 118 \\
\hline BROWN TROUT & 75 (3.0) & & 236 \\
\hline BROWN TROUT & 75 (3.0) & & 216 \\
\hline BROWN TROUT & 75 (3.0) & & 21.3 \\
\hline BROWN TROUT & 75 (3.0) & & 206 \\
\hline BROWN TROUT & 75 (3.0) & & 196 \\
\hline BROWN TROUT & 75 (3.0) & & 187 \\
\hline BROWN TROUT & 76 (3.0) & & 133 \\
\hline BROWN TROUT & 76 (3.0) & & 89 \\
\hline BROWN TROUT & 76 (3.0) & & 79 \\
\hline BROWN TROUT & 77 (3.0) & & 207 \\
\hline BROWN TROUT & 77 (3.0) & & 86 \\
\hline BROWN TROUT & 77 (3.0) & & 78 \\
\hline BROWN TROUT & 78 (3.1) & & 230 \\
\hline BROWN TROUT & 78 (3.1) & & 211 \\
\hline BROWN TROUT & 78 (3.1) & & 185 \\
\hline BROWN TROUT & 78 (3.1) & & 114 \\
\hline BROWN TROUT & 79 (3.1) & & 237 \\
\hline BROWN TROUT & 79 (3.1) & & 131 \\
\hline BROWN TROUT & 80 (3.2) & & 23.5 \\
\hline BROWN TROUT & 80 (3.2) & & 227 \\
\hline BROWN TROUT & 80 (3.2) & & 222 \\
\hline BROWN TROUT & 80 (3.2) & & 197 \\
\hline BROWN TROUT & 80 (3.2) & & 127 \\
\hline BROWN TROUT & 80 (3.2) & & 85 \\
\hline BROWN TROUT & 80 (3.2) & & 82 \\
\hline BROWN TROUT & 80 (3.2) & & 72 \\
\hline BROWN TROUT & 81 (3.2) & & 148 \\
\hline BROWN TROUT & 81 (3.2) & & 123 \\
\hline BROWN TROUT & 82 (3.2) & & 220 \\
\hline BROWN TROUT & 82 (3.2) & & 192 \\
\hline BROWN TROUT & 82 (3.2) & & 179 \\
\hline BROWN TROUT & 82 (3.2) & & 106 \\
\hline BROWN TROUT & 83 (3.3) & & 145 \\
\hline BROWN TROUT & 84 (3.3) & & 180 \\
\hline BROWN TROUT & 85 (3.3) & & 234 \\
\hline BROWN TROUT & 85 (3.3) & & 233 \\
\hline BROWN TROUT & 85 (3.3) & & 232 \\
\hline BROWN TROUT & 85 (3.3) & & 210 \\
\hline BROWN TROUT & 85 (3.3) & & 194 \\
\hline BROWN TROUT & 85 (3.3) & & 191 \\
\hline BROWN TROUT & 85 (3.3) & & 186 \\
\hline
\end{tabular}
\(======\) Individual Fish Records \(======\)
Survey \#: 389007 Site \#: 1 10/06/1989
Length Weight
gm (1b)
W/S Stage Sex Age Pan\# Fish\#
Common Name
mm (in) gm (lb)

BROWN TROUT
\(85(3.3) \quad 154\)
BROWN TROUT
\(85(3.3) \quad 130\)
\(85(3.3) \quad 126\)
\(85(3.3) \quad 119\)
\(85(3.3) \quad 71\)
87 (3.4) 155
87. (3.4) 129

87 (3.4) 74
\(88(3.5) \quad 231\)
\(88(3.5) \quad 219\)
\(88(3.5) \quad 199\)
\(88(3.5) \quad 188\)
\(88(3.5) \quad 176\)
\(88(3.5) \quad 173\)
\(88(3.5) \quad 138\)
\(88(3.5) \quad 80\)
\(89(3.5) \quad 134\)
89 (3.5) 115
\(90(3.5) \quad 218\)
\(90(3.5) \quad 215\)
\(90(3.5) \quad 201\)
\(90(3.5) \quad 189\)
\(90(3.5) \quad 183\)
\(90(3.5) \quad 159\)
90 (3.5) 125
\(90(3.5) \quad 122\)
\(90(3.5) \quad 77\)
\(91(3.6) \quad 184\)
\(91(3.6) \quad 156\)
\(91(3.6) \quad 76\)
\(92(3.6) \quad 181\)
92 (3.6) 150
92 (3.6) 140
92 (3.6) 117
92 (3.6) 69
\(93(3.7) \quad 214\)
93 (3.7) 135
94 (3.7) 209
\(94(3.7) \quad 202\)
\(94(3.7) \quad 175\)
\(\begin{array}{ll}94(3.7) & 136\end{array}\)
\(94(3.7) \quad 132\)
\(94(3.7) \quad 87\)
\(95(3.7) \quad 228\)
95 (3.7) 217
\(95(3.7) \quad 208\)
\(95(3.7) \quad 204\)
\(95(3.7) \quad 193\)
\(95(3.7) \quad 190\)
\(95(3.7) \quad 170\)
====== Individual Fish Records ======
Survey \#: 389007 Site \#: 10/06/1989
Length weight

Common Name mm (in) gm (1b) W/S Stage Sex Age Pan\# Fish\#
BROWN TROUT \(\quad 9.5\) (3.7) 168
BROWN TROUT \(95(3.7) \quad 162\)

BROWN TROUT \(95(3.7) \quad 143\)
BROWN TROUT \(96(3.8) \quad 149\)
BROWN TROUT \(96(3.8) \quad 139\)
\(\begin{array}{ll}\text { BROWN TROUT } 97(3.8) & 152\end{array}\)
BROWN TROUT
97 (3.8) 100
98 (3.9) 212
98 (3.9) 203
98 (3.9) 164
98 (3.9) 66
99 (3.9) 153
99 (3.9) 113
99 (3.9) 75
\(100(3.9) \quad 229\)
\(100(3.9) \quad 200\)
100 (3.9) 195
100 (3.9) 163
\(100(3.9) \quad 128\)
\(100(3.9) \quad 120\)
\(100(3.9) \quad 116\)
102 (4.0) 88
103 (4.1) 124
105 (4.1) 167
105 (4.1) 121
105 (4.1) 73
\(125(4.9) 109\)
132 (5.2) 165
\(133(5.2) \quad 182\)
\(134(5.3) \quad 144\)
137 (5.4) 221
\(140(5.5) \quad 178\)
144 (5.7) 81
\(145(5.7) \quad 141\)
\(146(5.8) 198\)
\(148(5.8) \quad 177\)
149 (5.9) 108
150 (5.9) 205
\(150(5.9) \quad 99\)
151 (5.9) 142
152 (6.0) 105
152 (6.0) . 84
153 (6.0) 112
153 (6.0) 110
160 (6.3) 98
163 (6.4) 97
\(163(6.4) \quad 96\)
\(164(6.5) \quad 104\)
\(165(6.5) \quad 107\)
165 (6.5) 92
\(168(6.6) \quad 166\)
====== Individual Fish Records ======
Survey \#: 389007 Site \#: 1 10/06/1989
Iength Weigh
\begin{tabular}{|c|c|c|c|c|}
\hline Common Name & & (in) & gm (1b) & W/S Stage Sex Age Pan\# Fish\# \\
\hline BROWN TROUT & 168 & (6.6) & & 102 \\
\hline BROWN TROUT & 170 & (6.7) & & 172 \\
\hline BROWN TROUT & 172 & (6.8) & & 169 \\
\hline BROWN TROUT & 172 & \((6.8)\) & & 90 \\
\hline BROWN TROUT & 173 & (6.8) & & 111 \\
\hline BROWN TROUT & 175 & (6.9) & & 68 \\
\hline BROWN TROUT & 176 & (6.9) & & 174 \\
\hline BROWN TROUT & 176 & (6.9) & & 171 \\
\hline BROWN TROUT & 178 & (7.0) & & 95 \\
\hline BROWN TROUT & 178 & (7.0) & & 93 \\
\hline BROWN TROUT & 178 & (7.0) & & 67 \\
\hline BROWN TROUT & 185 & (7.3) & & 160 \\
\hline BROWN TROUT & 230 & (9.1) & & 137 \\
\hline BROWN TROUT & 235 & (9,3) & & 161 \\
\hline BROWN TROUT & 265 & (10.4) & & 103 \\
\hline BROWN TROUT & 265 & (10.4) & & 91 \\
\hline BROWN TROUT & 265 & (10.4) & & 70 \\
\hline BROWN TROUT & 271 & (10.7) & & 94 \\
\hline BROWN TROUT & 322 & (12.7) & & 101 \\
\hline RAINBOW TROUT & 60 & (2.4) & & 34 \\
\hline RAINBOW TROUT & 62 & (2.4) & & 31 \\
\hline RAINBOW TROUT & 63 & (2.5) & & 36 \\
\hline RAINBOW TROUT & 63 & (2.5) & & 17. \\
\hline RAINBOW TROUT & 67 & (2.6) & & 39 \\
\hline RAINBOW TROUT & 67 & (2.6) & & 15 \\
\hline RAINBOW TROUT & 68 & (2.7) & & 37 \\
\hline RAINBOW TROUT & 68 & (2.7) & & 35 \\
\hline RAINBOW TROUT & 70 & (2.8) & & 65 \\
\hline RAINBOW TROUT & 70 & (2.8) & & 38 \\
\hline RAINBOW TROUT & 72 & ( 2.8 ) & & 29 \\
\hline RAINBOW TROUT & 72 & (2.8) & & 16 \\
\hline RAINBOW TROUT & 73 & (2.9) & & 64 \\
\hline RAINBOW TROUT & 74 & (2.9) & & 60 \\
\hline RAINBOW TROUT & 74 & (2.9) & & 48 \\
\hline RAINBOW TROUT & 75 & (3.0) & & 56 \\
\hline RAINBOW TROUT & 75 & (3.0) & & 53 \\
\hline RAINBOW TROUT & 75 & (3.0) & & 51 \\
\hline RAINBOW TROUT & 77 & (3.0) & & 55 \\
\hline RAINBOW TROUT & 77 & (3.0) & & 49 \\
\hline RAINBOW TROUT & 80 & (3.2) & & 52 \\
\hline RAINBOW TROUT & 80 & (3.2) & & 47 \\
\hline RAINBOW TROUT & 80 & (3.2) & & 33 \\
\hline RAINBOW TROUT & 80 & (3.2) & & 13 \\
\hline RAINBOW TROUT & 87 & (3.4) & & 54 \\
\hline RAINBOW TROUT & 91 & (3.6) & & 50 \\
\hline RAINBOW TROUT & 120 & (4.7) & & 25 \\
\hline RAINBOW TROUT & 122 & (4.8) & & 4 \\
\hline RAINBOW TROUT & 125 & (4.9) & & 12 \\
\hline RAINBOW TROUT & 127 & (5.0) & & 26 \\
\hline RAINBOW TROUT & 128 & (5.0) & & 238 \\
\hline RAINBOW TROUT & 130 & (5.1) & & 28 \\
\hline
\end{tabular}




File \# 1593

Survey Purpose :
Authority : PIERCE
Watershed Index Number Water Class: BT H-171-52
\(===\) Site Description \(==\)
IN BYPASS CHANNEI AROUND PINE HILI LAKE
```

 === Map References ===
 County : ULSTER
 Township : SHANDAKEN
 Quadrangle : WEST KILL (19)
    ```
\begin{tabular}{cccccc} 
Altitude \((f t)\) & NYTME & NYTMN & RMI & RMI Up & Stream Iength (mi) \\
1410 & 05435 & 46639 & 2.0 & 6.5
\end{tabular}
\(===\) Section Desc. ===
\(===\mathrm{Fl} \cap \mathrm{W}===\)
Section Length (ft): 300
Stream Width (ft): 15
Channel Width (ft): 20
Gradient (ft/40 ft drop):
Pool Length (ft):

Max Depth (ft): 1.2
Mean Depth (ft): . 3
Conductivity: 110
Velocity (fps):
Discharge (cfs): 5.6
\(===\) Methods \(===\)
Discharge: FLOAT USED TO EST. VEL., X-SECTIONAI AREA MEASURED FOR DISCHARGE.
\(===\mathrm{Bottom}\) Type and Abundance \(===\)
BEDROCK
BOULDER
GRAVEL
```

$===$ Shelter Grade and Description $===$
0-20\%
$===$ Cover Grade and Description $===$
- - 25\%

```

10 or more Insect Species:

Insect Forage abundance:

PRESENT

HIGH

```

 ======= Gear Performance & Description ======
 Survey #: 388996 Site #: 1 09/89/1988
 Gear Type: ELEGTROSHOCKER: AC GENERATOR, STREAM BRAII
** See Comments **
Weather: CLEAR
Time Start: 1300 Time, Chemical and Physical Info =-
Time Stop: Water Temp(F): 61
On-Time: hrs Conductivity: 110
== Gear Settings, Readings and configurations ==
AC/DC: AC Pulse Rate:
Amperage: Voltage: 230

```
```

 == Efficiencies ==
 Fingerling: 51%
 == Bottom Type and Abundance ==
 BEDROCK:
 BOULDER:
 GRAVEI:
 ===== Gear Details ====
 Electroshocker Model: STREAM SHOCKER
 Brail Length: 30 ft.
 230 VAC WITH 30 FT BRAIL
    ```




\section*{\(======\) Comments \(=====\) Survey \#: 388996 Site \#: 1 09/09/1988}

Bulk Catch
COTTUS NOT KEYED TO SPECIES.

Gear, Electrofishing
BIOCKING SEINES USED AT UPPER \& LOWER ENDS OF THE SECTION.


Survey Purpose :
Authority : PIERCE
Watershed Index Number
Water Class: BT
H-171-52
=== Site Description ===
100 FT ABV PINE HILI LAKE DIVERSION
co= Map References \(===\)
County : ULSTER
Township : SHANDAKEN
Quadrangle \(: ~ W E S T K I L L ~(19)\)
\begin{tabular}{cccccc} 
Altitude & \((f t)\) & NYTME & NYTMN & RMI & RMI Up \\
1425 & 0.5433 & 46639 & 2.1 & & Stream Length (mi)
\end{tabular}

=== Section Desc. ===
Section Length (ft): 300
Stream Width (ft): 17
Channel Width (ft): 22
Gradient (ft/40 ft drop):
Pool Length (ft):
=== Flow ===
Max Depth (ft): 2.4
Mean Depth (ft): . 6
Conductivity: 100
Velocity (fps):
Discharge (cfs): 5.3
\[
===\text { Methods }===
\]

Discharge: FLOAT USED TO EST. VEL., X-SECTIONAL AREA MEASURED FOR DISCHARGE.
```

$===$ Bottom Type and Abundance $===$
BEDROCK
BOULDER
GRAVET.

```
```

=== Shelter Grade and Description ===
> 40% BOULDERS UDERCUT BANKS \& ROOTS
=== Cover Grade and Description ===
> 50%

```

Insect Forage abundance:
HIGH






1. SURVEY NUMBER - Enter the region, year, and survey serial number. Take caution not to use survey serial numbers more than once!
2. FILE NUMBER - Enter the applicable file number for this water or water segment from the watershed files.
3. MAP - Record a "Y" in this field if a detailed map associated to the survey is going to be kept on file in the region. 3. MAP - Record a " \(Y^{\prime \prime}\) in this field if a detailed map associated to the survey is going to be kept on file in the region.
4. AUTHORITY - Record the last name only of the biologist or technician that is in charge of the survey.
5. SURVEY PURPOSE - Enter the appropriate code from the list below.
6. NAME - Enter the name of the water. Spell out the name in full, including terms such as lake
6. NAME - Enter the name of the water. Spell out the name in full, including terms such as lake, river, creek, etc. Do not use abbreviations unless absolutely necessary.
Do not use names like: "T12 OF WATKINS CREEK". If the water is unnamed, leave blank or enter "UNNAMED WATER".
7. P/S (Pond/Stream) - Enter a "S" for all stream surveys. If a person wishes to record pond data using this form then "P" must be entered in this space. WSHED - Enter the appropriate watershed code from the list below.
 11. DATE - Enter the month, day and year (MM/DD/MY) data on this form was collected. (Use a leading 0 for days and months less than 10 .) site 0 , where the SITE DESCRIPTION is ENTIRE SURVEY or ENTIRE WATER or verbally describes the entire section surveyed.
town or city name of the downstream most point of the survey section. survey section.
15. WATER CLASS - Enter the classification standard for the stream as listed in the appropriate article of the NYCRR. most point of the survey section.
17. EDITION - Record the last two digits of the year the map was printed.
18. QUAD TYPE - Enter the appropriate code from the list below.
18. QUAD TYPE - Enter the appropriate code from the list below.
19. SITE DESCRIPTION - Describe the site as completely and accura
20. ALTITUDE - Record the altitude in feet above sea level. Determine the altitude from topographic maps. Convert metric altitudes to feet.
21. RMI (River Mile Index) - Streams only. Enter the distance in miles of the downstream mographic
21. RMI (River Mile Index) - Streams only. Enter the distance in miles of the downstream most point of the stream study site from the mouth of the stream.
22. RMI UP - Streams only. If a stream study site is greater than 0.1 miles-in length, enter the distance in miles of the upstream most point of the stream study


\section*{SURVEY PURPOSE CODES} Rare/endangered species
Reclassification

WATERSHED CODES

\section*{QUAD TYPE CODES}

\section*{NY Dept of Transportation \(7.5^{i}\)}

 topograpphic mapsheet.
US Geological Survey \({ }^{15}\)
宽

 overlays.





Brood stock monitoring
Centrarchid sampling plan
CROTS survey
Egg take
Esocid sampling plan
Fish kill investigation
Fish salvage operation
General biological survey
Percid sampling plan
Pre-reclamation survey
Population estimate:
Delury
Petersen


\section*{1. SURVEY NUMBER - Enter the region, year, and survey serial number. Take caution not to use survey serial numbers more than oncel} 1. SATE - Enter the month, day and year the data on this form was collected. (Use a leading zero for days and months less than 10. ie. 03/06/92).
2. SITE NUMBER - Enter the number that corresponds to the description of the location of the sampling effort. NET/RUN NUMBER - If a piece of gear was used at the same site on the same day then assign each separ GEAR CODE - Enter the approprlate code from the list below. 7. WEATHER - Enter the appropriate code from the list below. 8. RAIN 48 - Enter 9. If significant rain, that could blas the data, has fallen at the site during the previous 48 hours. 6. INVENTORY NUMBER - Record the inventory number of the gear used. This number is assigned on a Gear Description Record (Rectype GD).
4. NET/RUN NUMBER - If a piece of gear was used at the same site on the same day then assign each separate collection effort a sequential net/run number.
5. GEAR CODE - Enter the approprlate code from the list \(\quad\) below. 1. COMMENTS - Record a "Y* if a comment record, (Rectype CO) relating to a GE record for this collection effort
 survey Was done. For the \(A M\) hours before \(10: 00\) record a leading zero, i.e. 7:30 \(A M=0730\).
12. TIME STOP . Record the time that the electrofishing run ended. Use 24 format, l.e. \(3: 30 P M=1530\).
 13. ON-TIME - Record the ime, in hours and hundradiss of hours that he electronsh
14. WATER TEMPERATURE - Record the water temperature in degrees Fahrenheit or Celsius, as accurately as equilpment allows.
13. ON-TIME - Record the time, In hours and hundredths of hours that the electrofishing gear was actually applying current to the water and actively fishing. This can be elther determined from


 20. BOTTOM - Enter "Y" if the secchi depth equals the bottom depth.
21. AC/DC - Enter "AC" for alternating current or "DC" for direct curre
22. WAVEFORM - Enter the appropriate code from the list below
23. PULSE RATE - For AC systems enter the frequency, for DC systems enter the number of D
24. AMPERAGE - Record the amperage applied to the water, thls must come from a meter on the the equipment. If <1 amp, record a decimal followed by the number of milliamps. 25. UNITS - Enter the number of electroshocking units used in conjunction with each other for this collection effort. 27. BRAIL LENGTH - Record the length of the brall to the nearest whole foot. 28. DC WANDS - Record the number of DC wands used with an electroshocking system.
29. FLOW - Enter the approprlate code from the list below. 29. FLOW - Enter the approprlate code from the list below.
30. TARGET-Enter the appropriate code from the llst below.
31. FINGERLING EFFICIENCY - Enter the estimate of electro
31. FINGERLING EFFICIENCY - Enter the estimate of electroshocking efficiency as it relates to trout fingerlings ( \(0+\) ) only.
32. YEARLING EFFICIENCY - Enter the estimate of electroshocking efficiency as it relates to trout yearlings ( \(1+\) ) only.
33. OLDER TROUT EFFICIENCY - Enter the estimate of electrofishing efficiency as it relates to older trout ( \(2+\) and older)
 4. SCAPPERS - Record the number of scappers
ZERO CATCH - Record "Y" If no flsh are captured during the electrofishing effort.
BIAS - Enter. "Y" If the electroflshing effort was blased, or the equipment damaged. 37. BOTTOM 1, 2,3. Enter the approprlate code from the llst below.
8. ABUNDANCE (ABD) 1, 2, 3-Enter the appropriate code.
39. SUBMERGED, EMERGENT, FLOATING - Enter the approp
39. SUBMERGED, EMERGENT, FLOATING - Enter the appropriate code that best describes the abundance of each type of vegetatlon.
WEATHER CODES ELECTROFISHING GEAR CODES
\begin{tabular}{ll} 
WEATHER CODES \\
Clear & - CLR \\
Cloudy & - CLDY \\
Hazy & - HAZY \\
Partly cloudy & - PCDY \\
Raining & - RAIN \\
Snowing & - SNOW \\
& \\
& \\
NOTES: & \\
\hline
\end{tabular}

Sheet
96/L :ว甲PG пOISTAəy \(\quad\) JO

-
\[
\begin{aligned}
& \text { INDIVIDUAL FISH: SHORT FORM } \\
& \text { NYSDEC Bureau of Fisheries: Fisheries Data Base }
\end{aligned}
\]




of

Sheet


\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline B] & & \multicolumn{3}{|l|}{BULK FISH RECORD
NYSDEC Bureau of Fisheries: Fisheries Data Base} & \multicolumn{7}{|l|}{ WAME OF WATER COSTERSED INDEX NUMBER (STREAMS ONLY) \(\mathrm{H}-17 /-53\)} \\
\hline & & & noata 4 as & & &  & \[
\begin{aligned}
& \text { mand } \\
& \theta 2 z a l
\end{aligned}
\] & &  & moom & \\
\hline \multicolumn{12}{|l|}{} \\
\hline  &  & 成 &  &  & Maxmme & \% & &  &  & Mume & \\
\hline & 1 & 816 & 31 & 5 & 101/ & , B & & 188 & & & \\
\hline & 2 & \(\frac{866}{462}\) & & & 98 & \({ }^{\text {a }}\) & & & & & \\
\hline & & & & & & & & & & & \\
\hline & & & & & & & & & & & \\
\hline & & & & & & & & & & & \\
\hline & & & & & & & & & & & \\
\hline & & & & & & & & & & & \\
\hline & & & & & & & & & & & \\
\hline & & & & & & & & & & & \\
\hline & & & & & & & & & & & \\
\hline & & & & & & & & & & & \\
\hline & & & & & & & & & & & \\
\hline & & & & & & & & & & & \\
\hline & & & & & & - & & & & & \\
\hline & & & & & & & & & & & \\
\hline
\end{tabular}
BULK CATCH DESCRIPTIVE DATA RECORD
Coding Instructions．See Data Dictionary for detailed information．
1．SURVEY NUMBER－Enter the reglon，year，and survey serial number．Take caution not to use survey serial numbers more than oncel 2．SITE NUMBER－Enter the number that corresponds to the description of the location of the sampling effort．
4． \(\operatorname{CANEL}\) ．NUMBER－Enter the panel number in which the fish was caught．Panel numbers are assigned to specific mesh sizes in the Gear Description（GD）record．If gear codes 1 ， 18 ，or 19 are
used instead of an inventory number，then panel numbers are assigned consecutively beginning with 1，from smallest to largest mesh．
6．SPECIES CODE－Enter the approprlate code．For species not listed，refer to：A Comprehensive Fish Species Code List for Inland and Marine Fishes of New York State by Kretser，Dudones，
5．PANEL．NUMBER－Enter the panel number in which the fish was caught．Panel numbers are assigned to specific mesh sizes in the Gear Description（GD）record．If gear codes 1 ， 18 ，or 19 are
used instead of an inventory number，then panel numbers are assigned consecutively beginning with 1 ，from smallest to largest mesh．
6．SPECIES CODE－Enter the approprlate code．For species not listed，refer to：A Comprehensive Fish Species Code List for Inland and Marine Fishes of New York State by Kretser，Dudones， 7．NUMBER CAUGHT（OR OBSERVED）－Enter the number of fish in the catch，oither actual or ostimatod． 8．MINIMUM LENGTH－Enter the total length of the smallest fish in the collection，In millimeters． 9．MAXIMUM LENGTH．Enter the total length of the largest fish in the collection，In millimeters．
10．VALIDITY．Enter the approprlate code that best describes the accuracy of the data recorded
10．VALIDITY－Enter the approprlate code that best describes the accuracy of the data recorded in the NUMBER CAUGHT，MINIMUM LENGTH，and MAXIMUM LENGTH fields．Always complete 11．STAGE－Enter the appropriate code from the list below．
12．SEX－Entor＂\(M\)＂for malo and＂F＂for female．Loavo blank If unknown or undoterminod． 14．SUB－SAMPLE WEIGHT．If the catch is divided Into sub－samples，record the welght of each sub－sample，in grams．This line of data MUST refer to the sub－sample only． 15．NUMBER IN SUB－SAMPLE－If the catch is divided int sub－samples，record the number of fish in the sub－sample．This line of data MUST refer to the sub－sample only． 16．COMMENTS－Enter＂Y＂If a comment record（Rectype CO）relating to a BF record for this survey，date，site，net／run，and specles has been completed．

WHNF＂N＂calculations call for catches of non－trout species to be broken down Into size classes in order to estimate their competitive Impact on stocked trout．WHNF＂N＂determinations are also necessary for CROTS stocking calculations．To use this as \(D\) ，divide the catch by species and into the following size classes：

（Use with CROTS surveys only）
ペロO
\(\stackrel{\sim}{\circ} \stackrel{\sim}{\sim} \stackrel{\sim}{\sim}{ }_{\sim}^{\infty}\)
くロソロルルひこー

ーN


\section*{STAGE CODES}


Fish caught，counted，and measured
Fish caught，counted，smallest and largest measured Fish caught，counted，measurements estlmated Fish caught，counted，measurements reflect length frequency classes Fish caught，numbers estimated，smallest and largest measured Fish caught，numbers estimated，measurements estimated Fish observed，numbers estimated，measurements estimated Bulk weight of individual fish recorded on the IF forms
Other，explain in comment records

Largemouth bass－601；LMB Mottled sculpln
Muskellunge

Northern plke
Pumpklnseed
Ralnbow trout
Redbreast sunilsh
Redfin plckerel
\begin{tabular}{l} 
Rock bass \\
Slimy sculpin \\
\hline
\end{tabular}
Smallmouth bass
Splake
Strlped bass
Striped bass
X Whlte bass
Tiger musky
Tiger musky
Tiger trout Walleyo White perch While sucker
Yellow perch
 io

Alewils
American eel
Allantic salmon
 Black crapplo

응
Brook trout
Brown bullhead
Brown trout




 Creok chu
Fallifsh
 \(\stackrel{\square}{0}\)
\(\frac{5}{c}\)
\(\frac{5}{5}\)
ㄷ․
\(\frac{0}{0}\)
0 Grass pickerel Lake trout


Survey from Sept. 3, 1936



STREAM SITE LOCATION RECORD
Coding Instructions. See Data Dictionary for detailed information.






\(1111\)




1．SURVEY NUMBER－Enter the region，year，and survey serial number．Take caution not to use survey serial numbers more than oncel 2．FILE NUMBER－Enter the applicable file number for this water or water segment from the watershed files．
3．MAP－Record a＂Y＂in this field if a detailed map associated to the survey is going to be kept on file in the region．
5．SURVEY PURPOSE－Enter the appropriate code from the list below．
6．NAME－Enter the name of the water．Spell out the name in full，including terms such as lake，river，creek，etc．Do not use abbreviations unless absolutely necessary． P／S（Po not use names like：＂T12 OF WATKINS CREEK＂．If the water is unnamed，leave blank or enter＂UNNAMED WATER＂．
7．P／S 8 ．WSHED－Enter the appropriate watershed code from the list below． WSHED－Enter the appropriate watershed code from the list below．
WIN（Watershed Index Number）－For streams，enter the complete w

 site 0 ，where the SITE DESCRIPTION is ENTIRE SURVEY or ENTIRE WATER or verbally describes the entire section surveyed
 town or city name of the downstream most point of the survey section．
14．COUNTY－Enter the first four letters of the county in which the site is located．
 most point of the survey section．
1．EDITION－Record the last two digits of the year the map was printed．
8．QUAD TYPE－Enter the appropriate code from the list below． 18．QUAD TYPE－Enter the appropriate code from the list below．
ALTITUDE－Record the altitude in feet above sea level．Determine the altitude from topographic maps Cons locions or prominent landmarks．
20．ALTITUDE－Record the altitude in feet above sea level．Determine the altitude from topographic maps．Convert metric altitudes to feet．
21．RMI（River．Mile Index）－Streams only．Enter the distance in miles of the downstream most point of the stream study site from the mouth of the stream．
22．RMI UP－Streams only．If a stream study site is greater than 0.1 miles－in length，enter the distance in miles of the upstream most point of the stream study


SURVEY PURPOSE CODES




NY Dept of Transportation 7．5＇ topographic or planimetric mapsheet．

 topographic mapsheet．
 NY Bureau of Fisheries 7．5＇mylar \(\stackrel{\dot{\omega}}{\stackrel{\omega}{\alpha}}\)

Mohawk
Ontario
\begin{tabular}{c}
\(\stackrel{0}{\square}\) \\
\hline 0 \\
0 \\
0 \\
0 \\
0 \\
0 \\
0 \\
3 \\
3 \\
0 \\
0
\end{tabular}
Raquette



Upper Hudson


NOTES：







STREAM SITE LOCATION RECORD
Coding Instructions. See Data Dictionary
Coding Instructions. See Data Dictionary for detailed information.



VATERSHED INDEX NUMBER Or POND NUMBER
\[
4-1171|-52|-4 \mid-11
\]

GENERAL SURVEY COMMENTS: (attach another sheet if additional space is needed)
This survey was conducted to determine if trout adults and/or fingerlings currently inhabit this stream. Trout adults and Fingerlings were found in the \(9 \varnothing\) foot section sampled. This stream should be proposed for upgrading from its current \(D\) classification to a minimum C(TS). protection should be given to this stream to ensure that trout and trout spamming habitat is not degraded.
The site sampled included sections above and below a bridge. This bridge had a concrete slab that was much higher than the streambed on the downstream side. This very likely serves as a barrier to upstream migration of \(f_{i}\) ssh. Of the 13 trout collected, only one adult rainbow and two fingerlings. were collected above this barrier Approximately 30 feet of stream was sampled downstream of the bridge and \(6 \varnothing\) feet above the bridge.


\section*{1. SURVEY NUMBER - Enter the region, year, and survey serial number. Take caution not to use survey serial numbers more than oncel} 2. FILE NUMBER - Enter the applicable file number for this water or water segment from the watershed files.
3. MAP - Record a " \(Y\) " in this field if a detailed map associated to the survey is going to be kept on file in the region.
4. AUTHORITY - Record the last name only of the biologist or technician that is in charge of the survey. 5. SURVEY PURPOSE - Enter the appropriate code from the list below.
6. NAME - Enter the name of the water. Spell out the name in full, including terms such as lake, river, creek, etc. Do not use abbreviations unless absolutely necessary. Do not use names like: "T12 OF WATKINS CREEK". If the water is unnamed, leave blank or enter "UNNAMED WATER".
7. P/S (Pond/Stream) - Enter a "S" for all stream surveys. If a person wishes to record pond data using this form then "P" must be entered in this space.
WSHED - Enter the appropriate watershed code from the list below.
WIN (Watershed Index Number) - For streams, enter the complete wat


12. COMMENTS - Record a " \(Y\) " if a comment record (Rectype CO) relating to a SL record for this survey, date, and site has been recorded.

town or city name of the downstream most point of the survey section.

15. WATER CLASS - Enter the classification standard for the stream as listed in the appropriate article of the NYCRR.

17. EDITION - Record the last two digits of the year the map was printed.
18. QUAD TYPE - Enter the appropriate code from the list below.
19. SITE DESCRIPTION - Describe the site as completely and accurately as possible. Reference map locations or prominent landmarks.
20. ALTITUDE - Record the altitude in feet above sea level. Determine the altitude from topographic maps. Convert metric altitudes to feet.
21. RMI (River Mile Index) - Streams only. Enter the distance in miles of the downstream most point of the stream study site from the mouth of the stream.
22. RMI UP-Streams only. If a stream study site is greater than 0.1 miles-in length, enter the distance in miles of the upstream most point of the stream stid



\section*{SURVEY PURPOSE CODES} Rare/endangered species


\section*{WATERSHED CODES \\ Mohawk \\ }
QUAD TYPE CODES
NY Dept of Transportation 7.5' topographic or planimetric mapsheet. US Geological Survey 7.5'
topograpphic mapsheet. US Geological Survey 15'

 overlays.


NOTES:
 5. GEAR CODE - Enter the approprlate code from the list same site on below.
6. INVENTORY NUMBER \(\perp\) Record the inventory number of the gear used. This number is assigned on a Gear Description Record (Rectype GD).
8. RAIN 48 - Enter "Y" if significant rain, that could blas the data, has fallen at the site during the previous 48 hours.
9. LENGTH of SHORELINE SHOCKED - Enter the length of shoreline that was fished per run to the nearest yard.
 12. TIME STOP. Record the time that the electrofishing run ended. Use 24 formal, l.e. 3:30 PM \(=1530\).
survey was done. For the AM hours before \(10: 00\) record a leading zero, l.e. 7:30 \(\mathrm{AM}=0730\).
13. ON-TIME - Record the time, in hours and hundredths of hours that the electrofishing gear was actually applying current to the water and actively fishing. This can be elther determined from
14. WATER TEMPERATURE - R Or control the wat, or estimated, as for backpack shockers. 5. AIR TEMPERATURE - Record the alr temperature in degrees Fahrenhelt or Celslus, as accurately as equipment allows.
 18. CONDUCTIVITY METHOD - Enter the approprlate code from the list below.
19. SECCHI DEPTH - Record the secchi depth, or the bottom depth, if the secchi 20. BOTTOM - Enter "Y" if the secchl depth equals the bottom depth.
21. AC/DC - Enter "AC" for alternating current or "DC" for direct curren
21. AC/DC - Enter "AC" for alternating current or "DC" for direct current electrofishing systems.
22. WAVEFORM - Enter the appropriate code from the list below
23. PULSE RATE - For AC systems enter the frequency, for DC systems enter the number of D
28. DC WANDS - Record the number of DC wands used with an electroshocking system.
29. FLOW - Enter the approprlate code from the list below.
30. TARGET - Enter the appropriate code from the list below.
31. FINGERLING EFFICIENCY - Enter the estimate of electroshocking efficiency as it relate
24. AMPERAGE - Record the amperage applied to the water, this must come from a meter on the the equipment. If <1 amp, record a decimal followed by the number of milliamps.
25. VOL.TAGE - Record the voltage applied to the water, this can come from a meter or equipment specificatlons. Record to the nearest whole volt. 26. UNITS - Enter the number of electroshocking units used in conjunction with each other for this collectlon effort.
27. BRAIL LENGTH - Record the length of the brall to the nearest whole foot.
28. DC WANDS - Record the number of DC wands used with an electroshocking
31. YEARLING EFFICIENCY - Enter the estimate of electroshock
32. YEARLING EFFICIENCY - Enter the estimate of electroshocking efflciency as it relates to trout yearlings ( \(1+\) ) only.
33. OLDER TROUT EFFICIENCY - Enter the estimate of electrofishing efficlency as it relates to older trout ( \(2+\) and older).

34. SCAPPERS - Record the number of scappers.
36. BIAS - Enter "Y" If the electroflshing effort was blased, or the electrofishing effort. Explain in comments (Rectype CO). 37. BOTTOM 1, 2, 3-Enter the appropriate code from the list below.
39. SUBMERGED, EMERGENT, FLOATING - Enter the approprlate code that best describes the abundance of each type of vegetation.

WEATHER CODES ELECTROFISHING GEAR CODES
\begin{tabular}{ll} 
Cloar & - CLR \\
Cloudy & - CLDY \\
Hazy & - HAZY \\
Partly cloudy & - PCDY \\
Raining & - RAIN \\
Snowing & - SNOW \\
& \\
& \\
NOTES: & \\
\hline
\end{tabular}



```


[^0]: Special features (dams, falls, pollution, dredging, erosion, etc.)

[^1]: Stocking policy: No change from previous policy. BT, ST; NSA

[^2]: 8. RAIN 48 - Enter "Y" if significant rain, that could bias the data, has fallen at the site during the previous 48 hours.
 9. LENGTH of SHORELINE SHOCKED. Enter the length of shoreline that was fished per run to the nearest yard.
 10. COMMENTS. Record a "Y" if a comment record (Retype CO) relating to
[^3]: $1 / 56 / 10 \mathrm{M}$

